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Abstract. Despite intensive studies during the last 30 years researchers
are yet far from the “holy grail” of blind structure prediction of the three
dimensional native state of a protein from its sequence of amino acids.
We introduce here a Multimeme Algorithm which is robust across a range
of protein structure models and instances. New benchmark sequences for
the triangular lattice in the HP model and Functional Model Proteins
in two and three dimensions are included here with their known optima.
As there is no favourite protein model nor exact energy potentials to
describe proteins, robustness accross a range of models must be present
in any putative structure prediction algorithm. We demonstrate in this
paper that while our algorithm present this feature it remains, in terms
of cost, competitive with other techniques.

1 Introduction

A protein’s structure determines its biological function. This is the reason why
a central component in proteomics is the prediction of a protein’s native struc-
ture from its sequence. This task is called Protein Structure Prediction (PSP).
“All-atom” simulations are extremely expensive so researchers often resort to
simplified models of the PSP, but even the simplified problem still remains com-
putationally intractable in the worst case[2].

The particular simplified models we are concerned with in this paper are the
HP model[5] and Functional Model Proteins[10][3] in two and three dimensional
lattices. The HP model (and its variants) abstracts the hydrophobic interaction
process in protein folding by reducing a protein to a heteropolymer of non-
polar or hydrophobic (H) and polar (P) or hydrophilic amino acids. A protein
sequence s is represented by a string in a binary alphabet: s € {H, P}. Simplified
models restrict the space of conformations to self-avoiding paths on a lattice
in which vertices are labeled by the amino acids. These lattices may be two-
dimensional, e.g. square or triangular, or three dimensional, e.g. diamond. The
energy potential in the HP model reflects the fact that hydrophobic amino acids
have a propensity to form a hydrophobic core. To capture this feature of protein
structures, the HP model adds a value € for every pair of hydrophobes that
form a topological contact; a topological contact is formed by a pair of amino
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Fig. 1. HP protein embedded in the square lattice (a) and triangular lattice(b). Func-
tional Model protein embedded in the square lattice(c) and diamond (3D) lattice(d). In
(c) and (d) native structures are not maximally compact as they must have a “binding
pocket”.

acids that are adjacent on the lattice and not consecutive in the sequence. The
value of € is typically taken to be —1. Figure 1 shows sequences embedded in
the square and the triangular lattices, with hydrophobic-hydrophobic contacts
(HH contacts) highlighted with dotted lines. The conformation in Figure 1 has
an energy of -4 in the square lattice embedding and -6 in the triangular lattice
embedding. A typical interaction matrix for the HP model is given in table 1(a).
The energy interaction in Functional Model Proteins[10],[3] (which introduces

(a)[H[P[[[(b)[H[P
H |1|0||H |-2|1
P |0|0||P |1]|1
Table 1. Interaction energy matrix for the standard HP model(a) and Interaction
energy matrix for a shifted HP model (b).

repulsive forces) between residues that are in contact is given by table 1(b).
Native protein structures in this model are required to have a binding pocket in
their native structure (e.g. a hole in their conformation), an energy gap between
the minimum energy conformation and the next excited state and to have a
unique optimal conformation. Figure 1(c) shows a two dimensional embedding
of a Functional Model Protein and 1(d) shows a diamond lattice embbeding.
The construction of effective algorithms for solving structure prediction on
simplified models (e.g. the HP model and Functional Model Proteins) is a key
stepping-stone towards the structure prediction of real life proteins that cannot
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be solved by homology or threading methods. Several successful methodologies
from the last two Critical Assessment of Structure Prediction[21], CASP3 and
CASP4, employed simplified models for sampling and optimising structures em-
bedded in different lattices[20],[7],[12].

In this paper we will present a novel metaheuristic, called a Multimeme
Algorithm, to PSP for four different models: HP model in the square lattice, HP
modelin the triangular lattice, Functional Model Proteins in the square lattice
and the diamond lattice. To evaluate our algorithm in the first model we will
use instances from the public domain that were used by other researchers to test
their methods. In the case of the last three models new instances, with their
respective optima, will be presented and used as test beds.

