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Abstract

This paper continues the investigation of population P systems model [4] by con-
sidering bacterium quorum sensing (QS) phenomena as basis of the new approach.
A new computational model called QS P system is introduced. It is proved that QS
P systems are able to simulate counter machines, and hence they are equivalent in
power to Turing machines. An example of a QS P system modelling the behaviour
of Vibrio fischeri bacteria colonies is also presented and the emergence of the QS
mechanism is illustrated.

Key words: P systems, Turing machines, Quorum sensing, Vibrio fischeri

1 Introduction

The inter-play between computer science and biology is a long standing pro-
cess that has led to research developments in each of these areas and also
in new emerging disciplines like computational biology or natural computing.
The former covers all aspects of computational modelling that refer to biologi-
cal sciences as applied to biological processes, ranging from specific algorithms
and data structures for genomic and proteomic support up to highly complex
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systems biology modelling. The wide spectrum of models used in systems biol-
ogy includes continuous and discrete approaches, deterministic and stochastic
methods [32], and recent developments of integrative complex hybrid methods
[23]. On the other hand, natural computing envisages the development of new
computational models and paradigms inspired from the way nature behaves.
Well-established fields of research have been developed: neural computing [2],
genetic programming [21], evolutionary computing and programming [7] up
to the new fields of DNA computing [28], gene assembly [11], membrane com-
puting [26] etc.

Compartments play an important role in all the biological systems by organis-
ing their structure in a hierarchical way with well defined components [22]. At
the cellular level, the membrane is the main structural component that delim-
its internal compartments and the cell from its environment. Membranes are
essentially involved in many reactions taking place inside different compart-
ments of a cell, and they act as selective channels of communication between
different regions as well as between the cell and its environment [1].

Although the range of modelling is very broad, there are very few models
addressing the role of membranes and compartments in biological systems.
Notable exceptions are hybrid Petri net model, where a stochastic Petri net
abstraction is extended with an additional layer [25], and Statecharts where
the compartmentalisation is an integral part of the model [19]. In [30], an ex-
tended version of the stochastic 7— calculus, called bioambients, is introduced
in order to provide a better abstraction of compartmentalisation that allows
the study of biological compartments of different granularities, movement of
molecules between compartments, and dynamic rearrangements of compart-
ments and chemical complexes. Another modelling perspective considering
the cell structure with its compartments as a key concept has been introduced
through the P system framework [26]. This model, also called membrane com-
puting, is grounded in formal grammars. Membrane computing formalises es-
sential features of living cells. However, according to its original motivation,
it does not intend to provide a comprehensive and accurate model of the cell
but, rather, to explore the computational nature of biological membranes and
compartments that define a biological cell [26]. Recent developments have been
dedicated to the use of the P system paradigm as a modelling tool for various
biological systems [10].

The P system model that has been developed as an abstraction of the cell
structure and behaviour is intended to be [27]: (i) minimalistic (as elegant
as possible, containing as restricted ingredients as possible), but (ii) without
losing the biological inspiration (hence remaining as “realistic” as possible),
with (iii) good computability properties (as powerful as possible, compared
with standard models of computing — Turing machine and its restrictions, and
as efficient as possible — useful in solving computationally hard problems in



a feasible time). These are contradictory criteria and consequently different
models proposed are focusing only on some of these aspects.

Briefly, the P system model consists of a membrane structure containing sev-
eral membranes arranged in a hierarchical structure inside of a main mem-
brane, called the skin, and delimiting regions. Each region is bounded by a
membrane surrounding it and the immediately inner membranes, if any. The
membranes which do not contain any other membrane inside are called ele-
mentary membranes. A graphical representation of a membrane structure is
given in Figure 1.
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Fig. 1. A membrane structure containing 9 membranes and 9 corresponding regions;
labels are used to uniquely identify each distinct membrane in the system.

A membrane structure can be represented as a tree with nodes representing the
membranes; the root represents the skin membrane and for a given node the
direct descendants correspond to the membranes that are immediately inside
of the membrane associated to that node. The leaves of the tree correspond
to elementary membranes.

Each region contains zero or more objects, each one appearing with a specific
multiplicity. That is, each region, in general, hosts a multiset of objects rather
than a set. As well as this, finite sets of evolution rules are assigned to regions,
which are used to modify the objects associated with these regions. The ob-
jects can also be moved (communicated) between regions. The membranes can
be created, divided, dissolved and their permeability modified. The rules have
a local scope: those assigned to a specific region, inside the system, can be



applied only to the objects and the membranes that exist in that region. The
rules are applied non-deterministically and in a maximally parallel manner
(in one step, all the objects that can evolve and the membranes that can be
transformed must do so). In this way, we get transitions from one configura-
tion of the system to another one. A computation in a P system is a sequence
of transitions. The transition process is supposed to be synchronous: a global
clock is assumed, marking the time units common to all the regions. A com-
putation leading to a configuration where no more rules can be applied to the
objects occurring inside the membranes is called a halting one. Each halting
computation in a P system produces a result, which is typically given by the
number of objects contained inside a well-specified output membrane in the
final configuration. A computation that does not halt, yields no result.

