A Study on the use of “Self-Generation” in Memetic
Algorithms

Natalio Krasnogor and Steven Gustafson

Automated Scheduling, Optimization and Planning Group, School of Computer
Science and IT, University of Nottingham, hittp://www.cs.nott.ac.uk/ {nzk,smg},
{nzk,smg} @Qcs.nott.ac.uk

31 November, 2003

Abstract. A vast number of very successful applications of Global-Local Search
Hybrids have been reported in the literature in the last years for a wide range of
problem domains. The majority of these papers report the combination of highly spe-
cialized pre-existing local searchers and usually purpose-specific global operators
(e.g. genetic operators in an Evolutionary Algorithm).

In this paper we concentrate on one particular class of Global-Local Search
Hybrids, Memetic Algorithms (MAs), and we describe the implementation of “self-
generating” mechanisms to produce the local searches the MA uses. This imple-
mentation is tested in two problems, NK-Landscape Problems and the Maximum
Contact Map Overlap Problem (MAX-CMO) .

Keywords: Memetic Algorithms, Self-Generation, Self-Assembling, Contact Map
Overlap, NK-Landscapes

1. Introduction

Memetic algorithms are global-local search hybrids. In these algorithms
the hybridisation is realized by integrating an evolutionary process
(e.g. a genetic algorithm) with some kind of local search heuristic.
The local search process is usually (but not always) represented by
a well-tested heuristic. As an example of this consider the use of Lin-
Kernighan and K-Opt local searchers for Traveling Salesman related
problems (eg. (Merz and Freisleben, 1997)) or other Monte-Carlo based
approaches (eg. (Krasnogor and Smith, 2000)) in conjunction with a
genetic algorithm. In figure 1! a schematic representation of a memetic
algorithm is shown. The evolutionary process is meant to produce a
robust global search on the space of potential solutions while the local
search phase is generally aimed at exploiting, i.e. fine tuning, the search
around specific regions of the search space.

A vast number of very successful applications of Memetic algorithms
have been reported in the literature in the last years for a wide range
of problem domains. These papers tackle problems as diverse as graph

! This figure is inspired by (Eiben and Smith, 2003), chapter 10.

';:‘ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

icalp.tex; 9/12/2003; 16:52; p.1

2 Natalio Krasnogor, Steven Gustafson

Known solutions, constructive heuristics, local search

Initial Population

. Mating Pool

Crossover

v Local Search

/

\ -
(a)

Figure 1. Diagramatic representation of a Memetic Algorithm

Offspring

Selection

Local Search

bipartition(Merz and Freisleben, 2000), protein structure prediction
(Krasnogor et al., 2002), exam timetabling (Burke et al., 1996), shape
matching (Ozcan and Mohan, 1998), etc.

The majority of the papers dealing with MAs are the result of
the combination of highly specialized pre-existing local searchers and
usually purpose-specific genetic operators like mutation and crossover.
Moreover, those algorithms require a considerable effort devoted to the
tuning of the local search and evolutionary parts of the algorithm.

In (Krasnogor, 2002) and (Krasnogor and Gustafson, 2002) we pro-
pose the so called “Self-Generating Metaheuristics”. Self-Generating
MAs are able to create their own local searchers and to co-evolve
the behaviors it needs to successfully solve a given problem. In Self-
Generating Memetic Algorithms two evolutionary processes occur. On
one hand evolution takes place at the chromosome level as in any
other Evolutionary Algorithm; chromosomes and genes represent so-
lutions and features of the problem one is trying to solve. On the other
hand, evolution also happens at the memetic level, that is, the behav-
iors that individuals (also called agents) will use to alter the survival
value of their chromosomes. As the memes (i.e. local search strategies)
are propagated, mutated and are selected in a Darwinian sense, the
Self-Generating MAs we propose are closer to R. Dawkins concept of
memes than previous works on memetic algorithms (e.g. (Franca et al.,
1999),(Moscato, 1999),(Moscato, 2001),(Burke and Smith, 1997)).

icalp.tex; 9/12/2003; 16:52; p.2

Self-Generating Memetic Algorithms 3

In (Krasnogor, 2002), (Krasnogor and Gustafson, 2002), (Smith,
2002b), (Smith, 2002a) it was proposed and demonstrated that the
concept of Self-Generating Memetic algorithms can be implemented
and, at least for the domains considered in those papers, beneficial. In
the context of SGMAs, memes specify sets of rules, programs, heuris-
tics, strategies, behaviors, or move operators the individuals in the
population can use in order to improve their own fitnesses (under a
given metric). Moreover the interactions between genes and memes are
indirect and mediated by the common carrier of both: individuals.

L.M. Gabora in (Gabora, 1993) mentions three phenomena that
are unique to cultural (i.e. memetic) evolution, those are, Knowledge-
based, imitation and mental simulation. It is these three phenomena
that our Self-Generating Memetic Algorithm implements and by virtue
of which it can produce its own local searchers. The representation of
the low level operators (in this paper the local searchers) includes fea-
tures such as the acceptance strategy (e.g. next ascent, steepest ascent,
random walk, etc), the maximum number of neighborhood members to
be sampled, the number of iterations for which the heuristic should be
run, a decision function that will tell the heuristic whether it is worth
or not to be applied on a particular solution or on a particular region
of a solution and, more importantly, the move operator itself in which
the low level heuristic will be based(Krasnogor, 2002).

The role played by local search in both Memetic and Multimeme
algorithms has traditionally been associated to that of a “fine tuner”.
The evolutionary aspect of the algorithms is expected to provide for
a global exploration of space while the local searchers are assumed to
exploit current solutions and to fine tune the search in the vicinity of
those solutions (i.e. exploitation)

The goal of this paper is to demonstrate that local searchers can be
evolved in the realm of NK-Landscape problems and a graph theory
combinatorial problem. More importantly, to suggest a new role for
local search in evolutionary computation in general and memetic algo-
rithms in particular: the local searcher not as a fine-tuner but rather as
a supplier of building-blocks. For an overview of selecto-recombinative
evolutionary algorithms from a building-blocks perspective please refer
to (Goldberg, 2002).

2. The NK-Landscapes Case

An NK-Landscape problem instance can be defined by two integers
n,k such as 0 < 7,0 < k < n — 1 and an n x 2¥*! matrix E with
elements sampled randomly from the uniform distribution U(0,n). E

icalp.tex; 9/12/2003; 16:52; p.3

4 Natalio Krasnogor, Steven Gustafson

represents the epistatic interactions of k£ bits. A solution to the problem
is a binary string S, such that |S| = n. To measure the quality or fitness
of a solution S a function fitness(S) = % * 3zt fi(Siy Siyy- .., S, is
used where f;(-) is an entry into E, S; the value of string S at position
i and S;; is the value of string S at the j — th neighbor of bit i. The
neighbors, not necessarily adjacent, j of bit ¢ are part of the input.