2 Evolutionary Algorithms Approaches to Protein
Structure Prediction

Several evolutionary algorithms precede the application of Multimeme Algo-
rithms in PSP An early application of Genetic Algorithms (GAs) to PSP due
to Unger and Moult [19] is a widely used benchmark. Patton et al. [6] de-
scribed a standard GA employing, as Unger and Moult did, an internal coordi-
nate representation. They used a penalty method to enforce the self-avoiding
constraints. Khimasia and Coveney [11] considered the performance of Gold-
berg’s Simple GA. The objective function was a hybrid between the Random
Energy Model[4] and the HP model. Colosimo et al. [18] applied a standard GA
to predict the minimum conformational energy of two small real proteins: cram-
bin and ferredoxin. They used the HP model in various 3D cubic grids, where
each one increased the spatial resolution. One of us [15][14] explored which kind
of encodings, operators, constraint management and energy formulation is more
suitable for an evolutionary algorithm designed to tackle minimalist models of
PSP and Protein Structure Comparisons. Greenwood et.al.[8] surveyed recent
evolutionary approaches to the PSP. More recently Liang and Wong [17] pub-
lished encouraging results on a hybrid between Monte Carlo optimization and
GAs for the square HP model.

3 Multimeme Algorithms for Protein Structure
Prediction

Memetic algorithms are evolutionary algorithms that include, as part of the
“standard” evolutionary cycle of crossover-mutation-selection, a local search
stage. They have been extensively studied and used on a wide range of prob-
lems. Multimeme evolutionary algorithms were introduced by Krasnogor and
Smith [16] and applied to two bioinformatic problems[14]. The distinction be-
tween Memetic and Multimeme Algorithms is that the former uses only one
(usually complex) local search while the later employs a set of local searchers.
Multimeme algorithms self-adaptively select from this set which heuristic to use
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for different instances, stages of the search or individuals in the population. This
kind of algorithm exploits features from Evolutionary Algorithms and Variable
Neighborhood Search (by virtue of its multi-operator local search).

In a Multimeme Algorithm an individual is composed of its genetic material
and its memetic material. The mechanisms of genetic exchange and variation are
the usual crossover and mutation operators but tailored to the specific problem

one wants to solve. Memetic transmission is effected using the so called Simple
Inheritance Mechanism (SIM)[16]. SIM can be formalized by:

L= if Vk,j € Parents(i),k # j, L*~"9 == L*~1F
LA = L1 if F(I;"") > F(I; ')Vk,j € Parents(i), k # j

L*~%*for any k € |Parents(i)| otherwise

(1)

where a meme (local searcher) L, at time ¢ — 1 that is carried by parent j (or k),
will be transmitted to the offspring ¢ if that meme is shared by all the parents. If
they have different memes, L is associated to the fittest parent. Otherwise, when
fitnesses(F'(+)) are comparable and memes different, a random selection is made.
The rationale is to propagate local searchers (i.e. memes) that are associated with
fit individuals, as those individuals were probably improved by their respective
memes. During mutation, the meme of an individual can also be overridden and
a local searcher assigned at random (uniformly from the set of all available local
searchers) based on the value of the innovation rate parameter. This is done to
introduce novelty in the local search phase of the MMA.

3.1 Tailoring the Multimeme Algorithm for Protein Structure
Prediction

The basic evolutionary parameters and settings for the Multimeme Algorithm
are now described. Tournament sizes of two and four, a crossover probability of
0.8 and a mutation probability of 0.3 were used. The runs were executed based on
a (50,200),(100,400) and (500,1000) replacement strategies. Each generation of
the Multimeme Algorithm consisted of a mating stage (two-point crossover with
tournament selection), mutation (one and two-point mutation), local search and
replacement. Every individual in the population went through an optimization
period. The latter was governed by the meme held by the individual. Local
search itself was restricted to three iterations in a randomized first improvement
fashion, and consequently it was unconverged. For all the experiments reported
in this paper the parameters were set according to the criteria described in [14]
and [15] and the innovation rate was 0.2.

