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11 ABSTRACT

12 We present a new methodology, based on a combination of genetic algorithms and image morphometry, for matching the outcome of a Monte

13 Carlo simulation to experimental observations of a far-from-equilibrium nanosystem. The Monte Carlo model used simulates a colloidal solution

14 of nanoparticles drying on a solid substrate and has previously been shown to produce patterns very similar to those observed experimentally.

15 Our approach enables the broad parameter space associated with simulated nanoparticle self-organization to be searched effectively for a

16 given experimental target morphology.

17

18 Complex systems in chemistry, physics, biology, ecology, J@.,, Y Pt W AN

19 economics, computer science, and beyond have often beer’ Py

20 simulated using cellular automataand the closely related %?}.

21 lattice gas model technigieBoth approaches are appealing f_i?? :i -

22 modeling paradigms not only because they allow for a piece- ;_'._;"?- e

23 meal specification of the laws that govern a given system’s :::*:’5 LRty

. Lo o e ,& .

24 dynamics but also because they are intrinsically distributed w-;’%',‘ﬁ:g ST

25 tools amenable to computational parallelization. However, Ef,f;f,’ T E X

26 due to the complex nature of the processes that are simulate@” 9_';:{“: o

27 with these methods, it is not always possible to analytically .".9 %

28 derive specific values for the many model parameters that

29 control their time-space evolution. This problem gets more

30 insidious when the intention is for the simulation to quan-

31 titatively match observations made in the laboratory of ex-

32 periments where the underlying physics is not wholly under- &

33 stood. Importantly, however, identifying regions of parameter &

34 space which produce good agreement with experiment can

35 provide significant insight into the key physicochemical .H("

36 processes underlying the self-organization of the system. oSN

37 In this Letter we describe how the combination of a Monte

38 Carlo modet® with a genetic algorithm (GA&)can be used 3 _ ) ) )

39 to tune the evolution of a simulated self-organizing nanoscale "'9ure 1. Three-dimensionally-rendered atomic force microscope
) L images showing four of the morphologies that are commonly

40 system toward a predefined nonequilibrium morphology. The opserved in our experiments. These are formed by spin-casting

41 prototype system we have chosem colloidal solution of  solutions of~2 nm diameter thiol-passivated gold nanoparticles

42 Au nanoparticles adsorbed on a substratet only produces  onto silicon substrates. With increasing solution concentration from

43 a striking array of complex nonequilibrium patterns but has (&-d), we observe (a) isolated droplets, (b) “wormlike” domains,

(c) interconnected labyrinthine patterns, and (d) cellular networks.
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“Island™ (target)

Number of squares, ny — 8
Number of edges. n, — 24,
Number of vertices., ny = 16
Area (A)=ns = 8.
Perimeter (U) = —dng + 2n, = 16,
Euler (%) =ng —ne +ny =0

Figure 2. Calculation of the 2D Minkowksi functionals that form
the basis of the fitness function in the genetic algorithm.

while (stopping condition not fulfilled)
parents = select parents from population
with a defined probabilty
‘mate’ the parents to form (usually) two children

