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A Tutorial for Competent Memetic Algorithms:
Model, Taxonomy and Design Issues

Natalio Krasnogor and Jim Smith

Abstract—The combination of Evolutionary algorithms with a population with individual learning within the lifetimes of
local search was named “Memetic Algorithms™ (MAs) in [1]. jts members. The choice of name is inspired by Richard
These methods are inspired by models of natural systems that payking' concept of a meme, which represents a unit of
combine the evolutionary adaptation of a population with indi- . o b
vidual learning within the lifetimes of its members. Additionally, cultural evoluthn _that (_:ar_1 ex_h|b|t local refmement [2]. In the
MAs are inspired by Richard Dawkin’s concept of a meme, Context of heuristic optimisation a meme is taken to represent
which represents a unit of cultural evolution that can exhibit a learning or development strategy. Thus a memetic model of
local refinement [2]. In the case of MAs “memes” refer to adaptation exhibits the plasticity of individuals that a strictly
the strategies (e.g. local refinement, perturbation or constructive genetic model fails to capture.

methods, etc) that are employed to improve individuals. In this . . .
paper we review some works on the application of MAs to well In the literature, MAs have also been named Hybrid Genetic

known combinatorial optimisation problems, and place them in Algorithms (e.g. [7]-[9]), Genetic Local Searchers (e.g. [10]),
a framework defined by a general syntactic model. This model Lamarckian Genetic Algorithms (e.g. [11]), Baldwinian Ge-
provides us with a classification scheme based on a computablenetic Algorithms (e.g. [12]), etc. As noted above, they typically
index D, which facilitates algorithmic comparisons and Suggests ., mnine |ocal search heuristics with the EAs’ operators, but
areas for future research. Also, by having an abstract model for L . . . ’

this class of meta-heuristics it is possible to explore their design COMbinations with constructive heuristics or exact methods
space and better understand their behaviour from a theoretical may also be considered within this class of algorithms. We
standpoint. We illustrate the theoretical and practical relevance of adopt the name of Memetic Algorithms for this meta-heuristic,
thIS model and ta}xonpmy for MAs in the context of a discussion because we think it encompasses all the major Concepts
of important design issues that must be addressed to produce jq\ed by the other ones, and for better or worse has become
effective and efficient Memetic Algorithms. the de factostandard e.g. [13]-[15].

Index Terms—Memetic Algorithms, Evolutionary Global- EAs and MAs have been applied in a number of different
Local Search Hybrids, Model, Taxonomy, Design Issues. areas, for example operational research and optimisation, au-
| INTRODUCTION tomatic programming, machine and robot learning. They have

' also been used to study and optimise of models of economies,
VOLUTIONARY ALGORITHMS (EAs) are a class of immune systems, ecologies, population genetics, and social
a search and optimisation techniques that work onegstems, and the interaction between evolution and learning,
principle inspired by naturéarwinian Evolution. The concept to name but a few applications.
of natural selection is captured in EAs. Specifically, solutions From an optimisation point of view, MAs have been shown
to a given problem are codified in so—called chromosomeg. he poth more efficient (i.e. requiring orders of magnitude
The evolution of chromosomes due to the action of crossovglyer evaluations to find optima) and more effective (i.e.

mutation and natural selection are simulated through COmpUigEnifying higher quality solutions) than traditional EAs for
COd?' . ) ) some problem domains. As a result, MAs are gaining wide
Itis now well established thature Evolutionary algorithms ,cceptance, in particular in well-known combinatorial opti-
are not well suited to fine tuning search in complex combipisation problems where large instances have been solved
natorial spaces and that hybn_dlsatlon with other techniqugs optimality and where other meta-heuristics have failed
can greatly improve the efficiency of search [3]-[6]. Thg, produce comparable results (see for example [16] for a

combination of Evolutionary Algorithms with Local Search,omparison of MAs against other approaches for the Quadratic
(LS) was named “Memetic Algorithms” in [1]. Memet'CAssignment Problem).

algorithms (MAs) are extensions of evolutionary algorithms
that apply separate processes to refine individuals, for example
improving their fitness by hill-climbing. Il. GOALS, AIMS AND METHODS
These methods are inspired by models of adaptation inpespite the impressive results achieved by some MA prac-
natural systems that combine the evolutionary adaptation §foners, the process of designing effective and efficient MAs
Manuscript Received December 2003 ;revised September 15 2004 &Wremly rema}ms fa'rly ad-hpc and is frequemly h.|dden behind
March 2 2005. problem-specific details. This paper aims to begin the process
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draw out those differences which specifically arise from th&lthough many MAs indeed use this formula this is a some-
hybridisation of the underlying EA, as opposed to being desigvhat restrictive view of MAs and we will show in the
choices within the EA itself. These studies are exemplars, following sections that many other ways have been used to
the sense that they represent a wide range of applications agbridise EAs with LS with impressive results.
algorithmic options for a Memetic Algorithm. In [19] the authors present an algebraic formalisation of
The first goal is to define a syntactic model which enablégemetic algorithms. In their approach an MA is a very special
a better understanding of the interplay between the differegise of GA where just one period of local search is performed.
component parts of an MA. A syntactic model is devoid oAs we will show in following sections, MAs are used in
the semantic intricacies of each application domain and her&eglethora of alternative ways and not just in the way the
exposes the bare bones of this meta-heuristic to scrutiny. Tfigmalism introduced in [19] suggests.
model should be able to represent the many different parts thatt has recently been argued by Moscato that the class of
compose a MA, determine their roles and interrelations. MAs should be extended to contain not only “Ebased MAs”,
With such a model we can construct a taxonomy of MA®ut effectively include any population-based approach based
the second goal of this paper. This taxonomy is of practic@h @ “k-merger” operator to combine information from solu-
and theoretical relevance. It will allow for more sensible aniPns [13], creating a class of algorithms called theynomial
fair comparisons of approaches and experimental designs.Merger Algorithm (PMA) (pp227 and 228, ibid). However,
the same time it will provide a conceptual framework to de&lMA ignores mutation and selection as important components
with more difficult questions about the general behaviour &f the evolutionary meta-heuristic. Rather, it focuses exclu-
MAs. Moreover, it will suggest directions of innovation in thesively on recombination, or it's more general form, the “k-
design and development of MAs. merger” operator. Therefore we do not use this definition here,
Finally, by having a syntactic model and a taxonomps We feel that it is both restrictive (in that it precludes the
the process of more clearly identifying which of the manpossibility of EAs which do not use recombination), and also
components (and interactions) of these complex algorithi@ broad that it encompasses such a wide range of algorithms
relate to which of these design issues should be facilitated@s t0 make analysis difficult. _
The rest of this paper is organised as follows: In Section 11l AS the limits of “whatis” and “whatis.not” an MA are
we motivate our definition of the class of meta-heuristics undgirétched, it becomes more and more difficult to assess the
consideration, and give examples of the type of design iss(R&n€fit of each particular component of the meta-heuristic in
that have motivated this study. This is followed in Section [¥€arch or optimisationA priori formalisations such as [13]
by a review of some applications of Memetic Algorithmg@nd [19] inevitably leave out many demonstrably successful
to well known problems in combinatorial optimisation and/As and can seriously limit analysis and generalisation of
bio-informatics. Section V presents a syntax-only model féhe (already complex) behaviour of MAs. Our intention is to
Memetic Algorithms and a taxonomy of possible architecturé$0vide ana posteriori model of MAs, usingalgorithms as
for these meta-heuristics is given in Section VI. In Section VAat&; that is, applications of memetic algorithms that have
we return to the discussion of design issues, showing h&&en proven successful. It will be designed in such a way
some of these can be aided by the insights given by d@ €ncompass those algorithms. Thus we use a commonly