Since this model has been proposed for the first time in 1998 [26], many vari-
ants of P systems have been proposed that retain the basic features discussed
above and essentially differ only by the kind of rules associated with the re-
gions of the system and by the mechanisms used to control the way they are
applied (priority relationships, contextual conditions, variable number of rules
etc). Moreover, since many chemical or biological components occurring in var-
ious reactions may have a more complex structure, strings of symbols (string-
objects) rather than simple objects have been considered. This approach recalls
other biologically inspired models acting on strings, Lindenmayer systems [24]
and splicing systems [28]. The study of P systems has been focusing on the
computational power with respect to the notion of Turing computability, or
considering their efficiency in algorithmically solving hard problems, like NP-
complete problems, in a polynomial time. For further details, examples and
other variants we refer to [26]. A comprehensive bibliography of P systems
and further information about membrane computing can be found at the P
systems web page [36].

Besides cell-like P systems, there have been also considered tissue-like and
neural-like systems, inspired by the way cells cooperate in tissues and neural
nets formation [26]. The structure of these systems is represented as a graph.
Its nodes represent the membranes (or cells) and the edges are interpreted
as abstract communication channels. A related notion is that of population P
systems [4]. From a biological point of view, a population P systems model is
an abstraction of the way populations of bio-units aggregate and function as a
bio-entity that is more complex than its component parts. The biological sys-
tems are composed of many individual components that interact and cooperate
with each other as well as with an environment. Most of the time these com-
plex systems will have a dynamic structure, with new individuals joining the
system, others leaving it, with dynamically established inter-relationships. The
population P systems model addresses features which are common to many
different biological systems from the molecular level to the case of colonies of
more complex organisms. A similar modelling perspective has been expressed



by using agent based approaches. For instance, intracellular protein interac-
tions are described in [12] as individual and autonomous agents capable of
mediating the cell responses to external signalling through a complex network
of interactions where information is processed in a distributed and parallel way.
Agent-based approaches are also used in [34] to model tissues and in [17], [16]
to model ant colonies. In fact, in formal language theory, the aforementioned
idea of agents is not new as it has already been considered in grammar sys-
tems [8], [9] where languages are generated through the cooperation between
different string-processing components. More recently, a concept of P colony
has been introduced as a combination of the eco-grammar paradigm and the
P systems approach [20], [13].

In a variant of population P systems that has been studied, the underlying
graph is being continuously modified [4]. After each step of transformation-
communication, according to a specific set of bond making rules, new edges
are added to or old ones are removed from the graph defining the current
structure of the system. A transformation-communication step involves rules
modifying the objects and communicating them from one membrane (cell)
to another. In particular, communication rules are inspired by the general
mechanism of cell communication based on signals and receptors and they are
presented with a formalism related to the notion of boundary rules [5]. As
well as this, cell division rules for duplicating the existing cells in the system,
cell differentiation rules for changing the type of the cells, and cell death rules
for removing cells from the system, can also be applied in a transformation-
communication step. Moreover, another important feature of the model is the
notion of environment as a repository of objects that are sent out from the
cells. The objects in the environment can subsequently re-enter the cells, and
this provides a form of indirect communication between cells.

The power of population P systems has been investigated by considering differ-
ent restrictions: when the structure of the underlying graph cannot be modified
by any rule or when only the edges of the graph can be modified by using a
finite set of bond making rules or when both the edges and the nodes in the
graph can be modified by allowing cell division, cell differentiation, and cell
death rules. In the former case, the main result obtained shows the universal-
ity for completely unstructured P systems where cells can communicate only
indirectly by means of the environment without ever forming any bond. Next,
when bond making rules are considered, the population P systems model is
computationally complete even when simple communication rules that move
objects from a cell to another one without any restriction are used. It is also
proved that the population P systems model using only the operation of cell
differentiation is again computationally complete. Another universality result
is obtained for population P systems where cell division and bond making
rules are allowed [4].



Recently, population P systems with boundary rules that are applied with
a limited parallelism have been considered and a framework of a formal se-
mantics similar to the operational style presented in [3] has been defined [6].
P systems with boundary rules and limited parallelism [29] and population
P systems [33] have been considered in modelling quorum sensing (QS) in
bacteria.

QS is a widely used strategy for behavioural coordination among bacteria. It
is important to notice that the process of coordinated gene-expression (and
hence phenotypic change) in bacteria is best understood by noticing that only
by pooling together the activity of a quorum of cells can a colony be suc-
cessfull. The QS mechanism is a communication strategy based on diffusible
signals, which kick-in under high cellular density. In particular, it is generally
observed that, when a QS process is activated, the concentration of the signal
molecules reflects the number of cells in the colony, or at least the number of
cells in a particular physiological state. Bacteria can then respond to variations
of the concentration of signal molecules and, when this value exceeds a spe-
cific threshold limit that indicates the population is “quorated”, they start to
behave in a coordinated way (i.e., they “sense” that the quorum necessary to
take a collective decision has been reached). This behavioural shift is possible
because QS changes the gene expression of a bacterium’s DNA by triggering
a cascade of transcriptional activity through the activation of several genes.