else

children = parents “Cell” (target) “Cell (e\«olved)
with a defined probability %

mutate children
insert children into population
evaluate and cull population

(a) Pseudo-code

Parent selection: roulette wheel )
Crossover operator: uniform “Worm” (target) “Worm” (e\«olve:d)
Probability of crossover: 0.7
Mutation operator: BCG2® Torget | Avuger Aevoived | Aerror |Urarger Uevotved | error {Yoarges Xevolved | Xerror
. Island |304862 308170 1.03% 72512 72198 | 0.43% | 632 596 | 5.70%
Mutat}on rate:“ 0.3 . Labyrinth | 516669 508958 | 1.49% | 77984 77502 | 0.62% | 114 147 |28.95%
Stopping condition: after 100 generations Cell |305642 25830415.50% 18588 24050 [29.38%| 5 2 | 6%
Replacement strategy:  (u+A), with y=16 and A =38 Worm [301378 302338] 0.32% [32198 34610 [7.49% [ 88 110 | 25%
(b) GA system parameters (where u represents the population size
and A the number of offspring produced in each generation Figure 4. Evolved patterns using the Minkowski functional-based
fitness function. The left column shows the target, i.e., experi-
Figure 3. Genetic algorithm details. mental, images. The right column shows self-organized patterns
mimicking the experimental data. These patterns were evolved using
- . . . . the evolutionary algorithm described in the main text. The table
46 etry—specifically, Minkowski functional analysisis used  gnows the specific Minkowski values for the area (A), perimeter
47 as the basis of the fitness function for the GA. Evolved (u), and Euler characteristig) for both the experimental target
48 simulation parameters produce simulated nanoparticle pat-and evolved images as well as the discrepancy, i.e., % error,
49 terns which closely match the target images taken from between the two.
50 experimental data and replicate a number of morphological
51 families. Our results provide an important bridge between wettability), and the length of the thiol groups used t@
52 simulation and experiment in the study of self-organizing passivate the gold particles. Understanding the physical
53 nanostructured systems and, moreover, bring us closer to thgrocesses that govern the self-organization of patterns kke
54 concept of software control of mattér. those shown in Figure 1 is an area of intense research wihsere
55 When deposited onto a solid substrate, colloidal nanopar-the interplay of simulation and experiment plays a pivotal
56 ticles self-organize into a variety of complex pattéis?!3 role. 71
57 driven in many cases by the evaporative dewetting of the Our simulation3'®>are based on a two-dimensional Monte:
58 solvent. The system of interest in this Letter, namely, Au Carlo (Metropolis algorithm) model introduced by Rabani
59 nanoparticles in toluene deposited onto a native oxide- et al* The solvent is represented as an array of cells on4a
60 terminated Si(111) substrate, has been described at lengtlsquare grid, each of which represents 1?namd can have 75
61 in a number of earlier papér¥1314and here we therefore a value of either 1 or 0 to represent liquid or vapors
62 include only a brief description of the patterns formed. Figure respectively. Each gold nanoparticle occupies an area afr 3
63 1 shows a subset of the different morphologies obtained. x 3 cells, and liquid is excluded from the sites where7a
64 These depend on a number of factors including nanoparticleparticle is present. The simulation proceeds by two pro-
65 concentration, the nature of the solvent and substrate (e.g.cesses: the evaporation (and recondensation) of solventsand
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(a) Target ‘island’ - average fitness over time (ten runs) (b) Target ‘labyninth’ - average fitness over time (ten runs)
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(C) Target ‘cell’ - average fitness over time (ten runs) (d) Target 'worm’ - average fitness over time (ten runs)
3 T T T 30 T T
25+ - -
20 - — _ -
i - -
[ [
10 e — —
5F P /’i‘: = —— — ]
d' 20 40 éO 8.0 100 ¢ 0 2:0 40 6ID 80 100
Generations Generations
Target |Average fitness|Best fitness| Worst fitness|Fitness deviation
Island 111.9305 460.6708 | 36.07952 126.0549
Labyrinth| 36.51094 84.49821 | 2.851095 27.09551
Cell 2.742406 3.632334 | 1.934135 0.427782
Worm 20.88366 50.97714 | 3.824032 17.15378

Figure 5. Population dynamics of the genetic algorithm. Each experimental image was used as a target in ten independent runs of the GA.
Parts a-d show the average population fitness as a function of time (“generations”) of each run as well as the average evolution (dark line).

The table shows, for each experimental target, details of the fitne

ss achieved by the winning individual in each of the ten runs.