NK-Landscapes are particularly useful to understand the dynamics
of evolutionary search(Kauffman, 1993) (particularly MAs) as they can
be tunned to represent low or high epistasis regimes (i.e. low or high
k values respectively) with the extreme of an uncorrelated random
fitness landscape for the case of K = n — 1. Moreover, the optimization
version of this problem can be solved in polynomial time by dynamic
programming if the neighborhood structure used is that of adjacent
neighbors or can be NP-Hard if the structure used is that of random
neighbors(Weinberger and Fassberg, 1996).

NK-Landscapes have been the subject of intensive and varied stud-
ies. In (Macready et al., 1996) Kaufmann et.al. explore a phase change
in search when a parameter 7 of a local search algorithm reaches a
certain critical value on some NK-Landscape problems . In their paper
the authors show experimentally that the quality of the search follows
an s—shape curve when plotted against 7 making evident a change
in phase. M. Oates et.al. in (Oates et al., 2000) showed performance
profiles for evolutionary search based algorithms where phase changes
were also present. Krasnogor and Smith in (Krasnogor and Smith, 2001)
and Krasnogor in (Krasnogor, 2002) showed the existence of the “solv-
ability” phase transition for GAs (instead than LS) and demonstrated
that a self-adapting MA can learn the adequate set of parameters to
use. Merz (Merz, 2000) devotes at least one whole chapter of his Ph.D.
dissertation to the development of efficient Memetic Algorithms for
this problem (we will return to his MAs later on). With a different
target as the object of research O.Sharpe in (Sharpe, 2000) performs
some analysis on the parameter space of evolutionary search strategies
for NK landscapes. As the NK-Landscapes represent a rich problem
domain they are an ideal test case for our purposes. We will describe
the behavior of our Self-Generating Memetic Algorithms in 4 differ-
ent regimes: low epistasis and poly-time solvable, high epistasis and
poly-time solvable, low epistasis and NP-hard and high epistasis and
NP-hard.

In (Krasnogor, 2002) and in previous sections we argued briefly
about the need to creatively adapt every aspect of the local searchers.
In this part of the paper we will focus only on the self-generation of
the move operator itself as a proof of concept. The other aspects are
actively being investigated. Following the terminology of (Krasnogor,

icalp.tex; 9/12/2003; 16:52; p.4

Self-Generating Memetic Algorithms 5

Memetic_Algorithm():
Begin
t=0;
/* VWe put the evolutionary clock (generations), to null */
Randomly generate an initial population P(t);
Repeat Until (Termination Criterion Fulfilled) Do
Variate individuals in M (t);
Improve_by_local_search(M(t));
Compute the fitnmess f(p) Vp € M(t) ;
Run Memetic Processes of imitation, innovation and mental simulation;
Generate P(t+ 1) selecting some individuals from P(t) and M(t);

t=t+1;
od
Return best p € P(t —1);
End.

Figure 2. The memetic algorithm employed.

2002) the MA is a D = 4 Memetic Algorithm which implies that local
search occurs as an independent process of Mutation and Crossover?.
The pseudocode in figure 2 depicts the algorithm we use in this paper:

Individuals in the MA population will be composed of genetic and
memetic material. The genetic material will basically represent a solu-
tion to either NK-Landscapes or MAX-CMO problems (i.e. a bit string)
while the memetic part will represent “mental constructs” to optimize
solutions for these two domains. As such we will be evolving individuals
whose goal is to self-optimize by (first process) genetic evolution and
(second process) memetic evolution.

2.1. THE SELF-GENERATING MEMETIC ALGORITHM

The initial population in P is created at random. As mentioned before,
each individual is composed of genetic material in the form of a bit
string (B). The bit string represent the solution to the NK instance
being solved. The memetic material is of the form * — S where the
* symbol matches any bit in the solution string and S is another bit
string. The meaning of memes will be explained later on. The only vari-
ation mechanism is bit-wise mutation (applied with probability 0.05) to
the chromosomes. The replacement strategy was a (20, 50). There is no
genetic crossover but the SIM mechanism, as described in (Krasnogor
and Smith, 2001), was used to transfer memes between individuals.

% See the Memetic Algorithms taxonomy in (Krasnogor, 2002).

icalp.tex; 9/12/2003; 16:52; p.5

6 Natalio Krasnogor, Steven Gustafson

As mentioned before memes represent particular local search rules in
each of the two problem domains. In the case of NK-Landscapes a rule
is encoded as * — S. Memetic mutation occurs with an innovation
rate(Krasnogor, 2002) of 0.2. A meme can be mutated (with equal
probability) in three ways: either a random bit is inserted in a random
position, or a bit is deleted from a random position, or a bit is flipped
at a random position. The length of memes cannot decrease below 0
nor increase beyond 3 * k for an (n, k)—problem.

2.1.1. The Local Search Procedure

During the local search stage a meme is interpreted as follows: Every
bit in the chromosome B has the opportunity to be improved by steep-
est hill-climbing. In general NK-Landscapes are epistatic problems so
flipping only one bit at a time cannot produce reasonable improvements
except of course in problems with very low k. To accommodate that
fact, for each bit, one wants to optimize the value of that bit and that
of |S| other bits. A sample of size n is taken from all the (|S| + 1)!
possible binary strings. Based on the content of .S, these sample strings
serve as bits template with which the original chromosome B will be
modified. If |S| = 0 then only B; (the i** bit of B) will be subjected
to hill-climbing. On the other hand, if |S| > 0 then the local searchers
scans the bits of S one after the other. If the first bit of S is a 0, then the
bit B(;; 1) will be set accordingly to what one of the n samples template
mandates. On the other hand, if B; is a 1 then bit B(;)%, will be set
as what one of the n samples template mandates. Here r is a random
number between 0 and n — 1. By distinguishing in S between ones and
zeros memes can reflect the adjacent neighbor or the random neighbor
version of the NK-landscapes. The larger the size of S the more bits will
be affected by the local search process. As an example consider the case
where the rule is * — 0000. This rules implies S = 0000. In this case,
for every bit ¢ in B we will produce a sample of size n out of the possible
25 binary strings. Each one of these samples will be used as a template
to modify B, in this case as S is built out of all 0 a fully-adjacent
neighborhood is considered. Suppose B = 101010101010111110 and
the bit to be optimized is the fourth bit. By = 0 in the example and
its four adjacent neighbors are Bs = 1,Bs = 0,B7 = 1,Bs = 0. If one of
the n samples is 11111 then B will be set to B’ = 101111111010111110
provided B’ has better fitness than B. The process is repeated in every
bit of B once for every sample in the sample set.

