Plant Bioinformatics, Systems and Synthetic Biology Summer school

Nottingham, 27-31 July 2009

Components of a virtual tissue

Christophe Godin
INRIA Project-team
Virtual Plants
Vip

Growth areas in plants

Phyllotaxy

Architectural diversity and plasticity

Couepia, (Ph. Y.Caraglio)

Kleinia, (Ph. F. Hallé)

Fagrea, (Ph. F. Hallé)

Elme tree, (Ph. Y. Caraglio)

Parinari (Ph. Y. Caraglio)

Effect of the environment:

$\rightarrow \quad$ Hypotheses on meristem functioning

Two main approaches

- Descriptive

(Caraglio et al., 2000)

(Renton et al., 2005)

Mixed stochastic/mechanical model

Meristem

Shoot apical meristem

\longrightarrow Complex dynamical system

Cell differenciation'

What do we know about meristem growth?

- Phyllotaxy / Phenotypes

- Auxin as a morphogene

Organ generation in the pin1 mutant

- Gene activity / cell identity

- Apex geometry

- Auxin is transported actively

Immunolabelling of PIN-FORMED1 protein

- Mechanical properties

A complex dynamic system with dynamic structure $(D S)^{2}$

Physiology...

changes Form...

which changes Physiology...

Building of a virtual meristem

Real-time live-imaging confocal microscopy

- Plant is grown on soil
- Apical meristem is placed on growth medium
- Older flowers are removed
- Imaged on a confocal

3D meristem reconstruction

3D restitution of a stack of images : a set of "voxels"

J. Traas (ENS-Lyon)

- Automatic labelling of meristem cells
- Automatic identification of cell lineage
- Building a geometric model of the tissue

Building a surface representation

Parametric model of the surface

Parametric envelope of each cut

Swung Nurbs interpolated from all vertical cuts

Carpel development first stages (1-7) (Continuous model of the surface)

Automatic reconstruction at cell resolution

- 2 problems:
- Microscope anisotropy
- Tissue thickness

- Images taken from different angles
\rightarrow Algorithms to merge the images

3D reconstruction of meristem

-3D registration

- watershed (with automatic seedling of cells)

Collab. EPI Asclepios (G. Malandain) Arabidopsis, ENS-Lyon (J. Traas, P. Das)

Extracting labelled cells (GFP)

Quatification of shape development

Day 0

Day 3.25

Day 2.25

Day 5.75
wt
stage

8

9
sep/tt
ov

10

Automatic segmentation and cell lineage

(PhD Work of Romain Fernandez)

Automatic detection of cell lineage

dense deformation field

Automatic detection of cell lineage

$$
\begin{gathered}
\Gamma(M)=\sum_{M} \gamma_{i j}+\sum_{\bar{I}_{M}} \gamma_{I}+\sum_{\bar{J}_{M}} \gamma_{J} \\
M^{*}=\underset{M v a l i d}{\arg \min } \Gamma(M)
\end{gathered}
$$

PhD Romain Fernandez (col. Asclepios INRIA, ENS-Lyon, CIRAD-DAP)

Building mesh representations from segmented images

(J. Chopard, R Fernandez)

Individual cells

Reconstructed 3D mesh

Building virtual maps

Coll. ENS-Lyon (J. Traas, F Monéger)

Definition of a querying language

(J. Chopard)

Definition of zones:

Geometry:
$\mathrm{CZ}=\operatorname{Sphere}($ « top $»$, (4, «cells »))

Fixed:
$\mathrm{L} 1=[$ cell1,\ldots, cellN $]$
$\mathrm{L} 2=$ Expand(L1) - L1

Pattern definition

Python code: def pattern_CLV3 (stade) :
if stade $==3$:
return CZ \& (L1 + L2)

Building virtual maps (atlases)

Post-doc J. Chopard

Building of a virtual meristem

Organ phyllotaxy at the SAM

Photo: Jan Traas

Phyllotaxis models

- Three kinds of approaches

Geometrical

(Bravais \& Bravais,1837)

Physiological

(Hofmeister, 1868)
(Snow and Snow, 1962)

