
Computational Systems Biology

Paola Quaglia

University of Trento and CoSBi

• Deterministic chemical kinetics

• Stochastic chemical kinetics

• Simulation: Gillespie’s direct method

Agenda

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

• Simulation: Gillespie’s direct method

• BlenX: a language for modelling system dynamics with a
stochastic run-time support for simulation

Chemical kinetics: reactions

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

n1 Y1 + ... + nj Yj m1 X1 + ... + mk Xk

Reactions: terminology

Reactants

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

n1 Y1 + ... + nj Yj m1 X1 + ... + mk Xk

Reactions: terminology

Reactants Products

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

n1 Y1 + ... + nj Yj m1 X1 + ... + mk Xk

Reactions: terminology

Reactants Products

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

n1 Y1 + ... + nj Yj m1 X1 + ... + mk Xk

Stoichiometries

Assume we have:

• a well-stirred and fixed volume V in thermal equilibrium;

• N chemical species, each with an initial number of
molecules;

• M reactions through which the species can interact.

General question:

Deterministic approach

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

General question:

Which will be the population levels of species after a period of
time?

The deterministic approach assumes that the number of
molecules of the i-th species at time t can be represented
by a continuous function Xi(t):

dXi/dt = f(X1(t), ..., XN(t))

Lotka-Volterra prey-predator eco-system

Example

Y 2Y

Y + R 2R

R Ø

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Y represents the preY, and R the predatoR

1. prey reproduction
2. predator reproduction, favoured by feeding on preys
3. predator natural death

Deterministic formulation:

Time evolution is a wholly predictable process, governed by a

set of coupled ODEs.

In many cases time evolution can be treated as a

deterministic and continuous process with an acceptable

Deterministic formulation

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

degree of accuracy, however:

• Deterministic modelling of a biological system requires the
precise knowledge of molecular dynamics (precise position
and velocity of each molecule). At higher level (when less
details are known), the evolution is intrinsically stochastic.

• Time evolution is not really a continuous process:
population levels can change only in a discrete way.

Stochastic formulation:

Time evolution is a random-walk process, governed by a

single stochastic differential equation (master equation).

The stochastic formulation has a firmer physical kinetic basis

Stochastic formulation

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

than the deterministic formulation, and is especially relevant

when dealing with low concentrations.

The stochastic master equation, though, is very often

mathematically intractable.

It is a computational method (an algorithm) which takes

explicit account of the fact that time evolution of spatially

homogeneous systems is a discrete (vs. continuous)

stochastic (vs. deterministic) process and offers an

applicable alternative to the solution of the master equation.

Gillespie’s Direct Method

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

References:

• D. T. Gillespie, J. Comput. Phys., vol. 22, 1976.

• D. T. Gillespie, J. Physical Chemistry, vol. 81, 1977.

The method is implemented to answer the

General question:

If N species can interact through one of M reactions in a fixed

volume, which will be the population levels of species after a

Gillespie’s Direct Method (ctd.)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

period of time?

The algorithm generates a trajectory of the evolution of the

systems: it calculates which reaction will occur next and

when it will occur.

Underlying physics:

• reactions are collisions

• molecules are randomly and uniformly distributed in the
volume (assuming the system be in thermal equilibrium)

From this Gillespie argues that, although one cannot rigorously

compute the number of collisions occurring in V between

Gillespie’s Direct Method (ctd.)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

compute the number of collisions occurring in V between

molecules of two given species, it is possible to precisely

compute the probability of such collision occurring in any

infinitesimal time interval.

Then the key point of the method is:

using reaction probability per unit time instead of

rate constants.

Given M reactions R1, ..., RM, there exist M constants, which
only depend on the physical properties of the involved
molecules and on the temperature of the system, such that:

cj dt = average probability that a particular combination

of Rj reactants will react in the next infinitesimal

time interval dt.

Gillespie’s Direct Method (ctd.)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Why “average”?

hj= number of distinct Rj molecular reactant combinations in V

at time t.

cjhj dt is the probability that an Rj reaction will occur in

the next infinitesimal time interval (t, t + dt).