In our implementation, and because our experiments are meant only
as a proof of concept, we did not use all the code optimization described
in (Merz, 2000) nor we use an exhaustive k — opt or Lin — kernighan
heuristic as Merz employed. Certainly his recommendations on how

icalp.tex; 9/12/2003; 16:52; p.6

Self-Generating Memetic Algorithms 7

to improve the efficiency of the code (in particular those related to
the fitness updates) will be needed if larger problems are going to be
studied. The evolved memes induce a variable-sampled k& — opt local
searcher. We say variable as k varies with the size of S and it can be as
small as 0 or as large as 3 * k. It is sampled as we do not exhaustively
explore all the 2811 possible ways of settings the bits in a chromosome
but rather take a reduced sample of size n.

2.2. EXPERIMENTAL SETTING

In previous sections we described our self-generating MAs. What sort of
behaviors we expect to see emerging? Four different scenarios needs to
be analysed: low epistasis-poly-time solvable, high epistasis poly-time
solvable, low epistasis-NP-hard and high epistasis-NP-hard landscapes.
The level of epistasis is controlled by the n and k. The closer k is to
0 the more negligible the epistatic interactions among loci. If & grows
up to n — 1 then the induced problems is a random field. The transi-
tion between polynomial time solvability to NP-hardness depends on
the type of neighborhood used as it was explained before. We should
expect the emergence of short strings (i.e. |\S| not too big) for the low
epistasis regimes while longer strings will be favored in high epistasis
cases. We should be able to compare the length of the evolved local
searcher with the k£ of the problem that is being solved, that is we
expect to see memes emerging with lengths close to k. We should
probably also see distinct patterns of activity for the different problem
regimes. The range of problems we experimented with is: low epistasis,
poly-time solvable landscapes with adjacent neighbors ((50, 1), (50,4)),
high epistasis, poly-time solvable landscapes with adjacent neighbors
((50,8), (50,10), (50,12), (50,14)), low epistasis, NP-hard landscapes
with random neighbors ((50,1),(50,4)) and high epistasis, NP-hard
landscapes with random neighbors ((50, 8), (50, 10), (50, 12), (50, 14)).

2.3. RESULTS

In the following graphs we plot the evolution of the length of the meme
associated with the fittest individual as a function of time and the
evolution of fitness. For clarity, just 5 runs are depicted?®.

2.3.1. Low and High FEpistasis, Poly-time Solvable:
In figures 3(a) and 3(b) we can observe the behavior of the system. For
the case n = 50,k = 1 the main activity occurs at the early generations

3 Several sets of 10 runs each were carried out with slightly different parameters.
The overal results are similar to the ones reported here.

icalp.tex; 9/12/2003; 16:52; p.7

8 Natnlin Wrnonaman Qénernn Maraknfann

NK-Landscape (50,1)

@ N ® v v o ~ ® o 9 9 & 98 & 8 89 5 ¥ 2 8
75x10" 75x10"
7.3x10" 7.3x10"
7.0x10" 7.0x10"
ﬁs.axm" 68x10"
£65x10" 65x10"
T 7 .
Te2x10" 6.2x10"
gsmm o 6.0x10"
5.8x10" 58x10"
55x10" 550t
5.2x10" 5.2x10"
a a
T W e v @ e ~ % o g 4 8 9 % 8 9 5 8 8 g0
4 4

Meme Length

© o © 9 o o o 9 9 o o
S 3 3 8 ¢ 8 3 R g8 e dd g s 8 g5 8 d 8
8.0x10° 80x10
78x10" 41 78x10"
75x10" = 75x10"
7.3x10" -| 73410
4 4
7.0x10 7.0x10
Sesxo? -| e8x10"
Tesx10" -] e5x10™
2 a
Po2x10 6.2x10
Me0x10™* -| s0x10*
5.8x10" -| s8x10™
55x10" -| s5x10*
5.2x10" -] s2x10™
a a
50x10 S © © o o © o o o o o o o o o o>
4 8 & 8 & g 4§ § 3 83495 49 3 §
13
12
1
10
=
5 9
S 8
- 7
3] 6
5 5
s 4
3
2
1
0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Generations (b)
Figure 8. NK(50,1) in (a), NK(50,4) in (b). Adjacent neighbors.

(before generation 4). After that point the system becomes trapped in
a local (possible global) optimum. The length of the memes evolved
oscillates between 1 and 2. As the allowed length are restricted to be in
the range [0, 3xk], the expected length of memes is 1.5. It is evident that
the problem is solved before any creative learning can take place. When
the Self-Generating MA is confronted with problem n = 50,k = 4
(a value of k just before the phase transitions mentioned in previous
sections) the length of the meme in the best run oscillates between a

icalp.tex; 9/12/2003; 16:52; p.8

Self-Generating Memetic Algorithms 9

minimum value of 3 (after generation 1) and a maximum of 10 for the
run marked with a thick line (the best run). In this case the expected
length (if a purely random rule was chosen) for a meme is 6 which
is the most frequently visited value. For these, the simplest possible
NK-Landscape regimes, it does not seem to be of benefit to learn any
specific meme, but rather, a random rule seems to suffice.

In figures 4 we can see the system’s behavior for a value of k after the
phase transition mentioned in (Macready et al., 1996) and (Krasnogor,
2002). In this case there is effective evolutionary activity during the
whole period depicted and we can see clearly that the length of the
meme employed by the most successful individual converges towards
the value of k. In figure 4(a) all but one of the runs converge towards
a meme length almost identical to k = 10, except for one that is very
close to the expected length of 15.

The same trends can be seen in figure 4(b) where meme lengths
converge to values around to k = 14 (similar results are obtained for
the N K (50,12) landscapes). It is interesting to note that although the
values are very close to our predictions they do not remain at a fixed
value but rather oscillates. This is a very intriguing behaviour as it
resembles the variable-neighborhood nature of Lin-Kernighan, the most
successful local search strategy for NK-Landscapes and other combina-
torial problems. It will be interesting to investigate on the range of
values that the Memetic Algorithms presented in (Merz, 2000) (which
uses K —opt and Lin-Kernighan) effectively employs; we speculate that
the range of changes, i.e. the number of bits modified in each iteration
of LS, will be close to the epistatic parameter of the problem instance.