model. Finally we conclude with a discussion and conclusioR§cepted definition, which may be summarised as [20]:
in Section VIII. A Memetic Algorithm is an Evolutionary Algorithm

that includes one or more local search phases within
its evolutionary cycle
IIl. BACKGROUND While this definition clearly limits the scope of our study it
A. Defining the Subject of Study does not curtail the range of algorithms that can fit this scope.
_ i As with any formal model and taxonomy, ours will have its
In order to be able to define a syntactic model and taxonorgy, «outsiders”, but hopefully they will be less numerous than
we must first clarify what we mean by a Memetic Algorithmy,5se |eft aside by [13] and [19]. The extension of our model

It has been argued that the success of MAs is due t0 feqther population based meta-heuristics is being considered
trade-off between the exploration abilities of the EA, and thg 4 separate paper.

exploitation abilities of the local search used. The well known Finally we should note that we have restricted the survey
results of MAs over Multi Start Local Search (MSLS) [17]art of this paper to Memetic Algorithms approaches for single
and Greedy Randomised Adaptive Search Procedure(GRAgﬁPective combinatorial optimisation problems (as opposed to
[8] suggest that, by transferring information between differeitj-objective or numerical optimisation problems). This is
runs of the local search (by means of genetic operators) (g pecause MAs are unsuited to these domains - they have
MA is capable of performing a much more efficient searchyeen very successfully applied to the fields of multi-objective

In this light, MAs have been frequently described@sictic  gptimisation (see e.g. [21]-[24], an extensive bibliography can
Local Search which might be thought as the following proces$)e found in [25]), and numerical optimisation (see e.g. [26]-

[18]: [32]). Rather, the reason for this omission is partly practical,
In each generation of GA, apply the LS operator to all to do with the space this large field would demand. It is also
solutions in the offspring population, before applying partly because we wish to introduce our ideas in the context

the selection operator. of the simple algorithnstandard _Local _Search(...) where
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it is straightforward to define a neighbourhood, improvement, V. SOME EXAMPLE APPLICATIONS OFMEMETIC

and the concept of local optimality. When we consider Multi- ALGORITHMS IN OPTIMISATION AND SEARCH

objective problems, the whole concept of optimality becomes

clouded by the trade-offs between objectives, and dominance ] o

relations are usually preferred. Similarly in the case of numer-!N this section we will briefly comment on the use of MAs

ical optimisation, the concept of local optimality is cloude@n different combinatorial optimisation problems and adap-

by the difficulty, in the absence of derivative information, ofVe landscapes. Applications t@ravelling Salesman Prob-

knowing when a solution is truly locally optimal, as oppoself™ (TSP ), Q“ade? Assignment ‘P TOb]em (QAP), Bm‘f"ry

to say, a point a very small distance away. Nevertheless,dyadratic P rogramming (BQP), Mf’“_m“m Graph Colouring

is worth stressing that the issues cloud the exposition, ratf&GC), and Protein Structure Prediction Problem (PSP) will

than invalidate the concept of “schedulers” which leads Rf reviewed.

our syntactic model and taxonomy, and the subsequent desigiihis section does not pretend to be an exhaustive bibliogra-

guidelines which can equally well be applied in these moghy survey, but rather a gallery of well known applications of

complex domains. MAs from which some architectural and design conclusions
might be drawn. In [34] a comprehensive bibliography can be
found.

) . ) e For the definition of the problems the notation in [35]
Having provided a fairly broad-brush definition of the clasg;i| pe used. The reader interested in the complexity and

of meta-heuristics that we are concerned with, it is still vital tgpproximability results of those problems is referred to the
note that the design of “competent” [33] Memetic Algorithmsye\ious reference. The pseudo-code used to illustrate the
raises a number of important issues which must be addresggghent algorithms is shown as used by the respective authors,

by the practitioner. . with only some minor changes made for the sake of clarity.
Perhaps the foremost of these issues may be stated as: In [36] a “standard” local search algorithm is defined

“What is the best trade-off between .locj,l’sear"h and in terms of a local search problem. Because this standard
the global search provided by evolution algorithm is implicit in many MAs, we repeat it here:
This leads naturally to questions such as:
« Where, and when, should local search be applied within
the.eVO_“Jti_O_nary C)_’C|e? . . StandardLocal Search £):
« Which individuals in the population should be improved Begin _ _
by local search, and how should they be chosen? produce a starting solution 5
. to problem instance x;
« How much computational effort should be allocated t0  Rrepeat Until ( locally optimal ) Do
each local search? using s and x generate the next neighbour Ng,s)
« How can the genetic operators best be integrated wjth T (7,5 is better than ) Then

. . . S i=Ng. s,
local search in order to achieve a synergistic effect? Fi “r

As we will see in the following sections, there are a host ngd
of possible answers to these questions, and it is important
to use both empirical experience and theoretical reasoningin
the search for answers. The aim of our syntactic model Adgorithm Standard _Local _Search(...) captures the intu-
to provide a sound basis for understanding and comparing {Hge notion of searching a neighbourhood as a means of
effects of different schemes. The use of a formal model aidsif#gntifying a better solution. It doesn't specify tie-breaking
this by making some of the design choices more explicit, af@licies, neighbourhood structure, etc.
by providing a means of comparing the existing MA literature This algorithm uses a “greedy” rather than a “steepest”
with the (far broader) body of research into EAs. policy i.e. it accepts the first better neighbour that it finds. In

Similarly, while theoretical understanding of the interplageneral a given solution might have several better neighbours,
between local and global search is much less developed tlzend the rule that assigns one of the (potentially many) better
that of “pure” EAs, it is possible to look in that literature formeighbours to a solution is calledmvot rule. The selection
tools and concepts that may aid in the design of competaitthe pivot rule or rules to use in a given instantiation of the