The use of the P system approach in the context of QS has shown that although
the variants considered seem to be quite appropriate as abstract models for
cell-to-cell communication, there are aspects that are yet not captured. The
fact that the environment has a limited capacity and the bacteria communicate
locally, the signalling process has various intensities depending on the status
of the colony, are some of the aspects that have not been addressed in the
previous variants of the model and that constitute the focus of the current
investigation.

In this paper we discuss a new class of population P systems inspired by QS
mechanisms in bacterial colonies and investigate the power of it. We also briefly
present a model of quorum sensing in Vibrio fischeri bacteria by using the
current theoretic approach. We show that we can model at least the aspects
provided in [29], but we are also able to approach problems regarding the
finiteness of the environment (components) and local interactions between
bacteria.



2 Preliminaries

We here recall some basic notions and notations commonly used in membrane
computing and in formal language theory that we need in the rest of the paper.
We refer to [26], [31] for further details.

An alphabet is a finite non-empty set of abstract symbols. Given an alpha-
bet V, we denote by V* the set of all possible strings over V, including the
empty string A. The length of a string x € V* is denoted by |z| and, for
each a € V, |z|, denotes the number of occurrences of the symbol a in z. A
multiset over V' is a mapping M : V — N such that, M(a) denotes the
multiplicity of a in the multiset M (N denotes the set of natural numbers).
Such a multiset can be represented by a string af/[(‘“) aéw(‘”) G
and by all its permutations with a; € V, M(a;) # 0, 1 < j < n. In other
words, we can say that each string x € V* identifies a finite multiset over V'
defined by M, = { (a, |z|,) | @ € V' }. Moreover, given two strings z,y € V*, we
denote by zy their catenation, which corresponds to the union of the multiset
represented by string z and the multiset represented by string y.

In the following proofs we will use the notion of a counter machine in the
form considered in [14]. Informally, a counter machine is a finite state ma-
chine that has a finite number of counters able to store values represented by
natural numbers; the machine runs a program consisting of instructions that
can increase or decrease by one the contents of the registers or can test them
for zero, changing in the same time the state of the machine; starting with
each counter being empty, the machine performs a computation; if it reaches
a terminal state, then a vector corresponding to the values stored in some
specified counters is said to be generated during this computation.

Definition 1 A counter machine is a construct
M= (Qa Fap()aAaOaI)a
where:

(1) Q is the set of states,

(2) F C Q is the set of final states,

(8) po € Q is the initial state,

(4) A is the set of counters,

(5) O = (c1,...,c) with ¢; € A, for all 1 < i < k, is an ordered tuple of
outpul counters,

(6) I is a finite set of instructions of the following forms:
(a) (p — q,+c), with p,q € Q, ¢ € A: add 1 to the value of the counter

¢ and mowve from state p into state q;

(b) (p— q,—c), withp,q € Q, c € A: if the current value of the counter



¢ 1s not zero, then subtract 1 from the value of the counter ¢ and
move from state p into state q; otherwise the computation is blocked
i state p;

(c) (p — ¢q,c = 0), with p,q € Q, ¢ € A: if the current value of the
counter c 1s zero, then mowve from state p into state q; otherwise the
computation is blocked in state p;

(d) (p — q,€), with p,q € Q: move from state p into state q without
changing the value of any counter.

A transition step in such a counter machine consists in updating/checking the
value of a counter according to an instruction of one of the types presented
above and moving from a state to another one. Starting with the number zero
stored in each counter, we say that the counter machine computes the vector
(nq,...,ng) if and only if, O = (cy,...,c) and, by starting from the initial
state, the machine reaches a final state after a finite sequence of transitions
by having produced the value n; inside every counter ¢; with 1 < ¢ < k.
Without loss of generality, we may assume that in the end of the computation
the machine makes zero all the counters but the output ones, and that there
are no transitions that start from a final state. From a computational point of
view, counter machines are proved to be equivalent to Turing machines [15],
and we will make below an essential use of this result. Specifically, every family
NERE of sets of vectors of size £ > 1 can be generated by counter machines
equipped with £ + 2 counters. A counter machine is said to be partially blind
if it does not use the operation of testing the register for zero. As reported in
[14], partially blind counter machines are known to be strictly less powerful
than counter machines. We denote by N*PBC,,, for n > k > 1, the families
of sets of vectors of size k generated by partially blind counter machines with
at most n counters but exactly k£ output counters.

3 QS P systems

Here, we introduce a class of P systems, called QS P Systems, which are
inspired by QS mechanisms occurring in bacterial colonies. In this respect,
we abstract from a number of underlying biological mechanisms by focusing
only on the process of consuming/producing signals, which can then be moved
from a cell to another one by means of diffusion through an environment. More
precisely, QS P systems are defined as a variant of the notion of population
P systems introduced in [4], by considering a colony of bacteria as being a
population of cells interacting with each other by means of a common shared
environment partitioned into different sub-regions. Such a multi-environment
model is motivated by an observation made in [35] about the existence of a
“barrier” on the diffusion of signal molecules, which tend to remain confined to
some particular micro-habitat. This feature allows QS to convey information



about the physiological state of spatially separated sub-populations. More-
over, a multi-environment model can capture the idea of an environment as
a non-homogeneous medium of communication characterised by bio-chemical
properties that vary from one sub-region to another one.

