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What if we ‘played the tape’ of evolution again? 
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What if we ‘played the tape’ of evolution again? 

 

Same history of evolution? 

Same species but different history? 

… 
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Lamb, Progress in Retinal and Eye Research (2013) 

Collin et al, Phil. Trans. Roy. Soc. B (2009) 4 



If evolution discovers similar ‘solutions’ to similar problems, then 

maybe playing the tape again will give rise to similar species as before? 

 

If re-playing evolution might give rise to similar species, then can we 

predict the emergence of species without waiting for evolution to take 

its course? 
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Dynamical model: GARD (graded autocatalysis replication domain) 

Segre & Lancet, EMBO Reports (2000) 

Segre et al, Origins of Life and Evolution of the Biosphere (2001) 

o Model for minimal life / artificial life. 

o Replication & evolution in a system devoid of any biopolymer(s). 

o Molecular assemblies carry Compositional Information. 
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Organic molecules 
More complex chemical  

entities capable of:  

Replication 

Mutation 

Selection 

& 

Evolution 
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(last universal 

common ancestor) 

Prebiotic 

soup 
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Time, Billions of years from present 

The emergence of the first 

minimally-living system. 

 Self replication 

 Evolution. 
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Dynamical model: GARD (graded autocatalysis replication domain) 

Segre et al, PNAS (2000) 

COMPOSITIONAL replicators (as opposed to sequential replicators). 

Model for minimal life / artificial life. 
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j i 

bij bij 

More mutualistic More selfish 

Segre et al, J. Theor. Biol. (2001) 

Assembly accretion governed by 

a network of rate-enhancements. 

“Catalysis” 

 

bij values are randomly picked 

from a lognormal distribution. 

 

NG=100 

Dynamical model: GARD (graded autocatalysis replication domain) 
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Dynamical model: GARD (graded autocatalysis replication domain) 

Composomes are the species of GARD: 

 Faithfully replicate (to a degree) [PNAS (2000)] 

 Respond to selection pressure [Artificial Life (2012]) 

 Exhibit Lotka-Volterra population dynamics [J. Theor. Biol. (2014)] 

 Exhibit quasispecies dynamics, including error transition [BMC Evol. 

Biol. (2014)] 
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Network analysis: communities detection 

Fortunato, Physics Reports (2010) 

Xie et al, ACM Comput. Surv. (2013) 

Community: organization of nodes (=entities) in 

group, with relatively many edges (=interactions) 

between the group’s members compared to 

‘outside’. Fairly independent compartments of a 

graph. 

 The nodes probably share common properties 

and/or play similar roles. 
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Network analysis: communities detection 

3 different community detection algorithms: 

• Louvain [Journal of Statistical Mechanics: 

Theory and Experiment (2008)] 

• Infomap [European Physical Journal Special 

Topics (2009)] 

• OSLOM [PLoS One (2011)] 

14 



Network analysis: communities detection 

bij values are randomly picked from 

a lognormal distribution (102 nodes; 

104 edges). 

 

Sampled 10,000 different b’s. 

 

Communities topology is different 

than that of the overall network 
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Connecting the Detected Communities to the Observed Compotype Species 

Number of detected communities is bigger than 

number of observed species  not trivial to 

connect a community with a species 
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How to decide which community is related to which compotype? 

 The community that can best explain a compotype’s mass. 

Connecting the Detected Communities to the Observed Compotype Species 

Observed compotype 

(“original compotype”) 
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How to decide which community is related to which compotype? 

 The community that can best explain a compotype’s mass. 

Connecting the Detected Communities to the Observed Compotype Species 

Observed compotype 

(“original compotype”) 

For each community 

detected in a b 

{   ,    ,   ,   } 
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How to decide which community is related to which compotype? 

 The community that can best explain a compotype’s mass. 

Connecting the Detected Communities to the Observed Compotype Species 

Observed compotype 

(“original compotype”) 

For each community 

detected in a b 

{   ,    ,   ,   } 
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Connecting the Detected Communities to the Observed Compotype Species 

Projected Compotype Fraction 

(highest f) 

Compotype-Community 

assignment is: 

 Better than random 

 Unambiguous 

20 

Unpublished Content Edited 



Connecting the Detected Communities to the Observed Compotype Species 
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Predicting Species Emergence 
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Perron (1907) & Frobenius (1912) 

Eigen et al, Journal of Physical Chemistry (1988) 

Perron-Frobenius theorem: 

Real square matrix with positive entries has a 

unique largest real eigenvalue with corresponding 

eigenvector with strictly positive components. 

Example of a b 

matrix (network) 
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Predicting Species Emergence 
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High similarity between 

predicted & observed 

 successful perdition! 

Predicting Species Emergence 
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What about the ‘other’ communities? 

Number of detected communities is greater than 

the number of observed compotype species. 
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What about the ‘other’ communities? 
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SUM 

 

 

Future 

Reverse engineer a network to give rise to a species. 
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About a third of cases show positive response! 

Markovitch and Lancet, A. Life 18 (2012) 

Selection of Compositional Assemblies 

1,000 cases. 

Each case based on a different 

(random) b network. 
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Population Dynamics in GARD 

Species = compotypes 

Excellent fit! 
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C1 data

C2 data
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C1 data

C2 data

C3 data
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C1 data

Used to describe 

dynamics of natural 

populations. 

31 J. Theor. Biol (2014) 



Quasispecies 

Distance from compotype 

center of mass 

+ 

Gross, Fouxon, Lancet and Markovitch*, BMC Evol. Biol. 14, 2623 (2014) 32 



Single digit error rate 

Eigen (2002) 

Quasispecies 

Error catastrophe 

33 Gross, Fouxon, Lancet and Markovitch*, BMC Evol. Biol. 14, 2623 (2014) 
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Real GARD – Raphael Zidovetzki, U. California Riverside 

Real lipids: phosphate-idyl-(serine / amine / choline), sphingo-myelin 

and cholesterol. 

Actual physical properties (charge, length, unsaturation). 

Variability of lipid lengths in vesicle is highly correlated to 

vesicle replication time

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

0.5 0.6 0.7 0.8 0.9

St. dev of lipid length in vesicle

V
e

s
ic

le
 g

ro
w

th
 t

im
e R = -0.85 

Armstrong, Markovitch, Zidovetzki 

and Lancet, Phys. Biol. 8 (2011). 
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