Computing hj is not hard:

First order reactions:

Y ... h = |Y|

Gillespie’s Direct Method (ctd.)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Y ... h = |Y|

Second order reactions:

X + Y ... h = |X| |Y|

2 X ... h = |X| (|X|-1)/2

At time T, what we need to know to implement the next

simulation step is:

• when the next reaction will occur,

• which kind of reaction it will be.

This is a probabilistic information given by:

Gillespie’s Direct Method (ctd.)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

P(t,j) dt = probability that at time t the next reaction will
be a Rj reaction and will occur in the

infinitesimal interval (T+t,T+t+dt)

= P(t,j) dt = aj exp(-a0 t) (t ≥ 0)

where aj = cj hj and a0 = Σ j=1..M aj

Simulation algorithm

Initialization (set the values cj and the population levels)

Compute a0 = Σ j=1..M aj

Generate two random numbers n1,n2 in [0,1] and compute
• t = (1/a0) ln (1/n1)
• j such that Σk=1..j-1 aj < n2 a0 ≤ Σ k=1..j aj

Adjust population levels according to Rj and set T=T+t
then iterate from step 2

Stochastic process calculi:

formal languages for interacting processes

Basic ingredients:

1. a set of elementary actions with associated rate values
(meaning that the delay of the corresponding activity is a

Applying Gillespie’s method in process calculi

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

(meaning that the delay of the corresponding activity is a
random variable with an exponential distribution)

2. a limited set of operators to specify (at least):

- the temporal ordering of actions

- possible coordination/interaction between actions

These formalisms are:

• scalable (to describe phenomena from biochemistry up to
populations of cells);

• amenable to computer execution (analysis and/or
simulation)

Applying the method in process calculi (ctd)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

A very good point:

These calculi come with an operational semantics that

ease the representation of process behaviours as graphs.

Example: biochemical stochastic pi-calculus
(Priami, Regev, Silverman, Shapiro, 2001)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

more examples:
BioAmbients, Brane Calculi, Core Formal Biology, Beta-binders, Bio-PEPA, ...

• Deterministic chemical kinetics

• Stochastic chemical kinetics

• Simulation: Gillespie’s direct method

Agenda

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

• Simulation: Gillespie’s direct method

• BlenX: a language for modelling system dynamics with a
stochastic run-time support for simulation

BlenX is the kernel of a programming language based on

Beta-binders (Priami and Quaglia, 2004).

In turn, BlenX is the core of CoSBi Lab.

BlenX

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

http://www.cosbi.eu

Compiler

Public
Data Bases

Literature

BlenX program

BlenX VL

CoSBi Lab

supports both

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

BWB
plotter MC SBML

Run-time environment

Sim CTMC React

supports both
Gillespies’s simulations and

spatial diffusion

visual, Markov chain, and
SBML export

CompilerP-Systems
Simulator

Concentration
Time courses

Kinetic
Inference

Public
Data Bases

Literature

BlenX program

BlenX VL

CoSBi Lab

inference of
quantitative
parameters

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

BWB
plotter MC SBML

Run-time environment

Sim CTMC React

Simulator

CompilerP-Systems
Simulator

Concentration
Time courses

Kinetic
Inference

Public
Data Bases

Literature

BlenX program

BlenX VL

CoSBi Lab

statistical
analysis and
visualization

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

BWB
plotter MC SBML

Run-time environment

Sim CTMC React

Simulator

Statistical
Analysis

Internal
Representation

Graphical
Network
Inspector

Boxes with typed interaction sites

Main ingredients of BlenX

PP

x,A y,B z,C

Interfaces

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Internal process

PP

• interaction between two boxes is allowed over “affine” interfaces,
and is based on a race condition

• complexation of two boxes is driven by the affinity of the relevant
sites

Biological entities
(mRNA, protein, ...)

Boxes

Interaction capabilities
(protein domains, ...)