The memes available to the Multimeme Algorithm can be categorized as
follows: pivot (rigid rotation) moves, stretching of a substructure (unfolding),
random macro-mutation of a substructure, reflection of a substructure, non-local
k-opt and local k-opt. These six local searchers types give rise to several different
neighborhoods with which the Multimeme Algorithm will perform its search and
were chosen based on previous analysis [14][15]. The Evolutionary Monte Carlo
algorithm[17], which represents one of the state of the art systems for two dimen-
sional HP lattice models, employs similar moves as mutation operators (except
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for the stretch and k-opt operators). Space limitations preclude further
description of the local searchers. More details are given elsewhere[14][15]. With
the basic ingredients described above, the Multimeme Algorithm performed well
on the standard HP model (in two and three dimensional lattices). However,
it was not able to reach optimal configurations in the Functional Model Pro-
teins. This was solved by the introduction of a contact map memory of current
solutions in the mating strategy of the Multimeme Algorithm. With the new
mating strategy we were able to solve to optimality instances of both the HP
and Functional Model Proteins in two and three dimensional lattices.

3.2 A New Mating Strategy

As mentioned above, a contact map memory was included into the Multimeme
Algorithm. During the reproduction phase of the algorithm, each generated off-
spring was evaluated for compatibility with the contact map memory. An off-
spring was compatible with the memory if at least ¢; of the contacts defined by
its structure were themselves compatible. In turn, a contact was compatible if
not more than ¢5 of the individuals already in the population shared that con-
tact. This method involves the determination of the fractions ¢; and ¢2 which
was done by ad hoc experimentation. In this paper ¢1 = 25%, ¢2 = 66%. The
inclusion of a memory of the contact maps of already visited solutions has as an
advantage (over simply storing fitness evaluations or having an archive of geno-
types, i.e. solutions ) that the contact maps abstract the geometric details of the
structures and keep only the essential topological features of a two dimensional
or three dimensional shape. Rotations and symmetries are filtered out and need
not be explicitly considered. Given that a contact map can be realized by several
different structures, the additional requisite of only accepting offspring that are
compatible with the contact map memory pushes the search toward a more ex-
ploratory regime, thereby increasing diversity in the population. By holding the
information of just a few contact maps in the memory the new mating strategy
is actually storing information of a wide area of the whole search space. With
this simple strategy we were able to improve on results previously obtained with
Multimeme Algorithms[14] on the standard HP model, but more importantly,
we were able to solve to optimality instances of the Functional Model Proteins
that our previous algorithms were not capable of solving.

4 Results

In this section we will present results obtained with the Multimeme Algorithm
using the new mating strategy based on the contact map memory. Functional
Model Proteins were introduced in [10]. The optima for the sequences of the
Functional Model Protein were obtained by an exhaustive parallel enumeration
algorithm. The diamond Functional Model Protein instances and their optima
are first published here. Functional Model Proteins are a challenging set of in-
stances, as each one has a unique native state (this is not the case for other well
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known minimalistic models) which is surrounded by several first excited states.
Moreover, there is an energetic barrier of at least two bonds between the first
excited state and the native structure. The Functional Model Proteins presented
here are a subset of the available instances with known optima. We computed
the native state and first excited states for all of the 223 sequences for the square
lattice and the diamond lattice in this model. These can be obtained from [13].
The optima for the triangular lattice instances where obtained by construction
in the design process of the sequences. The standard HP lattice sequences were
taken from [19],[17],[9] and other references. In all experiments five runs were
executed per instance. If the optimum value was not achieved by any of the five
runs then we report the best sub-optimum found in bold face. The sequences
and results for the Square Lattice in the Standard HP Model are shown in table
2. Two Dimensional Triangular Lattice in the Standard HP Model instances and

# |Sequence Size|Opt.MMA
1 |[HPHPPHHPHPPHPHHPPHPH 200 -9 -9
2 |PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP| 36 |-14 | -14
3 |H*(PH)'H*PHP*HP*HP*HP*HP*HPH*(PH)'H 50 | -21 | -21
4 |H*(PH)*(P?*H?)*(PPH)*(HP’H)*(P*H*)*P*(HP)’H" 64 |-42 | -39
5 |HPHPPHHPHPPHPHHPPHPH 20 -9 | -9
6 |PPHPPHHPPPPHHPPPPHHPPPPHH 25| -8 | -8
7 |(P?H)*HP?*H?*P*HPS(H?P*)*HP*H" 48 | -22 | -22
8 |PHPPHPHHHPHHPH?® 18| -9 -9
9 |HPHPHHHPPPHHHHPPHH 18| -8 -8
10\HHPPPPPHHPPPHPPPHP 18| -4 | -4
11|\HHHPPHPHPHPPHPHPHPPH 20 [-10 | -10