Auxin transport perturbation

Perturbed auxin transport is correlated with perturbed organ formation in the pin-formedl mutant

wild type of Arabidopsis

pin 1

pin 1

The local application of auxin induces organ formation in pin1

(Reinhardt et al. 2000)
High concentrations of auxin induce organ initiation

Active transport of Auxin

The PIN-FORMED1 protein (PIN1) is an efflux carrier

Immunolabelling of PIN1 protein
(Gälweiler et al. 1998)
(Steinmann et al. 1999)

Expression pattern and protein distribution of PIN1

\square
PIN1 is present in the L1 layer throughout the meristem and in the (pro)vascular strands of the young primordia

Indirect sensing of auxin by DR5::GFP

Promoter activated by auxin responsive transcription factors

Bright green : DR5::GFP

Qualitative model of auxin transport at the SAM

(Reinfardt et al. 2003)

Chemosmotic model of auxin transport

\square AUX
 \square PIN

$$
\mathrm{pH}=5.5 \quad \mathrm{pH}=7.0
$$

AUXIN: Indole-3-acetic-acid (IAA)

Simplified model of auxin transport

- No AUX/LAX influx transporter
- No apoplastic compartment

Chemosmotic transport model

Simplified transport model

Modelling auxin transport at the SAM

(Barbier de Reuille, PNAS, 2006)

Original image

Network of "pumps"

Modeling transport

Description of the spatial variation of a quantity $u(x, t)$:

Local conservation equation:
$\left.\begin{array}{l}\text { Change in local } \\ \text { concentration } \\ \text { per unit time }\end{array}=\begin{array}{l}\text { Rate of local } \\ \text { creation }\end{array}-\begin{array}{l}\text { Rate of } \\ \text { destruction }\end{array}+\begin{array}{l}\text { Rate of net } \\ \text { exchange with } \\ \text { environment }\end{array}\right]$

$$
\frac{\partial u(x, t)}{\partial t}=\delta-\gamma u(x, t)+f(x, y, t)_{y \in V(x)}
$$

(Partial Differential Equation, PDE)

Diffusion equation

Flux:
$\vec{\Phi}(x, t)$ \# particles crossing a unit area at x per unit time
Fick's law (eg. Heat, Osmotic diffusion):

$$
\vec{\Phi}(x, t)=-\alpha \frac{\partial u(x, t)}{\partial x}=-\alpha \vec{\nabla} u
$$

Conservation equation:
local variation of concentration $=$ spatial variation of flux

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-\frac{\partial \Phi}{\partial x} \\
& =-\frac{\partial}{\partial x}\left(-\alpha \frac{\partial u}{\partial x}\right)=\alpha \frac{\partial^{2} u}{\partial x^{2}}=\alpha \Delta u
\end{aligned}
$$

Diffusion: passive transport

Diffusion equation

$$
\frac{\partial u}{\partial t}=\alpha \Delta u
$$

Geometric interpretation :

1 dimension: $\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}$

$$
\frac{u_{i}(t+k)-u_{i}(t)}{k}=\alpha \frac{\left(u_{i+1}(t)+u_{i-1}(t)-2 u_{i}(t)\right)}{h^{2}}
$$

Δu measures the difference between: -the average value over the neighborhood of a point P
-the value at point P

$$
\text { Net input > } 0
$$

$$
\Delta u>0
$$

Net input $=0$

$$
\Delta u=0
$$

Diffusion in 2D

Diffusion equation (eg. Heat, Osmotic diffusion)

$$
\frac{\partial u}{\partial t}=\alpha \Delta u
$$

Geometric interpretation (2 Dimensions)

$$
\begin{aligned}
& 2 \text { dimensions: } \quad \frac{\partial u}{\partial t}=\alpha\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
& \frac{u_{i, j}(t+k)-u_{i, j}(t)}{k}=\alpha \frac{\left(u_{i-1, j}(t)+u_{i+1, j}(t)+u_{i, j-1}(t)+u_{i, j+1}(t)-4 u_{i, j}(t)\right)}{h^{2}} \\
&=\frac{\alpha}{h^{2}} \sum_{n \in V(m)}\left(u_{n}-u_{m}\right)
\end{aligned}
$$