2.3.2. Low and High FEpistasis , NP-hard:

The graphs associated with the low epistasis, NP-hard regime (not
shown here for the sake of space) present features that are very similar
to those of the adjacent neighborhoods landscapes in figure of 3(a) &
(b). We concentrate instead in the high epistasis, np-hard, regime. The
experiments with (n = 50,k = 8) under the random neighbors model
reveal marked differences with the consecutive neighbor model. While
in the later all the runs converged toward a meme length very close
to k, the random model shows a richer dynamics. Meme length were
divided into 3 groups (see figure 5(a)). In one group, the emerged meme
length were very close to the value of k, 8 in this case. The other two
groups either continually increase the size of the memes or decreased it.
Two of the most successful runs are identified with a cross or circle and
each belong to a different group. Interestingly enough, the run that
converges first to the local optimum is the one that uses very short
memes, in contrast, the one that uses memes length equivalent to a

icalp.tex; 9/12/2003; 16:52; p.9

1n Natalin Kracnamar Qtavan (Mnctafonn

NK-Landscape (50,10)

o oo oo o ©09000000999009000009
900990990900
SadnsncrsaanaasgEEEARdNRINERERBRNRIB8HRRIIIVIYLTLIRLNRIBAHRRS

80x10" [80x10"
78x10™ [+ 7.8x10"
75x10™" | | 75x10"
7.3x10" | -| 73x10*
%Sﬁ% | 7.040?
Sesxao? -| e8x10"
Tesx10" | 65x10"
Pooxao* | 62x10™
6.0x10™" | 60x10"
58x10" | | 5.8x10"
55x10™" | “| 55x10™
52x10" [| 52x10"
50x10" 50x10"

©9000000000000909000000000000000000000000090000000000099900000

Meme Length

NK-Landscape (50,14)

socoe000es
SRR R e =2 A RRRTesRs s

8.2x10"
8.0x10"
7.8x10"
7.5x10"
&Sﬁ%
Sr.ox0?
Teax10"
&@.mxs;
me2x10"
6.0x10°
5.8x10°
5.5x10°
5.2x10°
5.0x10°

T T T
~
@
X
X
S,

N~

1
1
1
1

1 [1
9000000000000 00000000C00CO00O0EO00C000COOEOC0000C00COO000C000C00CO00000000C00C0000C00000000

S R N R N R R R R S T ¥ 2 SR AR B R B e S B S B BB RN NI N R 885888

4

Meme Length

ONHOOSEREESRREBERREBES

Generations AUV
Figure 4. NK(50,10) in (a) and NK(50,14) in (b). Adjacent neighbors.

value of k shows a continued improvement. It is important to note that
none of the evolved memes converged towards the expected length of
12.

The runs that correspond to instances of (n = 50,k = 12) differ
notably from previous ones (figure 5(b)). The meme length seems to
be converging towards a value well below the expected length of 18
and even the epistatic value k = 12 for these problems. However,
between generation 34 and 68 the meme lengths oscillates very close

icalp.tex; 9/12/2003; 16:52; p.10

Qalf_Qanaratina Mamatis Alxcarithme

NK-Landscape (50,8)

......... 4 p ‘
82x10" |- | 82x10*
8.0x10™ |- 8.0x10"
7.8x10" |- e — T 7.8x10"
75x10" |-] 75x10"

&Sﬁ% B = | 7.3x10*

Srox0? | 70x10*

Te.x10" -] 6.8x10"

&@.mxs‘“ | mmxs‘“

M6.2x10 | 62x10
6.0x10" -] 6.0x10"
58x107 §- -| 5.8x10"
55x10° 1 | 55x10"
52107 |- | 5.2x10*
50x10" 50x10"

11

=
£=3
5
4
5
=
NK-Landscape (50,12)
0000039222899929829999989999999900500090000090990003
SAisos NG RN CEBHIBBIITCIRNIRRBEIBERNILCRIIBLISIEES
g2x10" [] 82x10"
8.0x10™ |- | sox10*
a ;
7.8x10" [| 78x10
75x10" [i YA | 75x10"
&Sﬁ% B < | 7.3x10"
Srox0? | 70x10*
Tesx10™" -] 6.8x10"
&@.mxs; | 65x10"
me2x10" | 62xa0™
6.0x10" |- -] 6.0x10"
58x10” |- | 5.8x10"
55x107 |- -] 55x10"
52107 |- | 5.2x10*
50x10" 50x10"
99099999999999999929990099999555592999929999299999999
R EEEEERERE] §3¢239 d388FENNERRY 83888
=
£
5
4
5
=

Figure 5. NK(50,8) in (a) and NK(50,12) in (b). Random neighbors.

Generations

CNTOPIHIERRNIRNBEIBBIIICIINIBBITIEBRANLCRIRILRIEIZEG

(b)

to k = 12 values. The next figure, 6, presents similar features as that
of 5(b) but two clusters appear, one that suggest length around the
value of k and another with length values of 6. Similar results are ob-
tained in the N K (50, 10) landscapes. From the analysis of the previous
graphs we can see that our expectations, namely, that memes of length

proportional to k£ will arise were confirmed.
However, other interesting features are evident. There are clear dif-
ferences between memes that are evolved to solve the poly-time solvable

icalp.tex; 9/12/2003; 16:52; p.11

12 Natnlin Wrnonaman Qénernn Maraknfann

8.2x10"
8.0x10"
7.8x10"
- 75x10"
1 \Vad 7.3x10':
7.0x10

68x10"
65x10"
62x10"
60x10"
58x10"
55x10"
5.2x10"
50x10"

ooccocoDcocooooccocoocoococ§
CLRIARBRBCIBBRNILRIEILBRISIERS

ollit v e

8

Meme Length

Figure 6. NK(50,14). Random neighbors.

cases and the NP-hard cases. In the first case all memes length and for
k > 4 converged toward values in the proximity of k. However, for the
random neighborhood model and for high epistasis (k > 4) problems,
the runs were clustered mainly around either meme lengths of values
close to k or to lengths around 6 (regardless the value of k). This
is indeed a very interesting behavior that deserves further studies as
values of k in the range [4,5, 6] are on the edge of the phase transitions
described in (Macready et al., 1996),(Krasnogor, 2002) and (Krasnogor
and Smith, 2001), that is, between 4,5 or 6 bits were the optimum
number of bits that need to be considered to boost the efficiency of the
search. Moreover, in the case of the NP-hard random neighborhood
with & = 8 three clusters are noted; we speculate that problems in this
range are on the so called “edge of chaos” where emergent behaviors are
more likely to occur(Coveney and Highfield, 1995),(Kauffman, 1993).

3. The Maximum Contact Map Overlap Case

We explore next the evolved local searcher as a supplier of building
block in the context of a problem drawn from computational biology. A
contact map is represented as an undirected graph that gives a concise
representation of a protein’s 3D fold. In this graph, each residue? is a
node and there exists an edge between two nodes if they are neighbors.