Table 2. Two dimensional square lattice Standard HP instances

results are displayed in table 3 below. The sequences and results for the Square
Lattice in the Functional Model Proteins can be found in table 4. The number
of energy evaluations required to achieve those optimal values is reported. The
sequences and results for the Diamond Lattice in the Functional Model Proteins
can be found in table 4(indexed with letters). To the best of our knowledge, the
best algorithm for reduced models is PERM][1]. The results presented here use
some of the instances and models tested in [1] and for these cases our results, the
positive and the negative ones (e.g. failure to solve instance 4 of the standard,
square 2D, HP model), are equivalent. Another point to note is that PERM
makes assumptions about “compactness” of the native structure of a protein,
which clearly do not apply to the Functional Model Proteins. Indeed, for some
instances the optimal structure has one or more binding pockets. Hence, al-
though they do not use the mentioned model, we speculate that their algorithm
will not be robust in this domain. Furthermore, it is not possible to compare
our algorithm directly with PERM, as our method, like the Evolutionary Monte
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# |Sequence Size|Opt. MMA
1 |HHPPHPHPHPHPHP 14 -11 | -11
2 |HHPPHPPHPHPHPH 14 |-11 | -11
3 |HHPHPPHPPHPPHPPH 16 | -11 | -11
4 |\HHPPHPPHPHPHPPHP 16 [ -11 | -11
5 |HHPPHPPHPPHPPHPPH 17 (-11 | -11
6 |HHPHPHPHPHPHPHPHH 17 | -17 | -17
7 |HHPPHPPHPHPHPPHPHPHH 20 | -17 | -17
8 |HHPHPHPHPHPPHPPHPPHH 20 | -17 | -17
9 |HHPPHPPHPHPPHPHPPHPHH 21 | -17 | -17
10| HHPHPPHPPHPHPHPPHPPHH 21 | -17 | -17
11\ HHPPHPHPHPPHPHPPHPPHH 21 | -17 | -17
12\ HHPPHPPHPHPHPPHPPHPPHH 22 | -17 | -17
13|\HHHPHPHPHPHPHPHPHPHPHHH 23 |-25 | -25
14 HHPPHPPHPPHPPHPPHPPHPPHH 24 |-17 | -16
15|\ HHHPHPHPPHPHPHPHPHPHPHHH 24 | -25| -25
16| HHHPHPHPHPPHPHPHPHPHPHHH 24 | -25 | -25
17 HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 30 [-25 | -24
18 HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 30 |-25| -24
19 HHHPPHPPHPPHPHPHPPHPPHPPHPPPPPHPHPHHH| 37 |-29 | -26

Table 3. Two dimensional triangular lattice Standard HP instances

Carlo method[17], performs a blind search, whereas PERM utilizes information
of the sequence being folded. Consequently, we compare our results with other
blind methods and assess the robustness of the Multimeme Algorithms across a
range of models and instances. Table 5 shows a representative example of the
increased robustness of a Multimeme Algorithm when it is compared against a
GA and a Memetic Algorithm (that uses only one type of local searcher). In the
table, results for instance 15 of table 3 are displayed. The Multimeme approach
achieves the optimum solution more frequently than the other approaches and
also faster (the GA was given an equivalent number of energy evaluations).

Table 6 shows a comparison of the number of energy evaluations employed
by our algorithm and other two well known methods (the GA and Monte Carlo
reported in [19]) to solve the square lattice HP instances. Although the Evolu-
tionary Monte Carlo method[17] finds optimum solutions for very challenging
instances of the square lattice in the HP model a direct comparison with our
algorithm is not possible. Liang and Wong report the number of feasible confor-
mations scanned before reaching an optimal structure. However, their algorithm
generates thousands of non-feasible structures during the run and this num-
ber is not provided in their paper!. Nevertheless, their algorithm does solve to
optimality all the instances in table 6 and a few longer ones.