Why is there a «second » derivative in the diffusion equation?

$$
\begin{gathered}
2 \text { cases of stationarity ! } \\
\frac{\partial u}{\partial t}=0
\end{gathered}
$$

Active transport

$P_{i, j}$ Strength of the PIN transporter in membrane i to j

\# auxin molecules imported during $d t$ from cell j into cell i :

$$
\alpha P_{j, i} a_{j}(t)
$$

Net result of active transport :

$$
\frac{\partial a_{i}(t)}{\partial t}=\alpha \sum_{j \in V(i)}\left(P_{j, i} a_{j}(t)-P_{i, j} a_{i}(t)\right)
$$

Auxin transport hypotheses

- Active and passive transport

$$
\frac{\partial a_{i}(t)}{\partial t}=D \Delta a_{i}(t)+\alpha \sum_{j}\left(P_{j, i} a_{j}(t)-P_{i, j} a_{i}(t)\right)-\gamma a_{i}(t)+\delta
$$

- Auxin enters the meristem at the periphery via L1 (Reinhardt et al. 2003) and/or is produced locally
- PIN1 is localized in L1, except at the level of primordia where it is also present in provascular
 tissues (Vernoux et al. 2000)
- Above a given threshold, auxin accumulation in the competence zone triggers the formation of primordia
- Above a given concentration, auxine is evacuated in the inner layers at the level of primordia through the provascular tissues, (Reinhardt et al. 2003)

Result of virtual auxin transport on digitized PIN1 maps

- Auxin accumulates at the primordia locations
- Auxin accumulates at the initium location
- Auxin accumulates in the center
- Accumulation patterns do not depend on the location of auxin production

Back to experiment ...

1. The center is not sensitive to auxin

2. Anti-auxin immunolabelling
3. High levels of auxin observed in the $C Z$ of the clv 3 mutants

What drives the polarization of PIN pumps?

Integrating dynamics of tissue development

Allocation of PIN to membranes

$$
\frac{\partial a_{i}(t)}{\partial t}=D \Delta a_{i}(t)+\alpha \sum_{j}\left(P_{j, i} a_{j}(t)-P_{i, j} a_{i}(t)\right)-\gamma a_{i}(t)+\delta
$$

- Hypothesis 1:

- Pumps are oriented so that local auxin spots are amplified (concentration-based hypothesis)
(Jönsson et al. 06, Smith et al., PNAS, 06)

$$
P_{i, j}=P_{i} \frac{s_{i, j} \beta^{a_{j}(t)}}{\sum_{j} s_{i, j} \beta^{a_{j}(t)}}
$$

P_{i} Available amount of PINs in cell i
(Smith et al., 06)

Simulating tissue growth

Velocity field:

Simulating tissue growth

- Velocity Field

$$
\vec{V}=\frac{d \vec{r}}{d t}=f(\vec{r}, t)
$$

- Division rules (Nakielski, ...)
- Volume > threshold.

- Location and orientation of the new wall
- Minimal length,
- Right angle between new and old walls.

Concentration-based hypothesis

Candidate hypotheses

$$
\frac{\partial a_{i}(t)}{\partial t}=D \Delta a_{i}(t)+\alpha \sum_{j}\left(P_{j, i} a_{j}(t)-P_{i, j} a_{i}(t)\right)-\gamma a_{i}(t)+\delta
$$

- Hypothesis 1:
- Pumps are oriented so that local auxin spots are amplified (concentration-based hypothesis)
(Jönsson et al. 06, Smith et al., PNAS, 06)
- Hypothesis 2:
- Pumps are oriented so that fluxes are amplified (canalization $=$ flux-based hypothesis) (Sachs 69, Mitchison 81, Feugier et al. 05, Rolland-Lagand et al. 05)

Could canalization explain auxin transport in the L1 layer?