4 A residue is a constituting element of a protein.

icalp.tex; 9/12/2003; 16:52; p.12

Self-Generating Memetic Algorithms 13

Two residues are deemed neighbors if their 3D location places them
closer than certain threshold. An alignment between two contact maps
is an assignment of residues in the first contact map to residues on
the second contact map. Residues that are thus aligned are considered
equivalents. The value of an alignment between two contact maps is the
number of contacts in the first map whose end-points are aligned with
residues in the second map that, in turn, are in contact (i.e. the number
of size 4 undirected cycles that are made between the two contact maps
and the alignment edges). This number is called the overlap of the
contact maps and the goal is to maximize this value. The complexity
of the Max CMO problem was studied in (Goldman et al., 1999) and
later in (Krasnogor, 2002) and shown to be NP-hard.

3.1. SELF-GENERATING MEMETIC ALGORITHMS FOR MAX-CMO

In a genetic algorithm for Max CMO(Lancia et al., 2001), a chromo-
some is represented by a vector ¢ € [0,...,m|" where m is the size
of the longer protein and n the size of the shorter. A position j in
¢, c[j], specifies that the j** residue in the longer protein is aligned
to the c[j]" residue in the shorter. A value of -1 in that position will
signify that residue j is not aligned to any of the residues in the other
protein (i.e., a structural alignment gap). Unfeasible configurations are
not allowed, that is, if i < j and c[i] > ¢[j] or ¢ > j and c[i] < c[j] (e.g.,
a crossing alignment)then the chromosome is discarded. It is simple
to define genetic operators that preserve feasibilities based on this
representation. Two-point crossover with boundary checks was used
in (Lancia et al., 2001) to mate individuals and create one offspring.
Although both parents are feasible valid alignments the newly created
offspring can result in invalid (crossed) alignments. After constructing
the offspring, feasibility is restored by deleting any alignment that
crosses other alignments. The mutation move employed in the exper-
iments is called a sliding mutation. It selects a consecutive region of
the chromosome vector and adds, slides right, or subtracts, slides left,
a small number. The phenotypic effect produced is the tilting of the
alignments.

In (Lancia et al., 2001) a few variations on the sliding mutation were
described and used. In our previous work(Carr et al., 2002) we employed
a multimeme algorithm that, besides using the same mutation and
crossover as the mentioned GA, had a set of 6 Human-designed local
search operators. Four of the local searchers implemented were param-
eterized variations of the sliding operator. The direction of movement,
left or right sliding, and the tilting factor, i.e., the number added or
subtracted, were chosen at random in each local search stage. The size

icalp.tex; 9/12/2003; 16:52; p.13

14 Natalio Krasnogor, Steven Gustafson

of the window was taken from the set {2,4,8,16}. Two new operators
were defined: a “wiper” move and a “split” move. Details of the oper-
ators described here can be found in (Lancia et al., 2001),(Krasnogor,
2002) and (Carr et al., 2002).

3.1.1. Description of Memes

As mentioned in previous sections, we seek to produce a metaheuristic
that creates from scratch the appropriate local searcher to use under
different circumstances. The local search involved can be very complex
and composed of several phases and processes. In the most general
case we want to be able to explore the space of all possible memes
(i.e. local searchers). One can achieve this by using a formal grammar
that describes memeplexes and by letting a genetic programming(Koza
et al., 1999) based system to evolve sentences in the language generated
by that grammar(Krasnogor, 2003). The sentences in the language
generated by this grammar represent syntactically valid complex lo-
cal searchers and they are the instructions used to implement specific
search behaviors and strategies. For space limitations we do not de-
scribe here the grammar used to represent valid memes. For details on
how to achieve that the reader is referred to (Krasnogor, 2002). As we
did for NK-Landscapes, we evolved only the move operator itself;

In figure 7 we can see two contact maps ready to be aligned by our
algorithm.To simplify the exposition, both contact maps are identical
(i.e. we are aligning a contact map with itself) and have a very specific
pattern of contacts among their residues. In the present example (with
a given probability) a residue is connected to either its nearest neighbor
residue, to a residue that is 7 residues away in the protein sequence, or
to both. In 7(a) the contact map is 10 residues long, while in (b) it is
50 residues long.

This contact pattern can be represented by the string 1 — 7, mean-
ing that the residue which occupies the ith position in the protein
sequence is in contact in the native state with residues (i + 1)th and
(¢ + 7)th. That is, the pattern 1 — 7 is a succinct representation of a
possible building block which, if matched by the local searcher, could be
propagated later on by crossover into other solutions. An appropriate
move operator for a local searcher acting in any of the contact maps on
figures 7(a) and (b) would be one that iterates through every residue in
one of the contact maps, checking which residues on the lower contact
map fulfills the pattern of connectivity and making a list of them. The
same procedure would be applied to the top contact map producing
a second list of residues. The local searcher then would pair residues
of one list with residues of the second list thus producing a new and
correct alignment which includes that building blocks. In general, two

icalp.tex; 9/12/2003; 16:52; p.14

Self-Generating Memetic Algorithms 15

(a) (b)

Figure 7. Two contact maps snapshots. In (a) the two randomly generated
proteins have 10 residues, while in (b) the patterns of contacts are maintained
but the protein is 50 residues long.

contact maps will present different connectivity patterns, hence the
meme representation needs to allow the specification of different pat-
terns. This is accomplished by an encoding of the form Pp,,, = Pep,,
where P,p,,, Poy, represent the (potential) patterns in the first and
second contact map respectively that are going to be search for and
subsequently aligned. The number of residues that verifies the pattern
in each list puts an upper bound on how expensive the local search
move operator can be. If the size of the first list is L; and that of
the second Ly and without loss of generality we assume that L; < Lo
then there are at most E;zfl % Clearly this number is too big to
be searched exhaustively, this is why the previous grammar allows for
the adaptation of the sample size. Moreover, although it is well known
that real proteins present these contact patterns(Creighton, 1993) it is
impossible to know a priori which of these patterns will provide the best
fitness improvement for a particular pair of protein structures. Hence,
the Self-Generating M A needs to discover this itself. If the graphs to be
aligned were different (in the previous cases a graph was aligned with
itself for the sake of clarity), then a move operator able to account for
that variation in patterns must be evolved.