B. Design Issues for Memetic Algorithms

Memetic Algorithms, for example: standard local search algorithm has tremendous impact on the
« Is a Baldwinian or Lamarckian model of improvement t&Omplexity of the search and potentially in the quality of the
be preferred? solutions explored.
« What fithess landscape(s) does the population of theNote also that the algorithm above implies that local search
Memetic Algorithm operate on? continues until a local optima is found. This may take a
« What local optima are the Memetic Algorithms operatingpng time, and in the continuous domain proof of local
with? optimality may be decidedly non-trivial. Many of the local

« How can we engineer Memetic Algorithms that efficienthsearch procedures embedded within the MAs in the literature
traverse large neutral plateaus and avoid deep local @e not standard in this sense, that is, they usually perform a
tima? shorter “truncated” local search.
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A. Memetic Algorithms for th@SP and local search. In [38] the local search used is based
The TSP is one of the most studied combinatorial optimion the powerful Guided Local Search (GLS) meta-heuristic
sation problems. It is defined by [39]. This algorithm was compared against MSLS, GLS and
a second MA,where the local search engine was the same
Traveling Salesman Problem basic move used by GLS without the guiding strategy. In this
Instance: A setC' of m cities, and for each pair of cities ~ Paper results were presented from experiments using instances
¢i,¢; € C a distancel(c;, c;) € N . taken from TSPLIB [40] and fractal instances [41]. In no
Solution: A tour of C, i.e., case was the MSLS able to achieve an optimal tour unlike
a permutationr : [1...m] — [1...m)]. the other three approaches. Out of 31 instances tested the
Measure: The length of the tour, i.e., GLSBased Memetic _Algorithm(...) solved 24 to optimality,
d(m) = d({exmy: exn}) + X7 d({ene), niien ). MSLS 0, MA with simple local search 10 and GLS 16. Itis
Aim: minimum length tourr™ : Vrr # 7% d(m) > d(7*). interesting to note that the paper was not intended as a “better

than” paper but rather as a pedagogical paper where the MAs
In [37] a short review on early MAs for the TSP is presented/€'® €xposed as a new meta-heuristic in optimisation.

where an MA was defined by the following skeleton code:
GLS BasedMemeticAlgorithm:
. . Begin
Gen'etchocaLSearchP € SY): Initialise population:;
Be/gyn)\ S For i = 1 To sizeOf(population) Do
F ’.'U"_T T D individual := populations;
ort .= 0 p Do . individual := Local — Search — Engine(individual);
OdIteratlve _Improvement( s;); Evaluate(individual);
oo ) od
S\t/?]pl ,cntenont - fal_fe,_ D Repeat Until ( termination _condition ) Do
]'jel @? stop _criterion ) o For j = 1 To #recombinations Do
F/ PR 1 ToAD selectT'oMerge a set Spqr C population,
0;* ! M._t » o o of fspring = Recombine(Spar, x);
M a]gm ) of fspring = Local — Search — Engine(of fspring);
pt lRe bi " Evaluate(of fspring);
ecom |ne. Add offspring to population;
S; € Hm(MZ), od
Iterative _Improvement( s;); For j = 1 To #mutatons Do
OdPl = Pru{si}; selectToMutate an individual in population;
F Select ¥ Mutate(individual);
P € (;)C Prys- individual = Local — Search — Engine(individual);
Ie (PUPHE . Evaluate(individual);
Odeva uate stop  _criterion; Add individual to population;
od
End. population = Select Pop(population);
If (population has converged) Then
Here we can regarderative _Improvement(...) as a o Population = HestarsE op(population);
particular instantiation o$tandard _Local _Search(...) , and od
appropriate code should be used to initialise the population, End.
mate solutions and select the next generation. Note that the

mutation stage was r_eplaced by the local §earch procedureMerz and Freisleben in [42], [43] and [44] show many
Also a (u + A) selection strategy was applied. The use dfifferent combinations of local search and genetic search
local search and the absence of mutation is a clear differege the TSP (in both its symmetricSTSP and asymmetric
betweenGenetic _Local _Search(...) and standard EAs.  ATSP versions) while defining purpose-specific crossover and

In [37] early works on the application of MAs to tHESP  mutation operators. In [42] the following code was used to
were commented on. Those works used different instantiatiofgnduct the simulations:

of the above skeleton to produce near optimal solution for
small instances of the problem. Although the results werg sTsp-GA:
not definitive, they were very encouraging, and many of the Begin

following applications of MAs to thel'SP (and also to other E&?az'sfzpipm pop];. ;’Z'(t?g)NgireSt'Ne'ghbour('") '
NPO problems) were inspired by those early works. Lin — Kernighan — Opt(individual;),i € P;
In [38] the MA GLSBased _Memetic _Algorithm(...) is Od _
used which has several non-standard features. For details Re,@’gf‘ﬂ“?ﬁ' (() CT%n\jfg%esiozler DODO
the reader is referred to [38] and [13]. We are interested Select two parents ia,ip € P randomly;
here in remarking two important differences with the MA ic = DPX — STSP(ia, ip);
Genetic _Local Search(..) ~ shown previously. In this MA b:,?&f%gggﬁﬁ&?pt( n;;)’do MUtation-STSP(  i.);
the local search procedure is used after the application of each Replace an individual of P by ic;
of the genetic operators and not only once in every iteration Od

of the EA. These two meta-heuristics differ also in that in Endo_d

the last case a clear distinction is made between mutations
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In this pseudo—cpde the authors employ speqialised GeneticHybrid Algorithm (i, , Hy):

crossover and mutation operators for th8P (and a similar Begin
algorithm for the ATSP). As in previous examples the initial 5!:_@?__ 1 To mD
population is a set of local optima, in this case, with respect ' Ganerate a random permutation  py
to Lin-Kernighan-Opt(...) . In this case thd_.K heuristic Add Hi(p) to P;
is also applied to the results of crossover and mutation. The Sdt p

. . : ort P;
authors motivate this, saying For i = 1 To number _of _generations Do

For j = 1 T fspri _per _ ti D
...and let a GA operate on the set of local optima to Ogej|ect two gafg’nﬁo Spn?)im rf)grmgelr;?ra on °
determine the global optimum child := crossover(p1,p22);
Add Ha(child) to P;
However they also note that this can lead to a disastrous Od _

loss of diversity, which prompts their use of a selection gorltl P . o

oo ] : ull(P,num_of f spring_per_generation);
strategy which is neither .+ A) nor a(u, A) but a hybrid od
between the two, whereby the new offspring replaces the mos,tE dRetum the best peP;
similar member of the population, (subject to elitism). As the| —¢
authors remark, thd.arge Step Markov Chains and Iterated- .

