Within Structural Bioinformatics

Plant Bioinformatics, Systems and Synthetic Biology Summer School University of Nottingham, UK July 2009

Eran Eyal Cancer Research Center Sheba Medical Center Tel Hashomer Israel

1

Structural Bioinformatics

- Databases of 3D structures of macromolecules
- Structural alignment
- Structural classification
- Secondary structure prediction
- Tertiary structure prediction
- Molecular docking
- Dynamics

The structural data – where, what

Description of the databases

How to explore and query the data

Source of the data

Quality of the data

3

Databases

- Structural alignment
- •Structural classification
- •Secondary structure prediction •Tertiary structure prediction
- Tertiary structure plant
 Molecular docking
- •Visualization
- •Dynamics

http://www.wwpdb.org// http://www.rcsb.org/

The PDB database is the main repository for the processing and distribution of 3-D biological macromolecular structures

Source of data:

Crystal structuresNMR modelsOther

PDB Current Holdings Breakdown

		Proteins	Nucleic Acids	Protein/NA Complexes	Other	Total
	X-ray	47314	1157	2177	17	50665
	NMR	6946	868	147	6	7967
Exp.	Electron Microscopy	171	16	61	0	248
Method	Hybrid	14	1	1	1	17
	Other	113	4	4	9	130
	Total	54558	2046	2390	33	59027

Data Source

X-Ray Crystallography

Coordinates of atoms in protein molecule

Human thioredoxin structure determined by X-ray and NMR

NMR (pdb 3trx)

superimposition

9

X-ray crystallography

Good

NMR

Atomic resolution

Hydrogen

Molecule size

Dynamics

Membrane proteins

Procedure

Rarely determined No restriction Snapshot Problematic long Reasonable

Determined

Small proteins

Multi models

Problematic

long

File Format

Tender ImmunocLOBULIN 25-0CT-96 11GT COMPND MOLECULE: IGC2A INTACT ANTIBODY - MAB231; SOURCE MOLESCULES; IGC2A INTACT ANTIBODY - MAB231; KEVINS INTACT IMMUNOCLOBULIN V REGION C REGION, IMMUNOCLOBULIN KEVINS INTACT IMMUNOCLOBULIN V REGION C REGION, IMMUNOCLOBULIN KEVINS INTACT IMMUNOCLOBULIN V, REGION C REGION, IMMUNOCLOBULIN KEVINT	Header section
HETNAH NAG N-ACETYL-D-GLUCOSAMINE FORMUL 5 NAG 8(C8 H15 N1 06) HELIX 1 1 PRO A 80 ASP A 82 5 SHEET 1 A 4 LEU A 4 SER A 7 0 SHEET 2 A 4 ILE A 19 HIS A 24 -1 N HIS A 24 0 THR A 5 SHEET 2 A 4 ILE A 19 HIS A 24 -1 N ILE A 75 0 ILE A 19	3
SHEET 4 A 4 PHE A 62 SER A 67 1 N SER A 67 0 GLY A 70 SSBOND 1 CYS A 23 CYS A 88 CRYST1 65.820 76.770 100.640 88.05 92.35 97.23 P 2 SYM -1 N 0.00 0.047 4.00 47.00 47.00	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Coordinate section
TER 2034 CYS A 214 HETATH12748 C1 NAG D 1 15,179 2,409 -21,411 1,00138,48 HETATH12749 C1 NAG D 1 14,181 1,365 -20,856 1,00137,31 HETATH12740 C3 NAG D 1 14,181 0,088 -20,438 1,00133,46 CONECT 194 193 814	C C C

How to search in the PDB?

The OCA browser developed in the WIS by Jaime Prilusky is one of the best interfaces to the PDB.