The move operator thus defined induces a neighborhood for every
feasible alignment. If an alignment s is represented as explained above
and L1, Ly are the list of vertices that matches the move operator, then
every feasible solution that can be obtained by adding to s one or more
alignments of vertices in L; with vertices on Lo is a neighbor of s. That
is, in this paper all memes employ first improvement ascent strategy
and they are applied after crossover. The sample size was either 50 or
500 and the local search was iterated 2 times.

icalp.tex; 9/12/2003; 16:52; p.15

16 Natalio Krasnogor, Steven Gustafson

As described in the introduction, there were three memetic pro-
cesses, namely, imitation, innovation and mental simulation®. Upon
reproduction, a newly created offsprings inherited the meme of one of its
parents accordingly to the simple inheritance mechanism described in
(Krasnogor and Smith, 2001). In addition to this mechanism, and with
a certain probability (called “imitation probability”), an agent could
choose to override its parental meme by copying the meme of some
successful agent in the population to which it was not (necessarily)
genetically related. In order to select from which agent to imitate a
search behavior, a tournament selection of size 4 was used among indi-
viduals in the population and the winner of the tournament was used
as role model and its meme copied. Innovation was a random process
of mutating a meme’s specification by either extending, modifying or
shortening the pattern in a meme (either before or after the —). If
during 10 consecutive generations no improvement was produced by
either the local search or the evolutionary algorithm a stage of mental
simulation was started. During mental simulation, each individual (with
certain probability) will intensively mutate its current meme, try it in
the solution it currently holds, and if the mutant meme produces an
improvement, both the newly created solution and the meme will be
accepted as the next state for that agent. That is, mental simulation
can be considered as a guided hill-climbing on memetic space. If ten
mental simulation cycles finished without improvements, then metal
simulation was terminated and the standard memetic cycle resumed.

3.2. EXPERIMENTAL SETTING

We designed a random instance generator with the purpose of param-
eterizing the complexity of the contact map overlap problems to be
solved. The input to the random instance generator is a list of the
form:

rdmnpprips pro ... Py pry Where 7 is the number of residues in the
randomly generated contact map, d is the density of random edges (i.e.
noise) and n is the number of patterns in the contact map. For each of
the n patterns two numbers are available, p; and pr;, where p; specifies
that a residue j is connected to residue j + p; with probability pr; for
all 4 € [1,n]. That is, every pattern occurs with certain probability in
each residue, thus an upper bound on the expected number of contacts
is given by rxd+ 7 Y ;1 pr; < 1% (n+d). In our experiments r €
{10, 50, 100, 150, 200, 250}, d = 0.01 and n € {1, 2, 3,4}, that is, contact
maps as short as 10 residues and as long as 250 residues were considered.
For each contact map length, every possible number of patterns was

5 Mental simulation was not used for the NK-Landscape problems.

icalp.tex; 9/12/2003; 16:52; p.16

Self-Generating Memetic Algorithms 17

used, this gives rise to 24 pairs of (r, n) values. For each pair, 5 random
instances were generated spanning from low density contact maps to
high density contact maps. A total of 120 instances were generated.
From all the possible parings of contact maps we randomly choose a
total of 96 pairs to be aligned by means of 10 runs each.

3.3. RESULTS

We present next comparisons of the performance of a Genetic Algo-
rithm versus that of the SGMA. In this experiment we would like to
elucidate whether the overhead of learning suitable local searchers is
amortized along the run and whether our proposed approach is ul-
timately useful. In order to run the experiments we implemented a
GA as described previously. We were able to reproduce the results
of (Lancia et al., 2001) and (Carr et al., 2002) hence we considered
our implementations as equivalent to the earlier ones. The difference
between the GA and the SGMA are described below. In graphs 8(a,b,c
& d) we compare the overlap values® against the first hitting times.
First hitting time (FHT) is the time (in number of fitness evaluations)
at which the best value of a run was encountered. Each graphs presents
the results for 1,2,3 and 4 patterns respectively and for a range of
contact maps sizes. The particular parameters used in the GA are 0.15,
0.75 for mutation and crossover probabilities, and a (50,75) replace-
ment strategy. The Self-Generating MA uses 0.15,0.75,1.0,1.0,1.0,1.0 for
the probabilities of mutation, crossover,local search, imitation, mental
simulation and innovation respectively. The algorithms uses the same
replacement strategy and for both local search and mental simulation
a cpu budget of 50 samples is allocated.

The graphs in 8(a,b,c & d) are good representatives of the results
obtained with the two types of algorithms. That is, under a variety of
changes to the parameter values mentioned above the results remain
equivalent to those shown here.

From figures 8(a,b,c & d) we can see that the Self-Generating Memetic
Algorithm produces a much better amortized overlap value than the
simple GA. That is, if enough time is given to the SGMA, it will sooner
or later discover an appropriate local searcher move that will supply
new building blocks. In turn, this will deliver an order of magnitude
better overlaps than the Genetic Algorithm. Also, it seems that the
GA is oblivious to the size (i.e. residues number) of the contact maps
as it seems to produce mediocre local optima solutions even when
given the maximum cpu time allocation (in these experiments 2 * 103
fitness evaluations) for the whole range of 10 to 250 residues. The GA

5 A higher overlap value means a better structural alignment.

icalp.tex; 9/12/2003; 16:52; p.17

18 Natalio Krasnogor, Steven Gustafson

1 Pattern Contact Map Overlaps 2 Pattern Contact Map Overlaps
10,50,100,150,200 & 250 residue instances 10,50,100,150,200 & 250 residue instances
32 — 64
L g 1R
H 2 321 2 MA - 50 Residues -
o o
16 — L 100 Resices
2 s MA - 150 Residues.
: 69 MA - 200 Residue 7
2 gl v o momam E v oA m0Reden %
z [set-Gonerating a - 250 Rescues | - o o aar | T Self-Generting MA - 250 Resihes < - ol |
g ve v v W o4 v oaem & g Vo s ke mee
g vaq e @ mao o & avmm g T SR meme o aaam
a- © 4 wqesowMa womom o 0v W oA 00h wenmwass | [= o m @ oowe o
4 @ o oo ° - omm —|
4 o o sasesaa uo s o oomew o sw
2 = @ o oo o oo ®o o o o -
2 o o -
P S Ll Ll gl Ceenle Ceenle Ll
1x10° 1x10" 1x10° 1x10° 1x10° 1x10" 1x10°
#Fitness Evaluations (first hiting time) #Fitness Evaluations (first hiting time)
() (h)
3 Pattern Contact Map Overlaps 4 Pattern Contact Map Overlaps
10,50,100,150,200 & 250 residue instances 10,50,100,150,200 & 250 residue instances
P L I Rl L P T LA L AL
32 B 32 B
16+ — 16+ —
3 PR 3
s ., .y oo " vt d e
& 8 w v s v mmoc oy —| 8 8 v wod
® a 4 ma a o ooat o ma oot won 5 o o 4 s
5 4 q a LIRS an 5 a8 A v @ AL @motummy
N B s@oca o waowo o v o am pemang a0 Mo
4 o & o o @ om. o @cao — 41— EEE R REPRY < < omm csm —
) ° @o P 050 o oo
2 o © o o oo o @ — 2 o o a o o o oo o —
1 I I I L 1\\\\L\ I I I
1x10° 1x10° 1x10° 1x10° 1x10° 1x10° 1x10°
#Fitness Evaluations (first hiting time) #Fitness Evaluations (first hiting time)