In the code shown abowi(...) andH2(...) are initial-

Lin-Kernighan techniques are special cases of their algorithm.
isation and improvement heuristics respectively. In particular
In [44] the authors change their optimisation scheme

s - ) ) {Re authors reports on experiments wheee..) is a Tabu
one similar toGLS Based _Memetic _Algorithm(...) which has

traditional i 4 select h d Search (TS) heuristic. At the time that paper was written
a more ftraditional mutation and selection scheme and gl ma was one of the best heuristics available (in terms
[43] they use the same scheme SSP-GA(...) but after

solution quality for standard test instances
finalisation of the GA run, post-processing by means of Ioca[ q y )

h ; q It is interesting to remark that as
search is performe in Genetic _Local _Search(...) and
It is important to notice that Merz and Freisleben’s MAg;| s gased Memetic _Algorithm(...) . the GA is seeded

are perhaps the most successful meta-heuristic§'$# and \ith a high quality initial population, which is the output
ATSP, and a predecessor of the schemes described was dh&n initial local search strategy; (Tabu Search in this
Winning algorithm of theFirst International Contest on Evolu- Case)_ Again we find that the selection Strategy, represented
tionary Optimisation. by cull(...) ,is a(u+ \) strategy as in the previous MAs.

In [45] Nagata and Kobayashi described a powerful MAhe authors further increase the selection pressure by using a
with an intelligent crossover, in which the local searcher imating selection strategy. As iGenetic _Local _Search(...)
embedded in the genetic operator. The authors of [46] describeo explicit mutation strategy is used: Fleurent and Ferland
a detailed study of Nagata and Kobayashi's work, and relatggardHzi(...) and H2(...) as mutations that are applied
it to the local searcher used by Merz and Freisleben. with a probability 1. As inGenetic _Local _Search(...) )
the optimisation step is applied only to the newly generated
individual, that is, the output of the crossover stage.

In [16] results were reported which are improvements to
those in the paper previously commented, and for other meta-
heuristics forQAP. The sketch of the algorithm used is:

The QAP is found in the core of many practical problems
such as facility location, architectural design, VLSI optimisa-
tion, etc. Also, theT'SP and GP can be recast as special caseg
of QAP. The problem is formally defined as:

B. Memetic Algorithms for th€@AP

QAP_MA:
Begin
Initialise population pP;
For i 1 To sizeof(P) Do
individual := P;;

individual := Local _Search(individual);
Quadratic Assignment Problem gd { Unil ( terminate=True ) 5
. - epeat Unti erminate=True o]
Instance: A,B matrices ofn x n. For i := 1 To #recombinations Do

Solution: A permutations : [1...m] —[1...
Measure: The cost of the permutation, ie.,

C(m) =3 Z] 1 @ij - Or(i)n(5)

Aim: Minimum cost permutationr™ : Vr £ 7*

m].

C(m) > C(7*).
Because of the nature @AP it is difficult to treat with
exact methods, and many heuristics and meta-heuristics hal
been used to solve it. In this section we will briefly comment

on the application of MAs to th@AP.

In [9] the following MA described as a “hybrid genetic
algorithm meta-heuristic” is proposed:

Select two parents
ic := Recombine(ia,ip);
ic := Local_Search(ic);
Add individual ic to P,
Od
P := Select(P);
If ( Pconverged) Then
For i 1 To sizeof(P),
individual := P;;
individual := Local_Search(Mutate(individual));
Od
Fi
Od
End.

ta,1, € P randomly;

i # index(Best) Do
ve
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Regardless of the new representation and crossover ®A with problem-specific local searchers and Tabu Search.
which the MA relies to perform its search, it should b&he improvement stage was used instead of the mutation
particularly noted thatiutation(...) is applied only when stage of the standard GA. The authors also ran experi-
a diversity crisis arises, and immediately after mutating rments with a problem-specific crossover. The pseudo-code
solution of the population a new local search improvemeemployed in the paper is omitted because of its similarity with
is performed. Because the selection strategy is agéirHa\) Genetic _Hybrid _Algorithm(...) already discussed.

strategy, it may be the case that an old individual, i.e. one thati [51] Dorne and Hao’ proposed an MA for thdGC. This
survived many generations, goes'through local search ma{jy ysed a new crossover, based on the union of independent
times unlike inGenetic _Hybrid Algorithm(...) . sets, which is itself a kind of local searcher. The mutation stage
In this case the initial population is obtained by thgas replaced by the powerful Tabu Search. With this MA the
use of the local search engine. As a marginal commegihors were able to improve over the best known results of

we can mention that the local search procedure employggine |arge instances of the famdbinacs benchmarks. Their
was a variant of2 — Opt(...) also known as theairwise  g|gorithm is:

interchange heuristic.

GL_for_Colouring:

. . Begin
C. Memetic Algorithms for th8QP /* f, F*: fitness function and */
; ; ; ; : . /* best value encountered so far */
Binary quadratic programming is defined by: I* s*: best individual encountered so far *
/* best(P): returns the best individual */
Binary Quadratic Programming Problem (*OOf the population P */
i=0;

Instance: Symmetric rationah x n matrix @ = (¢; ;). generate( Pp):

Solution: Binary vectorz of lengthn.
Measure: The benefit ofz, i.e,
flz) =2'Qu =3 "7 Zi:f Qij " Ti X

Aim: Maximum benefit solutior™ : Vz # z* f(x) < f(x*).

As well as being a well knowiNP-Hard problem, BQP
has many applications, i.e, financial analysis, CAD problems,
machine scheduling, etc. In [47] the authors used an MA with
the same architecture as@aRMA(...) but tailored forBQP

s* := best(Py);
= f(s");
While ( f*>0 and i < maxzlter ) Do
P} := crossing(P;, Tx);
[* using specialised crossover */
PH—l = mutation(Pi’);
/* using Tabu search */
If (f(beSt(Pi+1)) < f*) Then
s* 1= best(Pi+1);
= f(s");
Fi

=i+l

and they were able to improve over previous approaches based od
on TS and Simulated Annealing (SA). They also were able to
find new best solutions for instances in the ORLIB [48].

D. Memetic Algorithms for th&1GC

The MGC is one of the most studied problems in grapl%
theory, with many applications in the area of scheduling and
timetabling. Its definition is

Memetic Algorithms for th@SP

Protein Structure Prediction is one the most exciting prob-
lems that computational biology faces today. In words of John

Graph Colori
rapa ~olonng Maynard Smith [52]:

Instance: GraphG = (V, E).