Thus QS P systems are defined by assuming the following behaviour of the
cells composing the population and the local environments:

e a cell can store a natural number s > 0, which can become arbitrarily
large and which represents the number of signal molecules currently present
inside the cell; we are here only interested in the “concentration” of the
signal molecules and how they diffuse between a cell and the environment;
this is why we do not distinguish between different signal molecules but we
assume all these signal molecules to be of the same sort and we just count
them by means of the value s;

e a cell can store at most one symbol from a given alphabet Q, which repre-
sents the particular physiological state of the cell; we in fact call the alphabet
Q the set of states;

e a cell, depending on the value s, can change its state and simultaneously
consume some signal molecules in order to produce some new ones inside
the cell and/or release more signal molecules into a given environment;
this operation is meant to model the response of the cell to variations on
the concentration of signal molecules inside, and it is modelled in terms of
consumption/production/release of signal molecules;

e an environment can store a natural number t > 1, which cannot exceed a
given capacity, and which represents the number of signal molecules cur-
rently present in that environment; environments are in fact considered as
being passive repositories for signal molecules that act as finite buffers for
communication between cells;

e finite amounts of signal molecules can diffuse from an environment to a
certain cell depending on the values s and t¢.

Therefore, in QS P systems, cells can interact only through some finite environ-
ment components by exchanging numerical values representing finite amounts
of signal molecules. Formally, a QS P system is introduced by the following
definition.

Definition 2 A QS P system is a construct
P=(Q,C,Cy...,Ch,E\,Es,...,E,, R O)

where:

(1) Q is a finite set of states;

(2) Ci = (g, $:), for each 1 < i <, is a cell with ¢; € Q the initial state of
the cell, and s; > 0 the initial value stored by the cell;



(8) E; = (¢, t;), for each 1 < i <, is an environment with ¢; > 0 the ca-
pacity of the environment, and 0 < t; < ¢; the initial value stored by the
environment;

(4) R is a finite set of rules of the following forms:

(a) (g,8); = (¢',8");, withl <i<mn,q,q¢ €Qands,s >0 (transformation
rules),

(b) (q,s)ill; = (¢,8)ils"];, with1 < i <n,1<j<m,qq¢ €Q,
s,5,8" >0, and s" < ¢; (releasing rules),

(c) (s)ilt]; = (")ilt']j, with1 <i<mn,1<j<m,s,s>0,¢>tt>0
and s+t = s’ + t'(diffusion rules);

(5) O = (o01,...,0%) with o; € {1,2,...,n}, for all 1 < i <k, is an ordered
tuple of output cells.

Therefore, a QS P system is defined as a collection of n > 1 cells and m > 1
environments. A cell C;, with 1 < ¢ < n, is characterised by a state, initially
gi, (the configuration of chemical elements belonging to C;) and by a natural
number, initially s;, (the number of signal molecules present inside C;). An
environment F;, 1 < j < m, can instead store only a natural number, initially
equal to ¢;, which can never exceed the capacity of the environment given by
c;- In the rest of the paper, we will refer to cell C; and environment E; by just
using the expressions “cell 2”7 and “environment j”.

A finite set of rules R is then considered which can contain three different types
of rules: transformation rules, releasing rules and diffusion rules. A transfor-
mation rule of the form (q,s); — (¢/,8)s, with 1 < i < n, ¢,¢' € @ and
s,s' > 0, specifies that cell 7 can change its state from ¢ to ¢’ by consum-
ing s occurrences of signal molecules and producing s'. This corresponds to
subtracting s from the value currently stored in cell 7 and adding s’ to the
same value. Therefore, such a rule can be applied inside cell ¢ if and only
if this cell contains at least s signal molecules. A releasing rule of the form
(g,s)ill; = (¢',8")i[s"];, with 1 < i< n, 1 <j<m,qq €Q,ss,s">0
and s” < ¢;, specifies that a cell 7 can change its state from state g to state
¢' by consuming s occurrences of the signal molecule and producing s’ inside
cell 7 and s” occurrences of the signal molecule in the environment j. Such a
rule can be applied if and only if, cell 7 contains at least s signal molecules.
A diffusion rule of the form (s);[t]; — (s')[t'];, with 1 < i <n,1<j <m,
5,8/ >0,¢c; >ttt >0and s+t=s"+1, specifies that if s > s’ (s < &) then
s — &' (s’ — s) occurrences of the signal molecule can be moved from cell i to
environment j (environment j to cell 7) provided that cell 7 contains at least
s signal molecules and environment j contains at least ¢ signal molecules.

Notice that we adopt the convention of representing a cell as a pair of round
parentheses and an environment as a pair of square brackets. The set of rules
in R implicitly defines the structure of the system by determining the con-
nections that exist between the cells and the environments in the system.
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Specifically we say that an environment j, with 1 < j < m, is local to (or
contains) a cell 7, with 1 < ¢ < n, if and only if there is a rule in R containing
on its left-side the pair cell 7, environment j, which is either a releasing rule or
a diffusion rule; if that is the case then, we also say that cell i is connected to
environment 7. Thus, in our model, the same cell can be connected to many
different environments, but there cannot be any direct connection neither be-
tween two different cells nor between two different environments. Specifically,
each environment can be used as a buffer of communication to convey infor-
mation between the cells connected to that environment, whereas each cell
can be used as a buffer of communication to convey information between the
environments which are local to that cell.