81 the random walks of nanoparticles. The Metropolis algorithm conceptual simplicity and power, as exemplified in a greab
82 is governed by the following equations many practical applications;?? and for their theoretical 101
foundationg®>2> A genetic algorithm maintains a set ofo2
) —AH vectors, called a population of individuals, where each vectos
Paccept™ mrn(l, exr( )) @) represents a particular set of input parameters for the
ks T p p put p
simulator. Each vector is passed onto the simulator and tbe
H=—¢ ; Ll — e, ; nn — ey ; nl; — u ; I (2) resglting self-organized pattern compared ageinst the ex-
T T Au n| perimental target, evaluated, and assigned a “fitness” vahse.
Fit individuals “breed” preferentially. Thus good traitsos
83 wherepacceptfepresents the probability of acceptance of an (parameters) present in. specific vectors eccqmulate and, aver
84 event,e;, e, andey determine the liquietiquid, nanopar- time, the average quality of the population increases. 110
85 ticle—nanoparticle, and nanopartieléiquid interactions, In order to coerce the Monte Carlo simulator into productt
86 respectively, ang: is the chemical potential of the liquid, ing a particular morphology, a method of measuring similans
87 which defines its equilibrium stafé. These parameters ity between self-organized patterns must be used. In this
88 determine the nature of the pattern formed as output. paper we employ Minkowski functionalshese characterizei14
89 In order to program the simulated self-organized patterns a binary pattern in terms of area, perimeter, and Eules
90 to match as closely as possible those observed experimencharacteristic (a measure of connectivity) (see Figure 2). Tihe
91 tally, we couple the simulator to a genetic algorithm that objective function that the GA is set to minimize is derived?
92 will tune these parameters. GAs are the mainstay of by taking the root mean squared error (RMSE) between the
93 evolutionary computation and one of the most powerful and target Minkowski values and those derived from the evolved
94 widely used methods in the optimization and machine- patterns. Hence the fitness of an individual can be seenas
9 learning toolbox. They are particularly suited to optimization the reciprocal of this RMSE value (as plotted in Figure Sp1
96 problems involving very large search spaces and/or complexAs the simulation is intrinsically stochastic, each individuakz
97 objective functions which are not amenable to traditional i.e., parameter vector, must be evaluated a number of times,
98 numerical analysis. First proposed in the 1970s by Johnhence the use of mean errors. Also, as each Minkowski
99 Holland}® GAs have earned great popularity both for their functional can take values over widely different intervalsss
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Figure 6. A partial depiction of the logarithmic cluster tree for
the 256-piece dataset.

we scale each functional to the [0,1] interval so as to give
each of them equal weighting within the fitness function.
The GA is initialized with a randomly generated population,
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i.e., multiset, of vectors and we let the evolutionary process
take its course for a number of generations. A generic G#
pseudocode, along with parameters from our system,as
shown in Figure 3. 132

To test the methodology decribed above, we defined a sst
of four patterns, each demonstrating different morphologiaad
families, taken fromexperimental image¢see Figure 4). 135
These four patterns were the “targets” that the GA needssl
to reverse engineer by finding a suitable set of parametsrs
for the MC simulator. For any of the given targets, the Gis
was run for 100 generations using a population of 26b
individuals. Each individual comprised a candidate parameter
set for the MC simulator. On each target pattern we run the
GA ten times. 142

In every case, the simulator was run for 1000 Monte Catla
cycles. Figure 4 shows representative results from the GA
runs that are characterized by the striking similarity to theis
respective targets; the results for the island and labyrintha
targets are particularly good and taking into account that both
the experimental and simulated patterns arise fromia
stochastic process (i.e., for a given parameter set two distiragt
runs will produce similar yet not identical behaviors) the calo
and worm patterns are also remarkably close to their
experimental objective. 152

As shown in the evolution graphs and the statistics showsn
in Figure 5, each run followed a similar evolutionarys4
trajectory. A good (i.e., visually acceptable) result wass

Family name Characterstics Example |Number of samples
Cell Highly connected, large length scale 17
Island Large number of unconnected, small, regular clusters 71
Labyrinth Highly connected, small length scale 24
Worm Disconnected, larger non-regular clusters 14
Indiscernible No spatially correlated pattern visible 60
No pattern Completely black (i.e., solvent saturated) 63
Unusual |Other novel patterns, including fingering morphologies®’ ; 7

Figure 7. Table illustrating the size of the different morphological families found in the dataset. Families containing a larger number of
representative patterns are deemed more designable as it is easier for the GA to find a parameter set realizing the pattern.

D
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obtained in each of the ten runs performed for each target, structures that are reminiscent of viscous fingefh§The 214
despite the often large standard deviations. Indeed, even forobvious, albeit extremely challenging, next step is to couple
the “worst” runs, although the numerical fitness is substan- the GA directly to an experiment rather than a simulator, 4rs
tially lower than average, the result was still visually a fashion similar to the research currently being explored
acceptable (though not as convincing, of course, as theby the CHELLnet project 218
pattern evolved in the “best” run). This surprising feature

can be best explained by performing a detailed analysis of Acknowledgment. The authors gratefully acknowledgezs
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We defined a dataset comprising 256 sample images
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