Solution: S, a coloring ofG, i.e.,

a partition of V' into disjoint setsvy, . .., vg

such that each; is an independent set fa@¥

Measure: Cardinality & of the coloring

Aim: Minimum k coloring: S*:VS # S* Ek(S) > k(S*).

Although we understand how genes specity the se-
quence of amino acids in a protein, there remains the
problem of how the one-dimensional string of amino
acids folds up to form a three-dimensional protein...
it would be extremely useful to be able to deduce the
three-dimensional form of a protein from the base
sequence of the genes coding for it; but this is still
beyond us.

In [49] an MA was presented for this problem which used
an embedded kind cftandard _Local _Search(...) after the
mutation stage. The selection strategy used was a generational
GA with 1—elitism (the worst individual of the new populationBecause “all-atom” simulations are extremely expensive re-
is replaced with the best of the previous one) and the algorittsearchers often resort to a simplified model of B#P. One
also used some specially designed operators. The authegdl studied example is Dill$HP model [53]. Despite being a
reported what, at the time the paper was written, were excitisgnplification, variations of this model have been shown NP-
results. hard, see for example [54]-[56]. It may be defined as follows:

Fleurent and Ferland [50] studied a number of MAs for
MGC based on the hybridisation of a standard steady state
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HP-model of Protein Structure Prediction

Instance: A simplified protein sequence of length

i.e. a strings € {H, P}'.

Solution: A self-avoiding pathp which embedss into

a two or three dimensional lattice (i.&2 or Z3)

This defines aistance Matrix, D, of inter-residue distances.
Measure: Potential energy,of the sequence in that fold,
approximated by the number of pairs of H-type residues,
which are not sequence—adjacent, but are at distancepl in
E(p) = =303 Ymiia Dij [ (Dig = 1) A (s = s; = H)
Aim: Minimum energy solutiorp™ : Vp # p* E(p) > E(p*).

the start of the next, to be amortised into a single function
which is responsible for updating the working memory of our
algorithm. The Memetic Algorithms’ literature, as does the
general EA literature, contains examples of the incorporation
of diversity-preservation measures iifo These have included
implicit measures, such as the imposition of spatial structure
on the population (e.g., [42], [63], [64]) or explicit measures
such as duplicate prevention (e.g. [65], [66]). This issue will
be discussed in more depth in Section VII

Examples ofG as generating functions are mutation and
crossover operators. A recombination operator has as its signa-

In [57] we applied the following MA to thePSP ture' R : I* x § — I and a mutation operata¥/ : I x § — 1.
The initial values for parameters of the operators used (e.g.
EEMAZ mutation probabilities) are represented BY. If O ¢ I*
egin . . - .
Random initialise population Parents: denotes the set of offspring then an iteration of the GA is:
Repeat Until ( Finalisation _criteria _met ) Do
Local_Search(Parents); ‘ £ oty of .
mating_pool := Select_mating(Parents); O; = M(R(P*,6"),8") Vie {1, R /\}
of fsprings := Cross(mating_pool); t+1 t t
Mutate(of fsprings); P - U(O upP )7 (1)
Parents := Select(Parents + of fsprings); wheret is the time step
Od ’

End. Although the formalisation above assumes a finite discrete
problem representation with each element of the representation

This algorithm was able to find optimum configuration§aving the same arity, this is done simply for the sake of
for 19 out of 20 protein instances of moderate size, o@tarity, and the framework permits the use of any desired
performing a GA with identical architecture except for th&epresentation via suitable redefinition bf
use ofLocal _Search(...) . In this MA a(p+ \) replacement
strategy was used, together with fitness-proportionate selectfbnExtension to Memetic Algorithms
for mating. In contrast to all the previous MA, in this scheme We will need to extend this notation to include local search
Local _Search(...) is considered a “first class” operator. ltoperators as new generating functions. We define these to
receives the entire population and applies with probabilifya be members of a setf = {L4,...,L,,}, of local search
complex local search algorithm to each individual. Under thigrategies available to the MA.
scheme, solutions are improved during all their life span. In Examples of so called “Multimeme Algorithms” where the
[58] several MAs for other molecular conformation problemcal search phase has access to several distinct local searchers
are briefly commented on. In [59] a comparison of Simulatei@le. m > 1) can be found in [20] and [67]. The signature of
Annealing against GA and Local Search hybrids is presentedch member of the sgtis L; : I°* x ( — I°* where( is a
for the closely relateddrug Docking domain. In [60] a co- strategyspecific parameter (with a role equivalent®y j is
evolutionary memetic approach is introduced while in [614n index into the se andc; is a constant that determines
the authors introduce a memetic crossover for RS€. how many solutions the local searcher uses as its argument

and how many solutions it returns. In general we will assume

V. A SYNTACTIC MODEL FORMEMETIC ALGORITHMS thatc; = 1, and consequently drop the subscript for the sake

A. A Syntactic Model for Evolutionary Algorithms of clarity, but as an example of a local searcher with= 2
Following [62] the Evolutionary Algorithm can be for_the reader might consider Jones’ Crossover Hill Climber [68].

malised within a “Generate-and—Test” framework by: As can be seen from the pseudo-code in the previous
sections, the local search stage can happen before or after

GA = (P° &% \ u,l,F,G,U) crossover, mutation and selection or in any imaginable com-

bination, and the local searchers are members of a (potentially)

o P%=(d},...,a)) € I* Initial population - ot :
I—{ ' n—ary finite discrete problem relore_Iarge set of alternative heuristics, approximate or exact algo-
y sentat(izcl);{ odn rithms with which solutions could be improved.

To model this we define entities calledhedulers which are
higher order functions? An early example of the application
of higher order functions to memetic algorithms see [69],
where the authors implement Radcliffe and Surry’s formalism
[19] in a functional language.

o 6V C R Initial parameter set for operators
o 1 € N Population size

e A € N Number of offspring

« [ € N Length of representation

o F: I~ RT Fitness function

e G:I*— I* Generating Function INote that the use of the superscripipermits the modelling of crossover
o U :TH x I — JH Updating function operators with variable arity, e.g., Moscat@®s—mergers

N hat in thi del id h i f . 2A higher order function or functional is a function whose domain is itself
ote that In this model we consider the elfects of SUIVIVQJ et of functions, e.g., the indefinite integral of a function is a higher order

selection at the end of one generation, and parent selectioruadtion.
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C. Co-ordinating Local Search with Crossover and Mutatiocan make a clear distinction between a generating operator