Flux-based hypothesis:

$$
\frac{d P_{i, j}}{d t}=f\left(\phi_{i, j}\right)-\gamma P_{i, j}+\lambda
$$

$f=$ feedback function

(Feugier et
al. JTB, 05) weak

strong (canalization)

Flux-based polarization allows pumping with or against the auxin gradient

Pumping with the gradient (infinite sink strength)

Pumping against the gradient
(finite sink strength)

Flux-based polarization may create dynamic patterning

Decreasing the threshold of primordia initiation

Weak flux-based polarization can create inhibitory fields

The size of the inhibitory field is a function of the feedback parameter (β)

$$
\frac{\partial P_{i, j}}{\partial t}=\beta \Phi_{i, j}-\gamma P_{i, j}+\lambda
$$

$\beta=1.3$
$\beta=1.5$

$$
\beta=1.7
$$

$$
\beta=2.0
$$

Simulation of auxin fluxes on digitized PIN1 maps

- Auxin is produced and degraded in each cell
- Diffusive and active transport
- Primordia are perfect sinks

Observed PIN1 maps
Simulated PIN1 maps
(weak flux-based polarization)

Influence zone of a region

Definition: set of cells connected in the map with cells of a given region by an oriented path of pumps

Central zone

Role of the central zone

Central zone has no distinct behaviour

Observed map

Central zone degrades auxin

Comparison of the influence zones

15% more pumps are correctly oriented (78% in total)

Simulated
map with CZ degrading auxin

Observed maps

Simulated map without CZ

Dynamic simulation of phyllotaxy

Flux-based simulation of phyllotaxy

Simulated divergence angle

Simulation of the generation of provascular tissues

Flux-based simulation of vascularisation

Flux-based polarization makes it possible to pump both with and against the gradient

(Ottenschläger et al. PNAS, 03)

An alternative dual model

(Bayer et al., 2008)

Simulated PIN
Simulated Auxin

Experimental verification

Summary on transport

	Concentration-based polarization	Flux-based polarization
Phyllotaxis	YES (Smith et al. 06, Johnson et al. 06)	YES (weak FBP) (Stoma et al. 08)
Venation patterns	Being investigated/Mixed model (Merks et al. 07), / (Bayer,08)	YES (strong FBP) (Mitchison 81, Rolland-Lagan 06, Runion 06, Feugier 05)
Fountain model (root apex)	?	YES (strong FBP) (Stoma et al. 08)
Molecular interpretation	No	No
Assessment (Phyllotaxis):		
Divergence angles	Ok	Ok
Phyllotactic pattern stability	To improve	To improve
Consistent with observed PIN maps	Partially/qualitative	Fairly consistent / quantitative if center degrades auxin (role?)
Predicted event sequence	Maximum is maintained / Pumps pointing upwards initially	Maximum / leaks / minimum

Building of a virtual meristem

Mechanical aspects of growth

Cell-cell physical interactions?

Local/Bottom up specification of growth

«The growing Canvas», The art of genes, E. Coen, 1999
«The genetics of geometry», (Coen et al, PNAS, 2004)

Shape as an emerging property of region growth ...

A general conceptual framework

«The genetics of geometry », (Coen et al, PNAS, 2004)
Alphabet of elementary geometric transformations :

Growth rate

Local information:

- genes activity
- hormones
- microtubules,
- fluxes,
- stresses,

Rotation

Global constraints :

- Mechanical forces,

Strain description

- Strain in 1D

$$
\varepsilon=\frac{l-l_{0}}{l_{0}}
$$

- Strain in 2D

$$
\varepsilon=\left[\begin{array}{ll}
\varepsilon_{x x} & \varepsilon_{x y} \\
\varepsilon_{y x} & \varepsilon_{y y}
\end{array}\right]
$$

Strain tensor

Elementary transforms in mathematical terms

Decomposition of the strain tensor (2D) :

$$
\begin{gathered}
\varepsilon=\varepsilon_{\text {scale }} \cdot \varepsilon_{\text {ani }} \\
\varepsilon_{\text {scale }}=\frac{\Lambda}{2} \cdot \mathbf{I} \quad \Lambda=\frac{V-V_{\text {ref }}}{V_{\text {ref }}} \approx \lambda_{1}+\lambda_{2} \\
\varepsilon_{\text {ani }}={ }^{T} \mathbf{R D R} \quad \mathbf{D}=\left[\begin{array}{cc}
\frac{2 \lambda_{1}}{\Lambda} & 0 \\
0 & \frac{2 \lambda_{2}}{\Lambda}
\end{array}\right]
\end{gathered}
$$