(c) (d)

Figure 8. Comparison of the first hitting times and the quality of overlaps
obtained for GA and SGMA on increasingly difficult randomly generated
instances. Complexity increases as a function of residues number (within each
grap) and number of connectivity patterns (across graphs).

converges very soon into local optima, this is seen in the graphs by
bands parallel to the x — azxis over the range of energy evaluations
for low overlap values. On the contrary, as the SGMA continuously
improves its solutions, it is not until very late in the execution (i.e. to
the right of the z — azxis) that the best solutions are found. In contrast
to the GA, the SGMA (as expected) is sensitive to the number of
residues in the contact maps involved, that is, longer contact maps
require larger cpu time to come up with the best value of the run
(which is seen in the graph in the clustering patterns for the different
residues number). Another important aspect to note is that both the
x — axis and the y — azis are represented in logarithmic scales. Taking
this into consideration it is evident that the quality of the overlaps
produced by the SGMA are much better than those produce by the

icalp.tex; 9/12/2003; 16:52; p.18

Self-Generating Memetic Algorithms 19

GA. As it is evident from the graphs, for sufficiently small instances
(e.g all the 10 residues long and some of the 50 residues long) it is not
worth using the SGMA as it requires more cpu effort to produce same
quality of overlaps as the GA. On the other hand, as the number of
residues increases beyond 50, then instances are sufficiently complex to
allow for the emergence of suitable local searchers in time to overtake
and improve on the GA results. Also, as the number of patterns that
are present in the instances increases both algorithms, as expected,
require larger amounts of CPU to come up with the best solution of a
run. However, it is still seen that the GA is insensitive to the number
of residues, while the SGMA is clustered in the upper right corner (of
figure 8(d)). This indicates that during all its execution the algorithm is
making progress toward better and better solutions, the best of which
is to be found near the end of the run. Moreover, this behavior indicates
that the SGMA is not prematurely trapped in poor local optima as is
the GA.

GA vs SGMA
250 residues long, 4 patterns contact map alignment
60 e [[RISRRRRRESH [RESRRERRES [aaaaatieos aaaaat

Fitness

ol [Loty [[[Loty [[Loty [liind
0 10 20 30 40 50 60 70 80 9 100 110

Generation #

Figure 9. Representative example of GA and SGMA runs for a 250 residues
and 4 patterns instance.

The ability of the SGMA to overcome local optima comes from the
fact that the evolved local searchers will introduce good building-blocks
that match the particular instance. This supply of building-blocks is
essential for a synergistic operation of both the local searcher and
the genetic operators. That is, using Goldberg’s notation (Goldberg,
2002), we have that for the SGMA the take over time t* is greater than
the innovation time t;, which allows the algorithms to continuously
improve. In figure 3.3 10 runs of the GA are compared against 10 runs
of the SGMA. It can be seen that the GA runs get trapped very early
(around the 20th generation) in poor local optima while the SGMA

icalp.tex; 9/12/2003; 16:52; p.19

20 Natalio Krasnogor, Steven Gustafson

keeps improving during all the run. All the runs in figure 3.3 use the
same total number of fitness evaluations.

4. Conclusions

In this paper we investigated the concept of “Self-Generating Meta-
heuristics” and we exemplified its use in two hard combinatorial prob-
lems, NK-Landscapes and MAX-CMOQO. The particular implementation
of Self-Generating Metaheuristics used in this paper was based on
Memetic Algorithms. Unlike commonly held views on Memetic Algo-
rithms and Hybrid Global-Local searchers, we do not resort here to
human-designed local searchers but rather we allowed the SGMA to
discover and assemble on-the-fly the local searcher that best suits the
particular situation. In this paper we argued that from an optimization
point of view there are obvious advantages in self-generating the local
search behaviors for memetic algorithms. MAs that can self-generate
the local searchers might be able to adapt to each problem, to every
instance within a class of problem and to every stage of the search. A
similar strategy could be use in other metaheuristics (e.g. Simulated
Annealing, Tabu Search, Ant Colonies, GRASP, etc) where more so-
phisticated GP implementations might be needed to co-evolve the used
operators.

One of the reasons for the success of the SGMA is that the evolved
local s earchers act as a (low and medium order) building block supplier.
These continuous supply of building blocks aids the evolutionary pro-
cess to improve solutions continuously by producing a more synergistic
operation of the local and global operators.

It is our hope that the ideas discussed on this paper would tempt
researchers confronted with new problems for which there are not “sil-
ver bullet” local search heuristics” with which to hybridize a Memetic
Algorithm to try the obvious: the Dawkins method of self-generation
of local search behaviors, that is, the use of memes.

Acknowledgements

N.Krasnogor would like to thank J.E.Smith for many useful discussions
over coffee, phone and e-mail on Self-Generating, alternatively called
Co-evolving, Memetic Algorithms.

T Like it is the case for TSP and Graph Partitioning where K—opt and Lin-
Kernighan are known to be extremely efficient.

icalp.tex; 9/12/2003; 16:52; p.20

Self-Generating Memetic Algorithms 21
References

Burke, E., J. Newall, and R. Weare: 1996, ‘A Memetic Algorithm for University
Exam Timetabling’. In: E. Burke and P. Ross (eds.): The Practice and Theory
of Automated Timetabling, Vol. 1153 of Lecture Notes in Computer Science.
Springer Verlag, pp. 241-250.

Burke, E. and A. Smith: 24-28 November 1997, ‘A Memetic Algorithm for the Main-
tenance Scheduling Problem’. In: Proceedings of the ICONIP/ANZIIS/ANNES
’97 Conference, Dunedin, New Zealand. pp. 469-472, Springer.

Carr, R., W. Hart, N. Krasnogor, E. Burke, J. Hirst, and J. Smith: 2002, ‘Alignment
of Protein Structures with a Memetic Evolutionary Algorithm’. In: W. Langdon,
E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V.
Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller,
E. Burke, and N. Jonoska (eds.): GECCO-2002: Proceedings of the Genetic and
Evolutionary Computation Conference.

Coveney, P. and R. Highfield: 1995, Frontiers of Complezity, the search for order in
a chaotic world. faber and faber (ff).

Creighton, T. E. (ed.): 1993, Protein Folding. W. H. Freeman and Company.

Eiben, A. and J. Smith: 2003, Introduction to Ewvolutionary Computing. ISBN 3-
540-40184-9. Springer.