The fine grain scheduler (fS) co-ordinates when, where andthat only ever considers one or two potential offspring, (even
with which parameters local searchers frahwill be applied !f it “mtelhge_ntly” uses heuristics such as edge distances in
during the mutation and crossover stages of the evolutiondi§ construction phase) and one that constructs and evaluates

cycle. It has the following signature: séveral solutions before returning an offspring. The latter
case clearly is that of a scheduled local search, where the
fS: (I I)XLXIMPXIXx (1T “neighbourhood” of a [pair of] point[s] is defined by the action

. _ _of a generating operator.
The fS receives three arguments. The first is a generating ¢ gop

function with signaturel“* x § — I, that is, recombination
(with ¢; = p) or mutation (withc; = 1). The second is a D. Co-ordinating Local Search with Population Management
set of local searchers to be scheduled, which have signaturean alternative model, as illustrated in Section IV-E, is to co-

I x (+— I°2. Usually c; will have the value 1: for example ordinate the action of local search with the population man-

in most of the examples above local search is appligéer agement and updating functions. @oarse Grain Scheduler
recombination or mutation. However our model should n@ts) is defined by:

rule out other possibilities - for example doing local search L | N
on the parentsefore recombination, in which case, = c;. cS (I X IM = IM) x Lx IH X I X § x ¢ IF

Finally it recedlves a set offsolutlons by m_;e_ans of m‘; ang In this scheduler the formal parameters stand for the up-
operators and two sets of sirategy speciiic parametens dating functionU, the set of the local searchefs the sets

¢. In the simplest case there will be a mutatigft,) and a parents and offspringZ¢ and I* respectively), and the

recombination Sr) schedulers with the following signatures:Operator specific parameter setsand ¢. The goal of this

fSy 0 (IX6—I)XxLXIXdX(rT scheduler is to organise the application of a local searcher
) to either the set of parents, the set of offspring or to their

Pt (IMX 0= D)X L 1Mo x (T union. The difference between a coarse grain scheduler and a

To illustrate this point, consider the case where a singlme grain scheduler is that the former can provide population
local search method is usedSy; (M, L1,1,6,(1) wherei is statistics to its local search operator while the fine grain
an individual, M is a mutation operator, anfl; is the local scheduler knows just one individual at a time (or two for the

searcher with paramete¢s. Note that we are not specifyingone associated with crossover).

how M and L; will be used “inside” the scheduler. As By the introduction of the local search schedulers we can
examples of how the scheduler might operate consider a simpimulate any of the algorithmic combinations above. Also,
case where mutatio/ is applied toi and the result of by using aset of local searchers by the schedulers we can
this operation is given as an argumentltp. The symmetric model powerful multi-operator hybrid strategies like those
case is equally valid i.e applying mutatiaW to the result described in [71], [72] and [73]. We can also include the
of improving 7 with L;. More complex scenarios can beapproaches discussed in [74] and [75] where partial Lamar-
imagined, it is up tofS to organise the correct pairing ofckianism or “sniffs” rather than complete local searches are
inputs/outputs to functions. allowed and allocated dynamically during the search. Further,
A similar case can be stated fofSg(R,L2,Q,d,(2) , itis possible to model the local search methods described in
where in this case we are receiving as actual parametef26] where statistics from the population are used to apply
population of individuals@ (usually a subset ofP) rather local search selectively. Another interesting example of the

than a single individual. use of coarse grain schedulers can be seen in [76] where a
An fillustration of this can be found in [46] where thehybrid meta-heuristic is introduced which uses concepts of
authors argue in favour of encapsulating-apt(...) local both evolutionary algorithms and gradient search. Under this

searcher into an algorithm with Nagata’s and Kobayashi&sheme potentially all the individuals in the populations are

Edge Assembly Crossover [45]. The latter is a good examplecontinuously “learning” since each stage of Local Search may

of an “intelligent” crossover operator which uses informatiobe truncated rather than continue to local optimality.

about edge lengths to construct an offspring by connecting

sub-tours common to both parents. However in both tlﬁe

Nagata and Kobayashi’s original algorithm, and Watson et _ . . _

al’s “improved” version the crossover operator is used to 1h€ natural extension to this model is to introduceneta

generate a single offspring. In the original paper, “lterativésheduler(m.S) with the following signature:

Child Generation” is used, i:e. the schedulgr rgpeatedly appli.es mS L x Hb x I* x § x ¢t v "

the crossover operator until a good solution is found, and in

Watson's version, a 2-opt local search is applafter the whereHL C PLUP,U...UP;_;.

crossover operator. The meta scheduler is able to use information from previous
An even clearer example can be found in [70] where a ngvopulations to influence its search by means(oénd the

crossover for theJob-shop Scheduling Problem is proposed. elements of £, hence a kind of evolutionary memory is

In this case the crossover is a local search procedure thdtoduced into the evolutionary search mechanisms. Note

uses a two-solutions based neighbourhood. In other words that in these cases the parameter getssociated with the

Incorporating Historical Information
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schedulers may now represent complex data structures ratued investigated, and that the pattern is inconsistent across
than simple probability distributions. different problem types. Of particular interest are the frontiers
With the introduction of this scheduler, a new class of metéer D > 4 andD > 8. Although throughout this paper we have
heuristics is available given by the many possible instantiatioosncentrated mainly on single objective problems, we have in-
of: cluded in this table a reference to [21]. In that paper the authors
tackle a Multi-Objective problem using a memetic algorithm

t _ t st +t t T
O = fﬁgM(M’L’fSR(R’L’P 05,0, 0%,C) with what they call a “non-dominated Pareto archive” as an
Vie{l,..., A} (2 evolutionary memory. This work represents a clear example
P = mS(L,HL,eS(U, L, Pt 0,6, ¢, 6%, ¢t of an MA that resides above the frontiér > 8. It is clear

from visual inspection of this table that there are plenty of

where the use of superscnptsrecogmses that the SeVeralﬁlternative MAs waiting to be investigated for these problems.
parameters may be time-dependant. We have not found this

kind of MAs in the literature, yet they represent a novel,
gualitatively different and perhaps powerful family of MAsB. Relationship to Other Taxonomies