Across all the models investigated, our algorithm identifies optimal struc-
tures, regardless of considerations of compactness or the size of the protein in-

! The authors confirmed this with us in a private communication
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# |Sequence Opt.\MMA |#Evaluations
1 |PHPPHPPHHHHPPHPPHPHPPHH | -20 | -20 15170
2 |PHPPHPPHHHHHPPPPHPPHPPH | -17 | -17 61940
3 HPHPHPHHHPPHPPPHPHHPPHH | -16 | -16 132898
4 HHHPHHHPPHHPPPHPHPPHHHH | -20 | -20 66774
5 |PHPPPPPPHPHHPHPHHHHPHPH | -17 | -17 53600
6 HHPHPPHPPPPHPPPPHPPPHHH | -13 | -13 32619
7 |PHPHHPHHHHHHPPHHHPHHHHH| -26 | -26 114930
8 HPHPPPHHHHPHPPPPHPHPHHH | -16 | -16 28425
9 \PHPHHPHHPHHPHPHPHPPPPPH | -15 | -15 25545
10l HPHPHPPPPPHHPPPHPHPHPHH | -14 | -14 111046
11|PHPPHHHPHPPHPHHPHPPPPPH | -15 | -15 52005
A |PHPHPHPHPPPPHPPPPPHPPPH |-11 | -11 123979
B |PHPHPHPHPPPPHPPPPPHPPHH | -11| -11 301205
C |PHPHPHPPHHHHHHPHPPHPHPH | -14 | -12 12618
D (PHPHPHPPHHHHHHHPHPPPHPH | -14 | -14 1334661
E \PHPHPHPHPPHHPPHPHPHHHHH | -14 | -14 482259
F HPHHPHPHHPPPPPHHPHPHHHH | -15 | -15 332842
G PHPHPHPPHHHHHHPHHHHHHHH| -16 | -14 11132
H HPPHPPHHPHPHHHPHPHHPHHH | -18 | -18 261027
I HPPHPPHHPHPHHHPHPHHHHPH | -18 | -18 550121

Table 4. Two dimensional square lattice Functional Model instances (indexed by num-
bers) and Three dimensional diamond lattice Functional Model instances (indexed by
letters) and the number of energy evaluations required by the best run to achieved the
optimum or a sub-optimum (in bold face).

volved. There are few cases of mis-folding, that is, only a local optimum was
found. Unfortunately we were not able to detect any pattern of failure so an
improvement cannot be suggested at this time. When comparing the number of
energy evaluations of the Monte Carlo and our algorithm we can clearly see the
benefits of the Multimeme Algorithm. If we turn to the GA then we find that
for one protein (instance 7 in table 6) our approach needed considerably more
evaluations.

5 Conclusions and Future Work

The main feature of our algorithm is that it is robust finding optimal structures,
across a range of models and difficulty. This is an essential feature needed of
any search method for PSP, as the precise energy formulation that must be op-
timized is not known. Moreover, the development of energy potentials is a very
active area of research and one should expect the frequent publication of new
models. A robust search mechanism, such as our Multimeme Algorithm, allows
one to change the energy potential without altering too much the algorithmic
infrastructure and to investigate folding prediction under the new model. The
robustness of our algorithm arises from the evolutionary, population oriented,
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Static Memes|Num Optima / Num Runs|Mean First Hitting Time

GA (no memes) 0/10 -

MA with Macro Mutation (r=4) 2/10 27.5
MA with Macro Mutation (r==8) 3/10 53.3
MA with Macro Mutation (r=16) 2/10 43.0
MA with Reflect (r=4) 3/10 20.6

MA with Reflect (r=8) 1/10 79.0

MA with Reflect (r=16) 1/10 45.0

MA with Stretch (r=4) 0/10 -

MA with Stretch (r=8) 0/10 -

MA with Stretch (r=16) 0/10 -

MA with Pivot 5/10 27.0

MultiMeme (all local searchers) 8/10 16.87

Table 5. Number of times and mean first hitting time (in generations) to achieve an
optimal solution to instance 15 in table 3. Different algorithms are compared based on
10 independent runs.

#|Sequence GA MC MMA
1 |HPHPPHHPHPPHPHHPPHPH 30492 | 292443 14621
2 |P(PPHH)*PPPPPH'"PPHHP*HHPPHPP 301339(6557189 (-13)| 208233
3 |H*(PH)*H®PHP*HP*HP*HP*HP*HPH*(PH)"H|592887| 15151203 | 336763
6 |PPHPPHHPPPPHHPPPPHHPPPPHH 20400 | 2694572 | 18736
7 |((PPH)?HP?*H?P*H'°PS(H?P?)?HP*H® 126547|9201755 (-20)|1155656

Table 6. Energy evaluations used by the Genetic Algorithm and a Monte Carlo ap-
proach as quoted from [19] and our MMA for sequences in the HP square lattice.

nature of the search it performs and the amalgamation of several neighborhoods
to further improve solutions kept in the population. All of these must be com-
plemented with a suitable “evolutionary memory”, that in the work reported
here takes the form of a contact map memory.