Development controlled by gene expression

«The genetics of geometry », (Coen et al, PNAS, 2004)

- High growth rate:

- High anisotropy:

Modeling the growth of a petal shape

Integration of local changes

Deformation constraints

Geometric constraint: $\quad \sum_{i=0}^{n} l_{i}=L$

Different admissible solutions

Different combinations:

Cost of a deformation (Energy)

Physical interpretation:

Translation

Deformation

$$
W=\frac{1}{2} k x^{2}
$$

$$
\mathcal{W}=\ddot{M} g h
$$

Total energy of a transformation

Solution : transformation with minimum energy

Integration

- Set of admissible deformations \mathcal{A}

- Energy minimization over \mathcal{A}

$$
W^{*}=\min _{a \in \mathcal{A}} \sum_{i \in a} W_{i}
$$

Use of integration methods:

- mass-spring systems
- finite elements

Mechanics and Differential growth

- Each region grows isotropically

- Geometric anisotropy results
from global constraints

Residual stresses

Growing "petal"
Problem of residual stresses

Solution: introduce a feedback of the stress on the growth

Cell wall

- Cell wall :
- Main determinant of cell shape
- Regularly synthesized by the cell
- Composed of bundles of microfibrils linked together by elastic links

Cosgrove (2001)

- Mechanical aspects:
- Each microfibril resist axial load
- Resistance perpendicular to microfibrils is less important
- Turgor pressure induces cell wall strain

Individual cell growth

- Elasticity of a rod : Hook's law

$$
\varepsilon=\frac{l-l_{0}}{l_{0}}
$$

$$
\sigma=\frac{F}{s}=E \varepsilon
$$

- Cell is elastically deformed by turgor pressure

$$
\sigma=P_{\pi} \mathbf{I}=\left[\begin{array}{cc}
P_{\pi} & 0 \\
0 & P_{\pi}
\end{array}\right] \quad \varepsilon_{\pi}=\sigma_{\pi} E^{-1}=P_{\pi}\left[\begin{array}{cc}
\frac{1}{E_{x}} & 0 \\
0 & 1 \\
E_{y}
\end{array}\right]
$$

Stress in the region
Elastic strain
(Hook's law)

Individual cell growth

- Cell deformation

- Growth induces plastic deformations

Taking into account cell growth

- Cell growth

$$
P_{\pi}=0
$$

Example: $\quad \varepsilon_{G}=\Gamma \Delta t \varepsilon_{\pi}$

Wall synthesis speed Elastic strain

$$
\varepsilon_{G}=\Gamma \Delta t P_{\pi}\left[\begin{array}{cc}
\frac{1}{E_{x}} & 0 \\
0 & 1 \\
E_{y}^{-}
\end{array}\right]
$$

Mechanical interpretation of growth parameters

Growth strain of the reference configuration:

$$
\varepsilon_{G}=\underbrace{\Gamma \Delta t P_{\pi} \frac{E_{x}+E_{y}}{2 E_{x} E_{y}}}_{\varepsilon_{\text {scale }}} \underbrace{\left[\begin{array}{cc}
\frac{2 E_{y}}{E_{x}+E_{y}} & 0 \\
0 & 2 E_{x} \\
E_{x}+E_{y}
\end{array}\right]}_{\varepsilon_{a n i}}
$$

- Scaling represents the relative variation of volume $\frac{V-V_{\text {ref }}}{V_{\text {ref }}}$
-Anisotropy distributes the growth along the principal axes

Simulation

- Without retroaction
- With retroaction

Role of microtubules in growth

Microtubules re-orient according to main stresses (Hamant et al., Sience, 2008)

Cell growth decomposition

Cell growth is controled by 2 factors :

- Growth intensity (e.g hormone concentration, gene activity)

- Growth anisotropy (polarization of microtubules)

Modeling cell mechanics

Testing the hypothesis: microtubules re-orient according to main stress

(Hamant et al., Science 2008)

Simulation of the PIN experiment

Building of a virtual meristem

How genes control shape development?