Let P = (Q,C1,Cyy...,Cp,E1,Ey, ..., Ey, R,0) be a QS P system as speci-
fied in Definition 2; a configuration of P, at moment 7 is a tuple:

¥ ={(Cc1,Cs,...,Cr E[,E],...,E")
where, for each 1 < i < n, we have C] = (q7, s7), for some ¢] € Q and s] > 0,
and, for each 1 < j < m, E] = (c;,t7), for some ¢; > s] > 0. The initial
configuration of P is

O =(C?,CY,....,C°EY ES. ... E°)

where Cf = Cj, 1 <4 < nand E) = E;; 1 < j < m. A QS P system
operates in a parallel mode. Specifically, given two configurations X7, X7+ of
the QS P system P, we say that P goes, in one step, from configuration 37 to
configuration ¥t in a parallel way, and we write ¥™ = %71, if and only if,
Y.7+1 is obtained from X7 by applying in parallel a rule, non deterministically
chosen, per each cell in the system. That is:

e all the cells that can evolve by means of at least one rule must evolve in
parallel at the same time within the same transition step;

e at most one rule per each cell can be used to modify the content of a cell
within the same transition step;

e the content of an environment j, with 1 < j < h, can be modified by differ-
ent releasing and diffusion rules, which may be applied in parallel to different
cells connected to the environment j; these rules must be selected such as
to make sure that, after their use, the value stored by this environment will
be at least zero and no larger than the capacity c;.

Thus, according to this parallel mode, different cells can simultaneously oper-
ate on the same local environment within the same transition step, but each
one of them can be involved in the application of at most one rule at a time,
which can be either a transformation rule, or a releasing rule, or a diffusion
rule.
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A computation is then defined as being a sequence of transitions. Such a
computation is said to be successful if it reaches a configuration X/ such that:

Ef = <(q{7 8{){7 ) (q£7 85)7{7 E1f7 E2f7 ) ET{’L)

and there are no more rules which can be applied to any cell 7, with 1 <1 < n,
or to any environment j, with 1 < j < m. If O = (oy,...,0), then the result
of such a computation is the vector (sgl, cen sgk) where, for all 1 <i <k, S£¢
is the value stored inside the output cell o; in the configuration ;. The set

of all vectors of size k generated by the QS P system P is denoted by N*(P).

4 Main Results

In this section, we investigate the computational power of QS P systems. To
this aim, we introduce the families of vectors N*QSP, ,,,(6,0), withn > k > 0,
m > 0,0 > 0, 0 > 0, generated by QS P systems with at most n cells, but
exactly k output cells, and at most m environments, where the capacity of
every environment is at most d and the cardinality of the set of states is

at most 0. As usual, these values are replaced by * whenever they are not
bounded.

The first obvious result concerns the power of QS P systems where there is
one single cell and there is no environment to interact with.

Lemma 3 N'QSP4(0,%) = NREG.

It is in fact easy to see that QS P systems with one cell and no environments
are no more than regular grammars over one-letter alphabets and, vice versa,
that every regular grammar over one-letter alphabet can be simulated by a
QS P systems with one cell.

Next, QS P systems with a greater number of cells are proved to be equiva-
lent to counter machines. This is done by firstly showing that partially blind
counter machines can be simulated by QS P systems consisting of a popula-
tion of cells which interact with each other by means of a single environment.
Specifically, for a partially blind counter machine with n counters it is shown
that the number of cells in the population is n + 2 and the environment’s
capacity can be bounded by 3n + 2.

Theorem 4 N*PBC, C N*¥QSP, 5,(3n +2,%), for alln >k > 2.

PROOF. Let M = (Q, F,po, A,O,I) be a partially blind counter machine
as specified in Section 2 where A = {c1,¢g,...,¢,} and O = (c,, - .., ¢, ) for
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some n > k > 1. In order to simulate such a counter machine, we define a QS
P system P such that

P = (QIJ Cla CQ: R Cn7 Cn—l—l; Cn-l-?a El, R’ O)
where:

C;=($,0), forall 1 <i<mn,

C'fH—l = (p07 0)7
Cn+2 = ($a O)a
E1 = (277, + 2, 0),

R={(p,0)n1[l: — (thao)nﬂ[hﬂl |p—q,+a)el, 1 <i<n}

)n+1[]1 - (qh;ao)nﬂ[h;h ‘ (p —q, _Ci) €cl,1<:1< n}

Jat1 = (4,0)ns1|(p—q6) €,1<i<n}

il = (ilhf =1 [1<i<n}

ilhi L — (0)i[hy +11]1<i<n}

niilhi =11 = (B = Dp[0h |1 <i <}

nt1lhi + 1 = (A7 + D0l [1 <i<n}

nt2[1]1 = (1)as2[0]1, (8, Dny2 = (F,0)nya}

U {(ans, b = D1 = (¢,0)nr1 [ € Q1 < i <m}
Ont1]ge@,1<i<n}

0
0

e N N N N v

G St — F 0)ns1|¢€Q,1<i<n1<s<hy +1}
U{(#,0); = (#,0)i|n+1<i<n+2},
O:(Ol,...,Ok),

with A =2i+ 1, for each 1 <4 <mand h; =2n+1+14, for each 1 <7 < m;
hi and h; are built such that hf < hy <...ht <hy <hy; <...h,.