Entries can be retrieved by variety of criteria

http://bip.weizmann.ac.il/oca-bin/ocamain

11

		צ עריכה תצוגה לר סימניות כלים עזרה	(n.). n. (
לר 🖸	http://bip.weizmapp.ac.il/or	a-bin/oramain				
closerSite [®] : From Isra		A home A hom	-			
Clear form		Simple searches HELP	1			
	Search	Enter either a PDB accession code (2ACE), a Gene Ontology id (GO:0042135), an Interpro id (IPR000997), a PubMed id (8989325), a CATH id (10mhA1), a PFam id (PF00959)				
Keyword		Molecule name, class or family, or related term [HEADER, TITLE, KEYWDS and COMPND fields]				
Author	Family name of depositor or author of associated publication [AUTHOR and JRNL fields]					
Text query	Any word in the complete PDB text (like ssbond or CIS) or in the Primary publication's Abstract (like organophosphorus or deacylation). Search Enzymes by EC (Enzyme Commission) number EC.1.2.1.2 or EC.1.1					
Gene	Gene designation (as in GNGT1,TP53,PDC) or gene synonym (devB is synonym for plg)					
Function	Function description related (as in accelerate, lesion)					
Disease	Disease description related (as in polyneuropathy , obesity, sclerosis, hyperzincemia, diarrhea)					
Method of Structure Determination	ANY Method (30871)	×				
Sparch		EACTA convolution HELP	הסו			

Problems in the PDB database

- Missing data
- Quality of data
- Data is often not independent
- Format problems residue numbers

Diffraction pattern

Brag Planes separation

B-factor

A measure of the uncertainty in the position of individual atoms

TYROSINE-PROTEIN KINASE color by B-factor

17

Structural alignment

Databases
Structural alignment
Structural classification
Secondary structure prediction
Tertiary structure prediction
Molecular docking
Visualization
Dynamics

Structures are more conserved throughout evolution than sequences. Two homologous proteins have the same overall structure. It is possible that 2 proteins without detectable sequence similarity will have the same structure.

In the twilight zone of sequence similarity, structural alignment might help to correctly determine the relations between 2 proteins

Structural similarity is more sensitive method than sequence alignment to determine protein function 1234567891011121314PHEASPILECYSARGLEUPROGLYSERALAGLUALAVALCYSPHEASNVALCYSARGTHRPRO------GLUALAILECYSPHEASNVALCYSARG------THRPROGLUALAILECYS

Kuttner et al,. 2003

Superposition \Leftrightarrow Structural alignment

There are two types of problems related to structural comparison:

- Superposition problem
- Structural alignment problem

In the superposition problem we know in advance the correspondence between the points in the two structures we want to align

What properties of the protein might be used to detect structural similarity to other proteins ?

- sequence
- Type and number of secondary structures (sheets, helices)
- Structural arrangement of secondary structures
- Structural attributes of individual amino acids
- Distances between amino acids in the protein

The standard way to quantify similarity between molecules is to measure the positional deviation of the atoms - RMSD

RMSD = root mean square deviation

RMSD =
$$\sqrt{\frac{\Sigma (X_{i1} - X_{i2})^2 + (Y_{i1} - Y_{i2})^2 + (Z_{i1} - Z_{i2})^2}{N}}$$

This method amplifies large deviation in local region of the protein

SSAP

http://www.biochem.ucl.ac.uk/cgi-bin/cath/GetSsapRasmol.pl

The method includes 2 steps of dynamic programming. Initial step to obtain the score between each pair of amino acids, and second step in which the best overall alignment in the protein is determined 25

SARF2

http://123d.ncifcrf.gov/sarf2.html http://carten.gmd.de/ToPign.html

An algorithm to find structural similarity based on comparison of secondary structures.

As such it might be used to compare proteins only, and only proteins with minimal content of defined secondary structures

3-helix-bundle pairwise 3D alignment

DALI: Search for common 3D-pattern of C_{α} **distance maps** <u>http://www.ebi.ac.uk/dali/</u>

 Protein A
 Protein B
 One-dimensional alignment

 Image: A mathematic bit is a mathmatic bit is a mathemathmatic bit is a mathmaterisme. Im

Structural classification

Databases
 Structural alignment
 Structural classification
 Secondary structure prediction
 Tertiary structure prediction
 Molecular docking
 Visualization
 Dynamics

•Using structural alignment it is feasible to construct a classification system

•Classification helps us understand relations between remote proteins

•Convergence evolution in structures can often hint to the function of the protein

Classification databases

FSSP	http://www2.ebi.ac.uk/dali/fssp/
САТН	http://www.biochem.ucl.ac.uk/bsm/cath_n ew/index.html
SCOP	http://scop.mrc-Imb.cam.ac.uk/scop/
HOMSTRAD	http://www- cryst.bioc.cam.ac.uk/data/align/
MMDB	http://www.ncbi.nlm.nih.gov/Structure/MM DB/mmdb.shtml
3Dee	http://www.compbio.dundee.ac.uk/3Dee/
CE	http://cl.sdsc.edu/ce.html
VAST	http://www.ncbi.nlm.nih.gov/Structure/VA ST/vast.shtml
SARF	http://www- Immb.ncifcrf.gov/~nicka/sarf2.html/

CATH

http://www.cathdb.info/

Semi-automatic!