As an example of its use, one can imagine that the elements,o taxonomy presented here complements the one intro-
of L are pased on Tabu segrch and tha}t the meta schedu[%ed in [91] by Calegary et al. who provide a comprehen-
uses the information of ancient populations to update theife taxonomic framework for EAs. They define a ‘Table of
Tabu lists, thus combining global and local informat&Toss gy o|ytionary Algorithms” (TEA) where the main features of
time. An advantage of considering meta-schedulers whighe gesign space of evolutionary algorithms are placed in the
affect ¢, is that by setting all elements df to the identity o1ymns of the table. In a related and complementary work,
function, itis possible to include within our model the work ORya i [92] provides a general classification scheme for meta-
Adaptive GAs which use history of previous results to updateperistics based on two different aspects of a meta-heuristic: its
the probabilities of applying genetic operators, such as thoggsign space and its implementation space. He then develops
described in [77]-{79]. Furthermore the more recent approaghyierarchical organisation for each one. Specifically for the
to optimisation called *Hyper-heuristics”, in particular thoS@esign space of hybrid meta-heuristics, he identifies what he
described in [80], [81] can be considered to be Multimeme,jeq ow-level-relay hybrids (LRH), low-level-cooperative
algorlthms where the Set of |OW |§Vel Operat0r§ (|.e. IOC"ﬁlybridS (LCH), high-level—relay hybrldS(HRH) and high_level_
searchers a_nd constructive heuristics) are adaptively applt‘?fbperative hybrids(HCH). Regarding those two works, MAS
to one solution § = n = 1) by the meta-scheduler (called;an pe considered to be represented in Calegary et.al. work
hyper-manager in hyper-heuristics terminology). with a TEA where the column associated to an improving
algorithms always receives a value of “yes”, while in Talbi’s
taxonomy an MA could be placed within the LCH class.
A. A Scheduler-Based Taxonomy Our approach categorises the architecture of a subclass of
With the use of Eqn. (2), it is possible to model the vashe algorithms both of the previous taxonomies include. In that
majority of the MAs found in the literature, capturing thevay a more refined classification is obtained for the subclass
interaction between local search and the standard evolution@fyevolutionary algorithms and hybrid meta-heuristic that are
operators (mutation, crossover, selection). From this syntadiieémetic algorithms. Of course such a syntactic model and
model a taxonomy of architectural classes can be naturai@xonomy is of little interest to the practitioner unless it in
derived based on an index numbé&r(A) which can be some way aids in the conceptualisation and design process.
ascribed to any MA A). In the following sections we shall move on to show how the
D(A) = bpsbesbrsybys,, is a four bit binary number model may be used during the design of an algorithm.
with eachb; taking the value0 or 1 according to whether
scheduler is absent, respectively present,An To understand C. Distinguishing Types of Local Search Strategies
the ordering of the bits, note that the least significant bit is _ o ) )
associated to the scheduler that receives as one of its argumentdaking the separation into two sets of objects (candidate
at most 1 solution, the next bit to the one that receives at m&§lutions in the EA's population, and local search heuristics),

11 solutions, the next two bits are assigned to the schedul¥féh interactions mediated by a set of schedulers facilitates a
that employ at mostu + A or | 2PU-UPi—1 | solutions Closer examination of the potential nature of the elements of

VI. A TAXONOMY FOR MEMETIC ALGORITHMS

respectively in their arguments. L. In I_<ee_ping with the name given to t_h_is clas_s _of algorithms,
To illustrate this point with examples from the reSO coincidentally very much in the spirit of his idea, we will

view above, the algorithnGenetic _Local _Search(...) has adapt Dawkins’ original definition and call eadh € £ a

an index D = 2 because just the fine grain sched-meme”. Metaphorically speaking, memes can be thought of

uler associated with crossover and meme is present, wiie representing alternative improvement strategies that could

GLSBased Memetic _Algorithm(...) has D = 3, since the DPe applied to solutions, where these strategies may be imitated,

mutation and crossover schedulers are used. improved, modified, etc.

Table | classify the various methods discussed in section |11 The model presented in Eq. (2) already allows us to distin-
accordingly to theitD number, but it will rapidly be seen thatguish and define three cases:
only a small fraction of the alternative MAs were employed « If Lt = LOV¢ then we callL a static meme.
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9-15
8 [21]
7 [76] [82]
6 [16] [47]
5 [83]
4 | [57] [571, [59] [26], [74], [84], [85]
3 | [13], [38], [44] [86] [87], [88]
2 | [37], [42], [43], [45], [46] | [9] [50], [51]
1 [49] [89], [90]
0

I D[ TSP [ QAP [ MGC [ BPQ [ PFP and Protein Docking | General Studies [ Other Applications]

TABLE |
CLASSIFICATION OF ALGORITHMS DISCUSSED IN SECTIONII ACCORDING TO PROBLEM ANDD.

o If Lt adapts through changes in its parametgrsast As we have described above, for a wide variety of prob-
increases then we call an adaptive meme. lems, Memetic Algorithmscan fulfil these criteria better
« If Lt adapts through changes Initself, e.g. by evolving than traditional Evolutionary Algorithms. However the simple
under a GP approach, (and possibly¢inalso) then we inclusion of a given local search method is not enough to
call L a self-adaptive meme. increase the competence of the underlying EA. Rather, the
It is important to realise that it is sufficient for adye £ to design of “competent” Memetic Algorithms raises a number of
be adaptive to make the whole set of memes into an adapﬁmportant issues. It is now appropriate to revisit these issues, in
meme set. In the same way, if just ohéis self-adaptive then the light of our syntactic model and taxonomy, in order to see
the entirel is self-adaptive’. what new insights can be gained. While we are not suggesting
To the best of the authors’ knowledge the only memettbat all implementations of MAs should follow the scheduler-
algorithms that scheduled more than one static local searchaged view-point, we would argue that it is certainly beneficial
at a time are those described in [71]-[73]. Almost all tht® consider this perspective to inform design decisions.
papers studied in this work use single static memes withTo re-cap, some of the principal design issues are:
the exceptions of the algorithms described in [76] (if the , wWhat Local Search Operator should be used?
momentum term is included into the model described therein),, Which fitness landscape(s) is the MA navigating?

GLSBased Memetic _Algorithms(...) and PFMA(.) . As « With what local optima is the MA operating?

examples of self-adaptive memes we refer the reader to the

more recent [93]-{98]. « Where, and when, should local search be applied within
The extension to considering set of adaptive or self- the evolutionary cycle?

adaptive memes, rather than a single local search method, |s a Baldwinian or Lamarckian model to be preferred?
gives rise to an extra level of complexity in the schedulers., How can the genetic operators best be integrated with
The simplest case uses static memes and requires(tisat local search in order to achieve a synergistic effect?
enlarged to include a probability distribution function (pdf)
for the likelihood of applylng the different memes, in addition How can we engineer MAs that can efficiently traverse
to their operational parameters. More complex cases might |arge neutral plateaus and avoid deep local optima?
involve a different pdf for each scheduler. « Which individuals in the population are to be improved
The simplest adaptive case requires thasttime-dependent, by local search and how do we choose among them?

with the scheduler becoming responsible for adapting the, How much cpu budget will be allocated to the local
pdf. In more complex scenarios it might be necessary t0 gearch?