Thus, the QS P system P simulates the counter machine M by using cell
n + 1 to control the correct execution of a sequence of instructions from I.
Cell n 4+ 1 contains in fact the state of the machine M and it produces in
the environment either a value h;" or a value h; in order to either increase or
decrease the value of register 7, for some 1 <4 < n, which is kept inside cell i.

Specifically, let (p — ¢, +¢;) be an instruction from I and let p be the current
state of the machine M. The state p is supposed to be contained inside cell
n + 1 where, in order to simulate the aforementioned instruction, we produce
the value h;", which is immediately sent to the environment, and we introduce
the state g,+. Next, we can apply the rule (0);[h ] — (1)i[h — 1]1, which
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increases by 1 the value stored inside cell ¢ corresponding to the value of
register ¢;. Then, the value h;” — 1 can diffuse back into cell n + 1 where we
can use the rule (g,+,h — 1)u51 — (¢,0),41 to complete the simulation of

the current instruction. Let us consider that k], h] — 1 are taken by wrong
targets. If h; is taken by some cells j, 7 < i then the only way to finish the
computation is to iteratively transform it into 0; otherwise cells n + 1 and/or
n + 2 will generate an endless computation. We will show that this chain of
changes transforming h;" into 0 is not possible. Similarly when A — 1 is left
into the environment by cell ¢ it may be also taken (shared) by some cells j,
j < i and we face the same problem of transforming it into 0. Let us denote
by H; either hj or h;” — 1. If H; is taken by cells ji, jx < i, 1 < k < t, i.e.
H; = h}, + ... hj, then they return back into the environment H; — ¢ which is
then taken by other cells 7 until the value will decrease to 0. In this way we
obtain a decreasing sequence of positive values

Hi,p > Hi,p—l >0 > Hi,l >0

where H,, = H; and H,; is the last value before 0. This means H,; is taken
by cells ji, 1 <k <s,ie H;; =h}, +...h}, and

+ + _
hj1_1+...h/js_1—0

and this means h;; =1, 1 < k < s which contradicts the definition of A,
1 <i<n.Soh, hf —1 can not be exhausted by cells 7, j < i.

Now, let (p — ¢, —¢;) be an instruction from I and let p be the current state
of the machine M. The state p is supposed to be contained inside cell n + 1
where, in order to simulate the aforementioned instruction, we produce the
value h;, which is immediately sent to the environment, and we introduce
the state Gp-- Next, if the current value stored inside cell ¢ is greater than
0, we can use the rule (1);[h;]1 — (0);]h; + 1]; in order to decrease by 1
the value stored inside cell 7, which corresponds to the current value of the
register ¢. Then, the value h; + 1 can diffuse back into cell n + 1 where we

can use the rule (th’ h; +1)ns1 — (¢,0),41 to complete the simulation of the
current instruction. If h; , h; + 1 are taken by wrong targets then either the
computation will never stop or, similar to h;", hi — 1, it may be shown that
these values can not be consumed by cells 7, 7 < 1.

An instruction (p — g¢,€) is instead simulated by just applying the rule
(9,0)n41 = (g,0)p+1, which simply introduces the new state inside cell n + 1.

Finally, when a final state is reached, no further rules can be applied inside

cell n+1 and the computation halts by having correctly simulated a sequence
of instructions from . O
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This proof essentially shows how to simulate the operation of increasing and
decreasing the registers of a counter machine by means of a population of
cells interacting with each other by means of an environment with a bounded
capacity. We do not know whether these systems can also simulate the oper-
ation of comparing to 0 or not. However, as shown by the next result, this
latter operation can be simulated by adding some extra cells and some extra
environments. In particular, as we know that the family N*RE, for any k > 1,
can be generated by machines with k£ + 2 counters, we can provide limits on
the number of cells and on the number of environments necessary to generate
each family N*RE by means of QS P systems.

Theorem 5 N*QSPayi61+3(3k +8,%x) = N*RE, for all k > 1.

PROOF. Let r = k+ 2, and let M = (Q, F,po, A, cout, O) be a counter
machine as specified in Section 2 where A = {cy,...,¢,} and O = (co, - . ., Co,)-
From Theorem 4, we know how to simulate all the instructions from I but those
comparing the value of a register to 0. In the case of a counter machine with
r registers, this can be done by constructing a QS P system P such that:

= (Qlu 017 LRI C?"7 C’f-}-l’ C’F+2a E17 R7 0)

with @', Cy,...,C,,Cri1,Cria, R, O as in the proof of Theorem 4, and F; =
(3r +2,0). Here we embed the structure of the QS P system P in another QS
P system P’, which contains all the rules necessary for the simulation of the
operation of comparing the value of a register with 0. Specifically, we consider
the following P system:

PI - (Q”: Cl, ceey Cra Cr+1: CT+2a Cr+3: BRI C2'r+2a El; E2a ceey E’r+1a Rla O)

where:

Q"=Q U{¢"qgeQ,1<i<4},
Cirri2=1(%,0), forall 1 <i<r,
Ei;1=(2,0), forall1 <i<r,
R =R
U{@s 0)rs1llisr = (@9, 0)rpa[Uia | (0 = (IaCz =0)el,1<i<r}
{(@",0)r11 = (4,041, (6%, 0)r11 = (¢, 0)r11 | € QY
{( (3) )r+1 — ( ® 1)r+1a (q(4)’2)r+1 — ( q, )r+1 | q € Q}
{1 )z[ Jirr = (0)i2lipa [1 <o <}
U{(0)isr+2[2]i+1 = (Ditrs2[0lia [ 1S i <1}
{(Vr1[tisr = 2)rna[0fin [1 < i< 1}
{(3,2)itr+2 = (#: 0)itrr2, (#, 0)ivri2 = (#,0)i4r2[1 < i <7 |
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The QS P system P’ simulates the instructions (p — ¢,+¢), (p = ¢, —c),
(p — g,€) from I in the same way as P by using the rules in R. In order
to simulate an instruction (p — ¢,¢; = 0), we have instead to apply a rule
(2, 0)s1[livs — (¢, 0),41[1]i41, which introduces the value 1 in the environ-
ment ¢ + 1, 1 <2 < r. Now, if the value stored in cell 7 is equal to O then,
no rule can be applied to the value 1 stored in the environment 7 + 1 un-
til the state ¢ is produced inside cell  + 1 together with the value 1. At
that point, we can diffuse back into cell r + 1 the value 1 contained in the
environment ¢ + 1. Eventually the new state ¢ is produced by using the rule
(¢™,2),41 — (g,0),41. Otherwise, if the value stored by cell 7 is greater than
0 then, we are forced to apply the rule (1);[1];51 — (0);[2];11, which adds 1 to
the current content of the environment ¢ + 1. Next, since the capacity of the
environment ;+1 is 2, the only applicable rule is (0);1,12[2]i+1 = (2)ir12[0]i1
because the state ¢/* has not yet been produced inside cell 4. Thus, an infinite
computation is generated in the presence of the rules ($,2); 1,12 = (#,0)i1r12,
(#,0)i4r42 = (#,0)i1r42, 1 < i < r. A computation in P’ halts whenever a
final state is produced inside cell r + 1; this corresponds to having correctly
simulated a sequence of instructions by the machine M.

Thus, since r = k + 2, the QS P system P’ has 2r + 2 = 2k + 6 cells and
r+1 = k + 3 environments; the capacity of every environment is bounded by
the value 3r+2=3k+8. O

The complexity parameters considered in the above proof may be improved
by finding a better codification of the values h;, h; . The overall capacity of
the environment can be improved if instead of using one environment for all
hi, h; we use two different environments, one for h; values and another one
for h; values. In the particular case of £ = 1, which is commonly investigated
in the area of membrane computing by considering P systems as systems
generating sets of natural numbers (e.g., see [26]), we obtain the following
values for the number of cells, number of environments, and maximal capacity
of an environment.

Corollary 6 NQSPs4(11,%) = NRE.

The proofs above show how to simulate register machines by using QS P
systems where the cells coordinate each other by exchanging finite amount
of signal molecules. In particular, the “complexity” of such cell-to-cell com-
munication can be bounded by the maximal capacity of the environments.
Moreover, the proofs show how different cells can become active at different
times and how they communicate with each other. In this respect, it is inter-
esting to point out that such cells become active only when the concentration
of signal molecules inside exceeds a certain value thus mimicking the natural
quorum sensing mechanism occurring in bacterial colonies.
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5 Vibrio Fischeri QS model

The QS process is a very general and widely spread communication mecha-
nism in bacteria colonies. In this section we will investigate it for the marine
bacterium Vibrio fischeri.

The QS mechanism in Vibrio fischeri relies on the synthesis, accumulation and
subsequent sensing of a signal molecule, 3-oxo-C6-HSL that will be denoted as
OHHL. This signal molecule, OHHL, is synthesised by the protein Luzl and
sensed by the protein LuzR. When a small number of bacteria is present in a
given environment these proteins and the signal molecule are produced at a
basal rate (low density). OHHL diffuses out of the bacterial cells and spreads
into the surrounding environment where it may accumulate. When the number
of cells increases, the signal accumulates in the environment at a high density
and can also diffuse into bacterial cells. The signal is able to interact with
the LuzR protein to form the complex LuzR-OHHL. This complex binds to
a region of DNA called the luz box causing the transcription of some genes.
Consequently more OHHL is produced. Bacteria sense their cell density by
measuring the amount of signal present.

5.1 Modelling QS in Vibrio Fischer:

Our model of QS in Vibrio fischeri is developed using QS P systems and
considers, apart from the above mentioned characteristics identified by a pre-
vious model based on population P systems [29], a direct codification of the
chemical concentration of signal molecules and multi-environments. These are
important features of the QS mechanisms occurring in bacterial colonies as
the “shape and degree of enclosure of the culture” is potentially a factor in-
fluencing the production of autoinducer concentration [18].

The role of the multi-environment is significant in modelling different colonies
working simultaneously in different states and on various parts of a host or in
simulating processes of chemical degradation.