<u>**Class</u>** – 2D composition – automatic. 4 classes: α , β , $\alpha\beta$, FSS: few 2D structures.</u>

<u>Architecture</u> – manual! Shape created by orientation of 2D units. <u>Topology</u> – secondary structures connectivity.

<u>Homologous superfamily</u> – high structural and functional similarity. Sequence similarity

CATH of 1hho

CATH Domain: 1hhoA00

PDB 1hho, Chain A, Domain 0

CATH Code	Level Description	Links
	Mainly Alpha	
l.10	Orthogonal Bundle	
1.10.490	Globin-like	
1.10.490.10	Globins	[Gene3D]
1.10.490.10.5		
0 1.10.490.10.5.1		
1.10.490.10.5.1.1		
1.10.490.10.5.1.1.1		
D 1.10.490.10.5.1.1.1.142		[Gene3D]

SCOP – Structural **Classification of Proteins**

Manual inspection of automatic output

- 1. 2D content (class)
- 2. Structural similarity (fold)
- 3. Remote homology (superfamily/family).
- 4. Close homology (family)

•Databases Structural alignment •Structural classification **Structure Prediction** Secondary structure prediction •Tertiary structure prediction Molecular docking Visualization Dynamics A-C-H-Y-T-T-E-K-R-G-G-S-G-T-K-K-R-E-A H-H-H-H-H-H-H-H-O-O-O-O-S-S-S-S-S-S-S Secondary structure prediction

Tertiary structure prediction

33

http://www.predictprotein.org/

Why make a structural model for your protein ?

 Databases Structural alignment Structural classification Secondary structure prediction •Tertiary structure prediction Molecular docking Visualization Dvnamics

• The structure can provide clues on the function

• With a structure it is easier to guess the location of functional sites and to learn on the function

• With a structure we can plan more precise experiments in the lab

• We can do docking experiments (both with other proteins and with small molecules)

Building by homology (Homology modeling)

alignment with proteins of known structure

Μ	A	A	G	Y	A	Y	G	V	L	S
-	Α	Т	G	F	D	-	-	V	Ι	D
-	A	S	G	F	E	-	-	V	V	Е
-	Α	K	A	Y	L	I	I	V	L	S

structural model

Fold recognition (Threading)

39

Ab initio

structural model

Building by homology

There are hundreds of thousands of protein sequences but only several thousands protein folds

For every second protein that we randomly pick from the structural data base there is "close" homolog (identity > 30%). This homolog almost always has the same fold.

In the current projects for experimental determination of protein structures, priority is given to determine structures of protein without homologs in the structural databases ('structural genomics')

We believe that in several years we will have almost all the basic folds

41

Swiss-Model http://www.expasy.ch/swissmod/SWISS-MODEL.html

"Quick and dirty" The easiest way to do homology modeling

Modeller

http://salilab.org/modeller/

Advanced program for homology modeling. Implemented in several popular modeling packages such as InsightII

Threading (fold recognition)

The input sequence is threaded on many different folds from library of known folds

Using scoring functions we get a score for the compatibility between the sequence and each structure

Statistically significant score tells that the input protein adopts similar 3D structure to that fold

This method is less accurate but could be applied for more cases

When the "real" fold of the input sequence is not represented in the structural database we can never get correct solution by this method

The most important part is the *accuracy of the scoring function*. The scoring function is the major difference between different programs for fold recognition

Contact potentials

This method is based on predefined tables which include pseudo-energetic scores to each pair-wise interaction of two amino acids.

For each given conformation to be evaluated, a distance matrix can be constructed.

For each pair of amino acids which are close in space the interaction energy is summed. The total is the indication for the fitness of the sequence into that structure

- H bond donor
- H bond acceptor
- 0 Glycin
- Hydrophobic

Library of folds of known proteins

- H bond donor
- H bond acceptor
- 0 Glycin
- Hydrophobic

S=5

Z=1.5

Ab initio methods for modeling

This field is of great theoretical interest. Here there is no use of sequence alignments and no direct use of known structures

The basic idea is to build empirical function that simulates real physical forces and potentials of chemical contacts

If we will have perfect scoring function and we will be able to scan all the possible conformations, then we will be able to detect the correct fold

Algorithms for *Ab initio* prediction include:A. Searching procedure that scans many possible structures (conformations)B. Scoring function to evaluate and rank the structures

Due to the large search space, heuristic methods are usually applied

The parameters in the searching procedure are the dihedral angles which specify the exact fold of the polypeptide chain

Side chain construction

When there is high similarity between the built protein and the templates, construction of the side chains is done using the template structures

Without such similarity the construction can be done using rotamer libraries

A compromise between the probability of the rotamer and its fitness in specific position determines the score. Comparing the scores of all the rotamers for a given amino acid determines the preferred rotamer.