More experimentation will be undertaken to try to determine the reasons
behind the failure to obtain optimum structures in certain sequences. Other
models of the PSP will be investigated and the behaviour of our algorithm
assessed there.

References

1. U. Bastolla, H. Frauenkron, E. Gerstner, P. Grassberger, and W. Nadler. Testing
a new monte carlo algorithm for protein folding. Proteins: Structure, Function and
Genetics, 32,52, 1998.

2. B. Berger and T. Leight. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. In Proceedings of The Second Annual International Con-
ference on Computational Molecular Biology, RECOMB 98, 1998.



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Krasnogor et al.

B.P. Blackburne and J.D. Hirst. Evolution of functional model proteins. Journal
of Chemical Physics, 115(4):1935-1942, 2001.

. B. Derrida. Random energy model: Limit of a family of disordered models. Physical

Review Letters, 45, 1980.

Ken A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24:1501, 1985.

A L. Patton et al. A standard ga approach to native protein conformation predic-
tion. In Proceedings of the Sizth International Conference on Genetic Algorithms,
pages 574-581. Morgan Kauffman, 1995.

M. Feig and C.L. Brooks III. Multiscale modeling protocol for ab initio structure
prediction. In press, 2000.

G.W. Greenwood, B. Lee, J. Shin, and G.B. Fogel. A survey of recent work on
evolutionary approaches to the protein folding problem. In Proceedings of the
Congress of Evolutionary Computation (CEC), pages 488—-495. IEEE, 1999.

W.E. Hart. Hp instances. In http://www.cs.sandia.gov/tech_reports/compbio/tortilla-
hp-benchmarks.html.

J.D. Hirst. The evolutionary landscape of functional model proteins. Protein
Engineering, 12:721-726, 1999.

M. Khimasia and P. Coveney. Protein structure prediction as a hard optimization
problem: The genetic algorithm approach. In Molecular Simulation, volume 19,
pages 205226, 1997.

A. Kolinski, M.R. Betancourt, D. Kihara, P. Rotkiewicz, and J. Skolnick. Gener-
alized comparative modeling (genecomp): A combination of sequence comparison,
threading, and lattice modeling for protein structure prediction and refinement.
PROTEINS: Structure, Function, and Genetics, 44:133-149, 2001.

N. Krasnogor. Standard hp and functional model proteins instances.
http://dirac.chem.nott.ac.uk/ “natk/Public/indez.html, 2001.

N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms.
Ph.D. Thesis, Faculty of Computing, Mathematics and Engineering, University of
the West of England, Bristol, United Kingdom, 2002.

N. Krasnogor, W.E. Hart, J. Smith, and D.A. Pelta. Protein structure prediction
with evolutionary algorithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon,
V. Honavar, M. Jakaiela, and R.E. Smith, editors, GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference. Morgan Kaufman, 1999.

N. Krasnogor and J.E. Smith. Emergence of profitable search strategies based on
a simple inheritance mechanism. In Proceedings of the 2001 Genetic and Evolu-
tionary Computation Conference. Morgan Kaufmann, 2001.

F. Liang and W.H. Wong. Evolutionary monte carlo for protein folding simulations.
Journal of Chemical Physics, 115(7):3374-3380, 2001.

P. Montanari, A. Colosimo, and P.Sirabella. The application of a genetic algorithm
to the protein folding problem. In Proceedings of Engineering of Intelligent Systems
(EIS 98), 1998.

R. Unger and J. Moult. Genetic algorithms for protein folding simulations. Journal
of Molecular Biology, 231(1):75-81, 1993.

Y. Xia, E.S. Huang, M. Levitt, and R. Samudrala. Ab initio construction of protein
tertiary structures using a hierarchical approach. Journal of Molecular Biology,
300:171-185, 2000.

A. Zemla, C. Venclovas, J. Moult, and K. Fidelis. Processing and analysis of
casp3 protein structure predictions. PROTEINS: Structure, Function, and Genet-
ics Suppl, 3:22-29, 1999.