Franga, P., A. Mendes, and P. Moscato: July 1999, ‘Memetic algorithms to minimize
tardiness on a single machine with sequence-dependent setup times’. In: Pro-
ceedings of the 5th International Conference of the Decision Sciences Institute,
Athens, Greece.

Gabora, L.: 1993, ‘Meme and Variations: A computational Model of Cultural Evo-
lution’. In: L.Nadel and D. Stein (eds.): 1998 Lectures in Complex Systems.
Addison Wesley, pp. 471-494.

Goldberg, D.: 2002, The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers.

Goldman, D., S. Istrail, and C. Papadimitriou: 1999, ‘Algorithmic Aspects of Protein
Structure Similarity’. Proceedings of the 40th Annual Symposium on Foundations
of Computer Sciences pp. 512-522.

Kauffman, S.: 1993, The Origins of Order, Self Organization and Selection in
Evolution. Oxford University Press.

Koza, J., F. Bennet, D. Andre, and M. Keane: 1999, Genetic Programming III,
Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers.

Krasnogor, N.: 2002, Studies on the Theory and Design Space of Memetic Al-
gorithms. Ph.D. Thesis, University of the West of England, Bristol, United
Kingdom. http://www.cs.nott.ac.uk/ nxk /papers.html.

Krasnogor, N.: 2003, ‘Self-Generating Metaheuristics in Bioinformatics: The Pro-
teins Structure Comparison Case’. To appear in the Journal of Genetic
Programming and Evolvable Machines.

Krasnogor, N., B. Blackburne, E. Burke, and J. Hirst: 2002, ‘Multimeme Algorithms
for Protein Structure Prediction’. In: Proceedings of the Parallel Problem Solving
from Nature VII. Lecture notes in computer science.

Krasnogor, N. and S. Gustafson: 2002, ‘Toward Truly “memetic” Memetic Al-
gorithms: discussion and proof of concepts’. In: D.Corne, G.Fogel, W.Hart,
J.Knowles, N.Krasnogor, R.Roy, J.E.Smith, and A.Tiwari (eds.): Advances in
Nature-Inspired Computation: The PPSN VII Workshops. PEDAL (Parallel,
Emergent and Distributed Architectures Lab). University of Reading. ISBN
0-9543481-0-9.

icalp.tex; 9/12/2003; 16:52; p.21

22 Natalio Krasnogor, Steven Gustafson

Krasnogor, N. and J. Smith: 2000, ‘A Memetic Algorithm With Self-Adaptive Local
Search: TSP as a case study’. In: D. Whitley, D. Goldberg, E. Cantu-Paz, L.
Spector, I. Parmee, and H.-G. Beyer (eds.): GECCO 2000: Proceedings of the
2000 Genetic and Evolutionary Computation Conference. Morgan Kaufmann.

Krasnogor, N. and J. Smith: 2001, ‘Emergence of Profitable Search Strategies Based
on a Simple Inheritance Mechanism’. In: L. Spector, E. Goodman, A. Wu, W.
Langdon, H. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshj, M. Garzon, and E.
Burke (eds.): GECCO 2001: Proceedings of the 2001 Genetic and Evolutionary
Computation Conference. Morgan Kaufmann.

Lancia, G., R. Carr, B. Walenz, and S. Istrail: 2001, ‘101 Optimal PDB Struc-
ture Alignments: a Branch-and-Cut Algorithm for The Maximum Contact Map
Overlap Problem’. Proceedings of The Fifth Annual International Conference on
Computational Molecular Biology, RECOMB 2001.

Macready, W., A. Siapas, and S. Kauffman: 1996, ‘Criticality and Parallelism in
Combinatorial Optimization’. Science 261, 56-58.

Merz, P.: 2000, Memetic Algorithms for Combinatorial Optimization Prob-
lems:Fitness Landscapes and Effecitve Search Strategies. Ph.D. Thesis, Parallel
Systems Research Group. Department of Electrical Engineering and Computer
Science. University of Siegen.

Merz, P. and B. Freisleben: 1997, ‘Genetic Local Search for the TSP: New Results’.
In: Proceedings of the 1997 IEEE International Conference on Ewvolutionary
Computation. pp. 159-164, IEEE Press.

Merz, P. and B. Freisleben: 2000, ‘Fitness Landscapes, Memetic Algorithms,
and Greedy Operators for Graph Bipartitioning’. Journal of Ewolutionary
Computation 8(1), 61-91.

Moscato, P.: 1999, ‘Memetic Algorithms: A short introduction’. In: D. Corne, F.
Glover, and M. Dorigo (eds.): New Ideas in Optimization. McGraw-Hill.

Moscato, P.: 2001, ‘Problemas de Otimizacao NP, Aproximabilidade e Computacao
Evolutiva:Da Pratica a Teoria’. Ph.D Thesis, Universidade Estadual de
Campinas, Brasil.

Oates, M., D. Corne, and R. Loader: 2000, ‘Tri-Phase Profile of Evolutionary
Search on Uni- and Multi-Modal Search Spaces’. Proceedings of the Congress
on Evolutionary Computation (CEC2000) 1, 357-364.

Ozcan, E. and C. Mohan: 1998, ‘Steady State Memetic Algorithm for Partial Shape
Matching’. In: V. Porto, N. Saravanan, and D. Waagen (eds.): Evolutionary
Programming VII : Tth International Conference, (EP98, San Diego, California,
USA, March 25-27, 1998), Vol. 1447 of Lecture Notes in Computer Science. pp.
527-236, Springer, Berlin.

Sharpe, O.: 2000, ‘Introducing Performance Landscapes and a Generic Frame-
work for Evolutionary Search Algorithms’. Proceedings of the Congress on
Evolutionary Computation (CEC2000) 1, 341-348.

Smith, J.: 2002a, ‘Co-Evolution of Memetic Algorithms : Initial Results’. In: B. F.-
V. Merelo, Adamitis and S. (eds) (eds.): Parallel problem solving from Nature -
PPSN VII, LNCS 2439. Springer Verlag.

Smith, J.: 2002b, ‘The Co-Evolution of Memetic Algorithms for Protein Structure
Prediction’. In: D. Corne, G. Fogel, W. Hart, J. Knowles, N. Krasnogor, R.
Roy, J. Smith, and A. Tiwari (eds.): Advances in Nature-Inspired Computa-
tion: The PPSN VII Workshops. PEDAL (Parallel, Emergent and Distributed
Architectures Lab). University of Reading. ISBN 0-9543481-0-9.

Weinberger, E. and A. Fassberg: 1996, ‘NP Completness of Kauffman’s N-K Model,
a Tuneably Rugged Fitness Landscape’. In: Santa Fe Institute Technical Reports.

icalp.tex; 9/12/2003; 16:52; p.22