Example of a rotamer library: Conformation - a given set χ1 χ2 probability of dihedral angle which defines a structure. 59.6 1.0 SER -62.5 26.4 SER Rotamer - energetically 179.6 32.6 SER favourable conformation. Asn 63.6 21.0 TYR 90.5 68.5 -89.6 16.4 TYR TYR 170.7 13.3

Phe

TYR170.797.813.3TYR-175.0-100.720.0TYR-60.196.610.0TYR-63.0-101.619.3

SCCOMP is a program for side chain modeling. It uses a scoring function that includes terms for complementarity (geometric and chemical compatability), excluded volume, internal energy based on probability of rotamers, and solvent accessible surface. The program has an accuracy of 92-94% for correct Chil prediction (\pm 40°) of buried residues, 82-84% for all residues, and about 1.7 Å for overall rmsd (not including C β). The exact values depend on the searching procedure. A fast iterative search, takes about a minute on the web server for a typical protein. A slower stochastic method takes about 12 minutes and improves the prediction by about 2% and 0.1 Å rmsd.

SCCOMP

The program also permits:

- 1. Modeling only a subset of residues
- 2. Performing any number of mutations
- 3. Using an homologous structure as a template.

At this site you can download the source code for sccomp for different Unix/Linux platforms. You can also use our web server for modeling. The results are sent back by Email.

get sccomp source code

To use the web server follow the instructions below. You must fill one of the two first windows, either to submit your own coordinates or to specify a PDB id.

Every residue should include at least the backbone coordinates. The order of the atoms should follow that of the PDB format. The file should end with ".pdb".

Enter your protein file.

http://ignmtest.ccbb.pitt.edu/cgi-bin/sccomp/sccomp1.cgi

 MET
 1
 0.1
 GLN
 2
 0.5
 ILE
 3
 0.0
 PHE
 4
 0.3
 VAL
 5
 0.0

 LYS
 6
 0.7
 THR
 7
 0.2
 LEU
 8
 0.7
 THR
 9
 1.0
 LYS
 11
 0.7

 THR
 12
 0.5
 ILE
 13
 0.0
 THR
 14
 0.6
 LEU
 15
 0.0
 GLU
 16
 1.0

 VAL
 17
 0.0
 GLU
 18
 0.8
 SER
 20
 1.0
 ASP
 21
 0.3
 THR
 22
 0.5

55

Model evaluation

After the model is built we can check its validity by various ways. We can check that the model has a reasonable shape and that it is usually obey geometric constraints.

If the model turns out to be bad, it is necessary to repeat several steps of the model building

We can easily assess homology modeling procedures by building models for proteins which have already solved structure and compare between the model and the native structure

It is always possible that information from the native structure will be used in direct or indirect ways for model building

A more objective test is prediction of structures before they are publicly distributed (this is the idea of the CASP competitions)

Databases

•Structural alignment •Structural classification

Molecular docking
Visualization
Dynamics

•Secondary structure prediction •Tertiary structure prediction

Docking: finding the binding orientation of two molecules with known structures

According to the molecules involved: •Protein-Ligand docking •Protein-Protein docking

Specific docking algorithms usually designed to deal with one of these problems but not with both (different contact area, flexibility, level of representation, etc.)

Why docking?

• Understanding interactions, roles of specific amino acids, design of mutations and changes of activity.

• Prediction affinities

• Drug design

Ligand-Protein docking

Finding the place and the orientation of the interactions

The general problem includes a search for the location of the binding site and a search to figure out the exact orientation of the ligand in the binding site. A program that do both makes a *Global docking*

Sometimes the location of the binding site is known. In this case we only need to orient the ligand in the binding site. In this case the problem is called *Local docking*

Global docking is more demanding in terms of computational time and the results are less accurate.