Box interaction sites
&
Communication

Interaction potentials Affinity of interaction sites

Biological interactions

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Interaction potentials Affinity of interaction sites

Complexation Linking boxes together into
graphs

Decomplexation Removing edges from graphs

[steps = 150000]

let Y : bproc = #(y,DY)

[nil];

let R : bproc = #(r,DR)

[nil];

A simple program

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

let YR : bproc = #(yr,DYR)

[nil];

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

run 1000 Y || 1000 R || 0 YR

[steps = 150000]

let Y : bproc = #(y,DY)

[nil];

let R : bproc = #(r,DR)

[nil];

A simple program: structure of file.prog

Preamble

Declarations

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

let YR : bproc = #(yr,DYR)

[nil];

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

run 1000 Y || 1000 R || 0 YR

Declarations

Directives

[steps = 150000]

let Y : bproc = #(y,DY)

[nil];

let R : bproc = #(r,DR)

[nil];

A simple program: preamble

Simulation information

[STEPS = 10000]
[TIME = 70]
[STEPS = 7, DELTA = 10]

Global stochastic rates

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

let YR : bproc = #(yr,DYR)

[nil];

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

run 1000 Y || 1000 R || 0 YR

<<
BASERATE : inf,

>>

[steps = 150000]

let Y : bproc = #(y,DY)

[nil];

let R : bproc = #(r,DR)

[nil];

A simple program: box declaration

nilnil

y, DYy, DY

nilnil

r, DRr, DR

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

let YR : bproc = #(yr,DYR)

[nil];

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

run 1000 Y || 1000 R || 0 YR

nilnil

yr, DYRyr, DYR

nil is the simplest internal process

[steps = 150000]

let Y : bproc = #(y,DY)

[nil];

let R : bproc = #(r,DR)

[nil];

A simple program: events declaration

Events (split, join, delete)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

let YR : bproc = #(yr,DYR)

[nil];

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

run 1000 Y || 1000 R || 0 YR

Events (split, join, delete)

with associated rates

Lotka-Volterra, computationally

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Lotka-Volterra, computationally

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Simulation run

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Communication primitives for both

• interactions between boxes, and

• interaction between parallel sub-processes within the same
box

Binding and unbinding of boxes

More than events

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

For each model:

√ file.prog

file.types

[steps = 150000]

let Y : bproc = #(y,DY)

[nil];

let R : bproc = #(r,DR)

[nil];

Binding and unbinding: file.types

{

DY,

DR,

DYR

}

%%

{

(DY,DR,0,0,0)

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

let YR : bproc = #(yr,DYR)

[nil];

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

run 1000 Y || 1000 R || 0 YR

(DY,DR,0,0,0)

}

no binding (nor subsequent
unbinding) is allowed
between Y and R

Binding and unbinding: simple example

[steps = 150000]

let Y : bproc = #(y,DY)

[nil];

let R : bproc = #(r,DR)

[nil];

{

DY,

DR,

DYR

}

%%

{

(DY,DR,3,2,0)

}

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

nilnil

y, DYy, DY

nilnil

r, DRr, DR

let YR : bproc = #(yr,DYR)

[nil];

when (Y: : 10) split(Y,Y);

when (Y,R : : 0.01) join (YR);

when (YR : : inf) split(R,R);

when (R: : 10) delete;

run 1000 Y || 1000 R || 0 YR

}

√ Events

√ Boxes

Declarations in file.prog

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Internal processes

Interface management:

Internal processes

x, DXx, DX y, DYy, DY z, DZz, DZ

Interaction management:

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Interface management:

change (x, DX)

expose (w, DW)

hide (y)

Interaction management:

x!<value>. P

z?(parameter). P

u!<value>. P

u?(parameter). P

P | Q

P + Q

if condition then P

Value-passing

y!<3>.nily!<3>.nil

y, DYy, DY

r?(p).if p>1 then Pr?(p).if p>1 then P

r, DRr, DR

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

nilnil

y, DYy, DY

if 3>1 then Pif 3>1 then P

r, DRr, DR

Filaments are generated from an initial feed.

Filaments can branch by complexation with ARP molecules.

A minimum distance between adjacent branches is always
granted by a specific interaction protocol.

Actin polymerization

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

by Roberto Larcher

Seeds:

Other elements:

Actin polymerization

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Protocol to control proximity of branches

Actin polymerization

distance is:

1 21

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

1 21

Polymerization computationally

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Plant Bioinformatics, Systems and Synthetic Biology Summer School, Nottingham, July 2009

Thanks!