store a different pdf for each member of the population -
ie. ipdividual rather than populat.ion level ada'pt'ation. in the We now discuss these items according to the grouping
terminology of [99], [100]. Allowing for adaptivity within above
MAs makes it necessary to couple the adaptation over time
of ¢ and L to the evolutionary equation (2).
A. Choice of Local Search Operators
VIl. DESIGNISSUES FOR‘COMPETENT' M EMETIC

The reader will probably not be surprised to find that our
ALGORITHMS

L i ) _answer to the first question i4t depends”. In [67] we
In [33] Goldberg describes “competent” Genetic Algorithmgnowed that even within a single problem class (in that case

as: TSP) the choice of which single LS operator gave the best
genetic algorithms that solve hard problems quickly, results when incorporated in an MA was entirely instance-
reliably, and accurately. specific. Furthermore, studies of the dynamic behaviour of

3 _ _ , various algorithms (including Multi-Meme MAs) showed that
For the sake of clarity of the model we have left out the minor signature £ h hoi f which LS ielded the bi
modifications that are needed to reflect the fact that a meme might changd'sl@Ct the choice of whic operator yielded the biggest

arguments or change itself. improvements was also time-dependent.
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It is well known that most meta-heuristics suffer frormation and mutation, since the resultant offspring will need to
getting trapped in local optima. It is also trivially true that de re-evaluated anyway.
point which is locally optimal with respect to one operator may If a Lamarckian local search is continued to optimality,
not be with respect to another (unless it is globally optimalihen on average the recombination and mutation are likely
Taking these points together has motivated recent work intw reduce the fitness of a solutions which were previously
meta-heuristics such aé&riable Neighbourhood Sear¢h01], locally optimal. The hoped-for synergy in such an MA is that
which utilise multiple local search operators. the use of genetic variation operators will produce offspring

In earlier sections we have listed a number of papers which are more likely to be in the basin of attraction of a
the recent MA literature which use multiple LS operatordiigh-quality local optimum than simply randomly selecting
and we would certainly argue that faced with a choice @nother point to optimise. Clearly in order to achieve this
operators, a sensible design approach would be not to decgaergy, i.e. to avoid selection discarding these new points,
a priori but to incorporate several. Given such an approadh,is a good idea to perform local search on these offspring
for the sake of efficiency it is worth considering methods tprior to selection. In other words an algorithm “Select—local
avoid spending time utilising non-productive operators, whickearch — probabilistically recombine — probabilistically mutate
implies at least some way of adapting the operator probabilitieselect ...” makes little sense.
in ¢. This in turn implies a coarse-grain or meta scheduler In practice, most recent work has tended to use a Lamarck-
is present. It is perhaps worth noting that in [95] it wagn approach, and the papers cited by Merz and Freisleben are
shown that while coarse-grain adaptation(ofvas sufficient typical in their (highly successful) advocacy of running the
for a steepest — ascent LS, the extra noise inherent in anlocal search to optimality. However as noted in Section IV,
first —ascent approach gave worse results. It was suggesteiply incorporating one or more powerful local searchers
that in such a case using a “history” of relative performandeto an EA can lead to a rapid loss of diversity if steps are not
gains, as per Paredis’ LTFE would be beneficial - in otheéaken to prevent this during the design phase. This has clear
words a meta-scheduler. implication for the likelihood of the algorithm getting stuck

Related to this point are the two more theoretical issu@slocal optimum, or “stagnating” on a plateau.
concerning landscape and local optima. Merz et.al in [10], The use of coarse-grain schedulers provides a simple means
[102], [103] employ the concept of fithess landscape distanoEavoiding this by monitoring population convergence statis-
correlation to assess the behaviour of MAs. Although thees. InQARMA(..)  this is done by monitoring convergence
correlation measures discussed in those papers can protfen applying vigorous mutation to the whole population. An
very valuable indications on the likely performance of MAsalternative approach can be seen in [20], [57] which utilises
they can sometimes be misleading. In particular, as a fitnes8Boltzmann criteria in the pivot rule of local search, with
distance correlation is measured based on one particular mdwe inverse of the population fitness range determining the
operator (e.g. local searcher), if any of the schedulers in Eqamperature, and hence the likelihood of accepting a worse
(2) has access to more than one local searcher then diffenegighbour in a local search.
fithess landscapes will need to be considered. This fact was

recognised by Jones’ “One Operator, One Landscape axm&w Managing the Global-Local Search Trade-off

104].
1ol The majority of MAs in the literature apply local search
to every individual in every generation of the evolutionary
algorithm, our model makes it clear that this is not mandatory.
We have grouped together the next three issues in our listiag26] and [74] the authors explore these issues and suggest
they are intimately related, and there has been some confusianous mechanisms by which individuals are chosen to be
in the previous literature. optimised by local search, the intensity of local search and the
Some researchers [18] consider that when the LS opergoobability of performing the local optimisation. They achieve
is applied before crossover and mutation then the MA ighis by providing sophisticated coarse grain schedulers that
a “Lamarckian” algorithm, and when the LS operator isieasure population statistics and take them into consideration
appliedafter crossover and mutation it is a pure “Darwinian’at the time of applying local search.
algorithm. This is an erroneous interpretation of Lamarckian In [74] Land addresses the problem of how to best integrate
vs. Baldwin Learning. In both cases local search is used ttee local search operators with the genetic operators. He
improve (if possible) the fithess of the candidate solution, thpsoposes the use of fine grain schedulers, both for mutation
changing its selection probabilities. The difference is simpgnd crossover, that “sniff” (sample) the basin of attraction
that in the case of Lamarckian (but not Baldwinian) learningepresented by a solution. That is, instead of performing
the modifications are also assimilated into the individual complete local search in every solution generated by the
— in other words the fitter neighboueplaces the original evolutionary operators, a partial local search is applied; only
candidate solution. As is clearly illustrated in the case dfiose solutions that are in promising basin of attraction will
GLSBased _Memetic _Algorithm(...) , Lamarckian learning in be assigned later (by the coarse grain scheduler) an extended
MAs can happen before or after the application of the othepu budget for local search. In a similar spirit Krasnogor in
genetic operators. However there is little point in applyinf20] proposes “crossover-aware” and “mutation-aware” local
Baldwinian search after parent selection but before recombearchers.

B. Integration into EA cycle
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In [71] and [57] the issue of large neutral plateaus and a) AcknowledgementsNatalio Krasnogor wants to ac-
deep local optima is addressed by providing modified lockhowledge insightful discussions with Samad Ahmadi, Steve
searchers that can change their behaviour accordingly to thaestafson, David Pelta and William Hart. The authors would
convergence state of the evolutionary search. As we hdilee to thank the anonymous reviewers for their valuable
noted above, a different approach to avoid getting trapped it@mments.
local optimum is to use various local searchers simultaneously
in the population. In [67], [72] and [73] the authors resort
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