Rigidity vs flexibility

• Most of the early algorithms assumed that the docked molecules do not change conformations. This assumption allows to treat the molecules as rigid bodies, making the algorithm simpler and faster

• This assumption is problematic and was proven to be wrong in many cases

• New algorithms try to face the flexibility problems.

• Other methods try to handle the flexibility problem indirectly or at least to "minimize the damage" of not incorporating flexibility.

• Docking procedures that perform rigid body search are termed *rigid docking*

• Docking procedures that consider possible conformational ₆₄ changes are termed *flexible docking*

Bound and unbound docking

In *bound docking* the goal is to reproduce a known complex where the starting coordinates of the individual molecules are taken from the crystal of the complex

In the *unbound docking*, which is a significantly more difficult problem, the starting coordinates are taken from the unbound molecules. This is unfortunately a more realistic problem.

Components of the problem

Algorithms to dock molecules need:

- A. System representation
- **B**. Searching procedure
- C. Scoring function
- D. Clustering procedure

The parameters of the problem for docking of 2 rigid bodies are 3 angles (rotations) and 3 distances (translations)

Usually the ligand is not rigid and few other parameters are required

Visualization – Molecular graphics

What do we need?

- Rotation & translation
- Color specific parts of the molecule
- Labeling of residues and atoms
- Geometrical measurements (distances & angles)
- Schematic representation: Atoms/Bonds/Secondary structures, ...
- Molecular surfaces
- Compare structures
- Saving pictures

- •Databases
- •Structural alignment
- •Structural classification •Secondary structure prediction
- •Tertiary structure prediction
- •Molecular docking
- Visualization
- Dynamics

Representation of molecules (1)

Ball size: 0 Stick size: 0.2

Stick-model

Ball size: 0.4

Stick size: 0.2

Space-filled model

Ball size: 0.8 Stick size: 0₇₅

Representation of molecules (2)

Backbone

only connections between C-alpha atoms

Schematic

helix – cylinder strand – arrow

Surface

color indicate electrostatic potentials ⁷⁶

Molecular Graphics Software Links

The PDB does not distribute software for molecular graphics but we maintain a list of widely used molecular graphics programs. These programs take PDB coordinate files as input.

BioEditor A tool for creating and viewing dynamic, formatted structure annotations; for Windows ProteinScope BRAGI Free viewer to display and manipulate PDB files and A protein visualization and modeling program create animations and slides of proteins for Windows Chemscape Chime **PyMOL** From MDL Information Systems. This program allows A free and open-source molecular graphics system for visualisation of structures with Windows, Macintosh (with Netscape 4.x only), and (as version 0.9z) visualization, animation, editing, and publicationquality imagery, PyMOL is scriptable and can be SGI/Irix. For further information about Chime see the extended using the Python language. Supports UMass Chime Resources Page Windows, Mac OSX, Unix, and Linux Chimera Interactive molecular modeling system, free to OuteMol An open source (GPL), interactive, high quality academic/non-profit; displays multiple sequence molecular visualization system. QuteMol exploits the alignments and associated structures, atom-type and H-bond identification, molecular dynamics trajectories (AMBER format), and offers ligand-screening interface current GPU capabilites through OpenGL shaders to offers an array of innovative visual effects (DOCK), filter by number/position of H-bonds, and RasMol A free viewing system for PDB coordinate files that extensibility to create custom modules - for Windows, Linux, Mac OS X, IRIX, and Tru64 Unix runs on Mac (PPC), Windows, Unix, and Linux systems. Open source versions are also available Cn3D Raster3D Simultaneously displays structure, sequence, and A set of tools for generating high quality raster images alignment, with annotation and alignment editing of proteins or other molecules. Freeware for Mac OSX, features, for use with 3-D structures from $\mathsf{NCBI}^\mathsf{is}$ Entrez; available for Windows, Macintosh, and Unix Windows, Unix, and Linux CrystalMaker RasTop (v. 2.0) A free user-friendly graphical interface to RasMol A program for building, displaying and manipulating all molecular visualization software (v. 2.7.2.1), available kinds of crystal and molecular structures. for Windows and Linux iMol Ribbons Open GL graphics program displays small, large, and A program for molecular illustration and error analysis, multiple molecules; measures distances and angles, for for Mac OS Windowe

http://www.rcsb.org/pdb/static.do?p=software/software_links/molecular_graphics.html

77

displays dynamics trajectories. For Mac OS X incl. 10.2	
 Java3D Molecular Visualisation System 	

Free Java/Java3D progam and source code for Windows or Unix

Jmol

Jmol is a free, open source molecule viewer for students, educators, and researchers in chemistry and biochemistry. It is cross-platform, running on Windows, Mac OS X, and Linux/Unix systems. Mage and Kinemages

Interactive molecular display for research and

educational uses. Free, open source for Windows and Mac (OSX or PPC), Unix, and Linux. A Java version does 3-D Web display without plug-ins.