The rules (abstraction of the chemical reactions) have the following forms:

e cvolution rules (u,m); — (v,n); where u,v, are multisets of objects and
m,n are chemical concentrations in a bacterium cell %;

e sending into an environment compartment (m); — (m — p);[p|; where m is
an initial chemical concentration in a bacterium cell 2 and p is a chemical
concentration released into the environment component j and m — p the
concentration left into 7;

e bringing from an environment component (m);[p|; — (m+ s);[p — s|; where
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m, p are initial chemical concentrations in a bacterium cell 7 and in the com-
ponent environment j, respectively, and s a chemical concentration brought
from the component j into the cell 7.

In what follows we specify the evolution rules in the bacteria and the commu-
nication rules between bacteria and environment components.

Initially, a bacterium produces the signal OHHL at a basal rate. The number
of signal molecules inside is less than a threshold we will denote by 7". The
rule will be

(LuzBox, m)y — (LuzBoz, m + 1),
where m < T'; this shows an increase in signal molecules.

The protein LuzR acts as a receptor and OHHL as its ligand. They can form
a complex, denoted LuzR-OHHL which in turn can dissociate back into its
components.

(LuzR OHHL, m), — (LuzR-OHHL, m),,
(LuzR-OHHL, m), — (LuzR OHHL, m)s.

The complex LuxR-OHHL acts as a transcription factor or as a promotor
binding to a region of the bacterium DNA called LuzrBoz and starting the
transcription of different proteins. The process is also reversible.

(LuzBox LuzR-OHHL, m), — (LuzBoz-LuzR-OHHL, m)s,
(LuzBoz-LuzR-OHHL, m), — (LuzBoz LuzR-OHHL, m)y.

The binding of the complex LuzR-OHHL to the LuzBox produces a massive
increase of the production of the signal OHHL.

(LuzBoz-LuzR-OHHL, T), — (LuzBox LuzR-OHHL, T + p),,p > 1.

OHHL is a small molecule that diffuses outside the bacterium and so it can
accumulate in the environment.

(m)s — (m — p)s[ple,
where p = 1 when m < T and p > 1 otherwise.

The signal molecule OHHL undergoes a process of degradation in the bac-
terium.

(m)s = (m —=1)s.

When the signal molecule accumulates in the environment it can diffuse inside
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the bacteria.

(m)slple = (m + 1)o[p — 1.

The model may be simulated in different ways; either in a nondeterministic
way as most of the P systems do or by associating some kinetic rates to the
rules involved that are proportional to the number of molecules. In the latter
case we will get the model given in [29].

In the current case study we have considered, similar to [29], the behaviour of
a system with a population of 300 bacteria. The signal molecules OHHL are
traced down both in the environment Fig. 2 (b) and inside the colony Fig. 2
(a) (an average concentration across the colony has been considered) [29].

TR 'M':W-\‘N"“t “{‘,p‘” Jld
,.meam;ﬁwu.;w.w» T
i

Fig. 2. (a) Evolution of bacteria. (b) Evolution of the environment

It may be observed that the signal, OHHL, accumulates in the environment
until saturation and then, when the threshold is reached, bacteria are able to
detect that the size of the population is big enough. Initially, a few bacteria
are quorated and then the process of recruitment accelerates and the colony
behaves in a coordinated way. It may be noted that there is a correlation be-
tween the number of signals in the environment and the number of quorated
bacteria as well as between the concentration of signal molecules in the envi-
ronment and inside the bacteria (as it shows the average concentration across
the colony). There is also a strong correlation between the signal OHHL, the
protein LuzR and the complex LuzR-OHHL.

These results are obtained by using both the P systems approach in [29] and
the current approach based on QS P systems. In the current framework we
can also model local interactions, by considering local environments connected
to a part of the colony, movement of the bacterium cells, as well as consid-
ering different properties for the environment components like permeability,
degradation rate etc.
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6 Conclusions

The model investigated in this paper, called QS P systems, draws its inspira-
tion from the natural quorum sensing mechanism in bacterial colonies. It is
proved that the model is powerful enough to simulate counter machines.

The model is not “another variant” of a computational paradigm - in this case
P systems, as it draws its roots from a very well-studied biological mechanism
and it abstracts in some of the proofs the very specific behaviour of the nat-
ural quorum sensing mechanism. More than this, we return back to biology
and show that this model may be used to specify the behaviour of bacterial
colonies. A tool has been built that helps us to simulate such models [29].

A number of questions remain open after this initial attempt to introduce
the model. It is almost certain that the complexity values associated to the
parameters introduced in our proofs - number of cells and environments, and
capacities, are not optimal. So, what about the optimal results? In our def-
initions we have made use of some “contexts” - number of signal molecules
existing simultaneously in some cells and environments. To what extent is
it possible to get rid of them? All the connections established between cells
and environments are fixed. It will be of interest to consider models with a
dynamic structure of the system in the sense of [4].

More challenging and interesting remain the questions related to the model’s
potential in specifying biological mechanisms. How suitable is it to thoroughly
model natural quorum sensing? How to make it available to biologists, as it
claims that it uses inspiration from nature? What else do we have to add to
it to make it useful and powerful as a modelling paradigm?
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