Gene networks

State of a cell: $\quad X(t)={ }^{T}\left[x_{0}(t), x_{1}(t), \ldots, x_{n}(t)\right]$

Gene interaction network:

$$
X(t+1)=F(X(t))
$$

- Stable?
- Attractors?

Cell identity $=1$ stable state

Gene Regulatory Networks

Example: Auxin perception (collab. T. Vernoux):

Auxin regulates gene expression via a network of protein-protein interactions

Product variation described by differential equations

$$
\begin{aligned}
\frac{d a_{1}}{d t} & =\pi_{1} r+2 k_{11}^{\prime} d_{11}-2 k_{11} a_{1}^{2}+k_{12}^{\prime} d_{12}-k_{12} a_{1} a_{2}-\delta_{1}(x) a_{1} \\
\frac{d a_{2}}{d t} & =\pi_{2}+2 k_{22}^{\prime} d_{22}-2 k_{2} a_{2}^{2}+k_{12}^{\prime} d_{12}-k_{12} a_{1} a_{2}-\delta_{2} a_{2} \\
\frac{d\left(d_{11}\right)}{d t} & =k_{11} a_{1}^{2}-\left(k_{11}^{\prime}+\delta_{11}\right) d_{11} \\
\frac{d\left(d_{12}\right)}{d t} & =k_{12} a_{1} a_{2}+\beta_{12}^{\prime} g_{12}-\beta_{12} g d_{12}-\left(k_{12}^{\prime}+\delta_{12}\right) d_{12} \\
\frac{d\left(d_{22}\right)}{d t} & =k_{22} a_{2}^{2}+\beta_{22}^{\prime} g_{22}-\beta_{22} g d_{22}-\left(k_{22}^{\prime}+\delta_{22}\right) d_{22} \\
\frac{d r}{d t} & =h\left(g_{22}\right)-\delta_{r} r \\
\frac{d g_{22}}{d t} & =\beta_{22} g d_{22}-\beta_{22}^{\prime} g_{22} \\
\frac{d g_{12}}{d t} & =\beta_{12} g d_{12}-\beta_{12}^{\prime} g_{12} \\
g & =1-g_{12}-g_{22}
\end{aligned}
$$

Where : a_{1} (resp. a_{2}) denotes IAA (resp. ARF) concentration, and d_{ij} (resp. g_{ij}) the corresponding free (resp. DNA bound) dimers.
The function h for mRNA (r) production is Michaelis-Menten or Hill like.

Stationary state of differential equations

Scaling up : a network of network

$$
X_{i}(t+1)=F\left(X_{i}(t),\left\{X_{j}(t)\right\}_{j \in N(i)}\right)
$$

Multiscale Gene Regulatory Networks

Multiscale gene interaction networks (Y. Refahi PhD):

- implementation of 3D simulation tools
- meristem reconstruction \& representation

WUS level

Building of a virtual meristem

5 - Structure-function integration

- Integrate processes at different time scales

Pin orientation << Auxin flux << cell growth \sim mechanics

- Dealing with missing information
- design choices, bibliography, sensitivity analysis
- model inversion : $X=M(p)$. For X_{0} find p_{0} such that $\left|X_{0}-M\left(p_{0}\right)\right|$ is minimum
- Programming language for (DS $)^{\mathbf{2}}$

Procedural vs declarative languages (MGS, L-Systems, VV, ...)

trans $\operatorname{div}=\{x / \operatorname{dividing}(x) \Rightarrow \operatorname{child}(x, 1), \operatorname{child}(x, 2)\}$

A first approach of carpel development

Growth Simulation (real time $=10 \mathrm{~h}$)

Acknowledgements

Virtual Plants (Montpellier):

Etienne Farcot

Jérôme Chopard
 (Post-doc)

Szymon Stoma (PhD Student)

Mikael Lucas Romain Fernandez (PhD Student) (PhD Student)
(Pierre Barbier de Reuille)
INRIA (Sophia-Antipolis):
Grégoire Malandain
(Asclepios, INRIA Sophia-
Antipolis)