MOLMOL

A program for displaying, analyzing, and manipulating the 3-D structure of biological macromolecules, with special emphasis on the study of protein or DNA structures determined by NMR; for Mac OSX, Windows, Unix, Linux

MolScript

A program for displaying structures in both detailed and schematic formats and writing images in various formats for Uni×

MolView and MolView Lite

Free molecular visualization programs for the Mac (PPC) MVM

Molecular Visualization Program and GUI of ZMM, MVM is a free molecular viewer that can be used to display protein, nucleic acids, oligosacharides, small and macromolecules. It has an intuitive interface. In addition to being a molecular viewer, it is the use interface of a very powerful molecular mechanics engine (ZMM).

PDB2MGIF

Free, user-friendly server that converts PDB files to animated gif files that can be used in Web pages and A Tcl/Tk script responsible to redirect PDB files or RasMol scripts to multiple RasMol sessions: can be used as a Web browser helper application or as a standalone program for Mac (OSX or PPC), Windows, or Unix

Univ

Sirius

An extensible molecular graphics and analysis environment developed at San Diego Supercomputer Center

SPADE

The Structural Proteomics Application Development Environment (SPADE) provides community tools for development and deployment of essential structure and sequence equipment. Includes a chemical probing suite to support experimental verification of predicted structural models. Written in Python with scripting tools available. Runs on Windows, Linux and Mac.

STRAP

Align proteins by sequence and 3D structure. STRAP was developed by Christoph Gille at the Institut für Biochemie, Charité

Swiss PDB viewer available from Australia Bolivia | Canada | China | Korea | Switzerland | Taiwan | USA |

A 3D graphics and molecular modeling program for the simultaneous analysis of multiple models and for model-building into electron density maps. The software is available for Mac (OSX or PPC), Windows, Linux, or SGI

Uppsala Electron Density Server Generated density maps

VMD

VMD (Visual Molecular Dynamics) runs on many Platforms including MacOS X, and several versions of Unix and Windows. VMD provides visualization, analysis, and Tcl/Python scripting features, and has recently added sequence browsing and volumetric rendering features. VMD is distributed free of charge.

Dynamics of proteins

•Databases •Structural alignment •Structural classification •Secondary structure prediction •Tertiary structure prediction •Molecular docking •Visualization •Dynamics

• Dynamics of proteins is clearly related to their function.

• Understanding the relation between the two is a main challenge in the field of biophysics

• *Molecular Dynamics* provides a way to conduct non-equilibrium simulations but only for short time scales (10⁻⁷ s)

• *Normal Mode Analysis* provides a way to analyze equilibrium motion for longer time scales

Type of motion	Functionality examples	Times and Amplitude scales
Local Motions: •Atomic fluctuation •Side chain motion	 Ligand docking flexibility Temporal diffusion pathways 	fs - ps (10 ⁻¹⁵ - 10 ⁻¹² s) less than 1 Å
Medium Scale Motions: •Loop motion •Terminal-arm motion •Rigid-body motion (helices)	Active site conformation adaptationBinding specificity	ns - μs (10 ⁻⁹ - 10 ⁻⁶ s) 1 - 5 Å
Large Scale Motions: •Domain motion •Subunit motion	 Hinge bending motion Allosteric transitions 	μs - ms (10 ⁻⁶ - 10 ⁻³ s) 5 - 10 Å
Global Motions: •Heix-coil transition •Folding/unfolding •Subunit association	Hormone activation Protein functionality Modified after: Becker & Watanabe (2001). Dyna In Computational & Biochemistry & Biophysics ($\frac{\text{ms} - \text{h}}{(10^{-3} - 10^4 \text{ s})}$ $\frac{\text{more than 10 Å}}{\text{more than 10 Å}}$ $\frac{\text{mic Methods.}}{(\text{Edited by Becker et al.)}}$

Thanks

•The organizers •Dr. Jaume Bacardit

You!

