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What if we ‘played the tape’ of evolution again?
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What if we ‘played the tape’ of evolution again?

Same history of evolution?
Same species but different history?
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If evolution discovers similar ‘solutions’ to similar problems, then
maybe playing the tape again will give rise to similar species as before?

If re-playing evolution might give rise to similar species, then can we

predict the emergence of species without waiting for evolution to take
ItS course?
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Dynamical model: GARD (graded autocatalysis replication domain)

o Model for minimal life / artificial life.
o Replication & evolution in a system devoid of any biopolymer(s).
o Molecular assemblies carry Compositional Information.
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Organic molecules
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LIFE

LUCA
(last universal
common ancestor)

The emergence of the first
minimally-living system.
v" Self replication

Prebiotic .
v" Evolution.
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Dynamical model: GARD (graded autocatalysis replication domain)

COMPOSITIONAL replicators (as opposed to sequential replicators).
Model for minimal life / artificial life.

Unpublished Content Edited
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Dynamical model: GARD (graded autocatalysis replication domain)

Assembly accretion governed by
a network of rate-enhancements.

“Catalysis™

Bi1j values are randomly picked
from a lognormal distribution.

N,=100 More mutualistic More selfish
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Dynamical model: GARD (graded autocatalysis replication domain)

Unpublished Content Edited

Composomes are the species of GARD:

v" Faithfully replicate (to a degree) [PNAS (2000)]

v" Respond to selection pressure [Artificial Life (2012])

v' Exhibit Lotka-Volterra population dynamics [J. Theor. Biol. (2014)]

v" Exhibit quasispecies dynamics, including error transition [BMC Evol.
Biol. (2014)]
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Network analysis: communities detection
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Community: organization of nodes (=entities) in
group, with relatively many edges (=interactions)
between the group’s members compared to
‘outside’. Fairly independent compartments of a
graph.

—> The nodes probably share common properties
and/or play similar roles.

Fortunato, Physics Reports (2010)
Xie et al, ACM Comput. Surv. (2013)
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Network analysis: communities detection

3 different community detection algorithms:

« Louvain [Journal of Statistical Mechanics:
Theory and Experiment (2008)]

« Infomap [European Physical Journal Special
Topics (2009)]

« OSLOM [PL0S One (2011)]
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Network analysis: communities detection

Unpublished Content Edited

Bi1j values are randomly picked from
a lognormal distribution (10% nodes;
10% edges).

Sampled 10,000 different (3’s.

=» Communities topology is different
than that of the overall network €
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Connecting the Detected Communities to the Observed Compotype Species

Unpublished Content Edited

Number of detected communities is bigger than
number of observed species =» not trivial to
connect a community with a species
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Connecting the Detected Communities to the Observed Compotype Species

How to decide which community is related to which compotype?
—> The community that can best explain a compotype’s mass.

Observed compotype
(“original compotype”)

Unpublished Content Edited
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Connecting the Detected Communities to the Observed Compotype Species

How to decide which community is related to which compotype?
—> The community that can best explain a compotype’s mass.

For each community
detected in a B Observed compotype

(0,0.0.0) (“original compotype”)

Unpublished Content Edited

18



Connecting the Detected Communities to the Observed Compotype Species

How to decide which community is related to which compotype?
—> The community that can best explain a compotype’s mass.

For each community
detected in a B Observed compotype

eé& (0.0.0.0) (“original compotype”)

mmm——
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Connecting the Detected Communities to the Observed Compotype Species

Unpublished Content Edited

Projected Compotype Fraction
(highest f)

Compotype-Community
assignment Is:
< v’ Better than random
—v" Unambiguous
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Connecting the Detected Communities to the Observed Compotype Species

Unpublished Content Edited

o V (community)eV (original )
Similarity = 0)=
imilarity =cos(¢) IV (community )| |V (original |
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Perron-Frobenius theorem:

Real square matrix with positive entries has a
unique largest real eigenvalue with corresponding
eigenvector with strictly positive components.

Example of a 3
. matrix (network
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Perron (1907) & Frobenius (1912)
Eigen et al, Journal of Physical Chemistry (1988) 23
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High similarity between
predicted & observed
=» successful perdition!

Unpublished Content Edited
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What about the ‘other’ communities?

Number of detected communities Is greater than
the number of observed compotype species.

Unpublished Content Edited
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Future
Reverse engineer a network to give rise to a species.

Unpublished Content Edited
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Selection of Compositional Assemblies

About a third of cases show positive response!
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Markovitch and Lancet, A. Life 18 (2012) 30



Compotype population fraction

Compotype population fraction
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Population Dynamics in GARD

{ ----- Cl data

15 2 25 3 35 4 45

Time [10* splits]

1 I I T 1 1 1
====C1 data

-=-=-=C2 data
-=-=-=C3 data

15 2 25 3 35 4 45
Time [10” splits]

5

-=-=-=C1 data
-=-==C2 data| 1

77 NI"‘\ kWY
a, 2NN \,f‘ll" ‘\l ¢

Compotype population fraction
o
N

Y s Y

0O 05 1 15 2

25 3 35 4 45 5

Time [10* splits]

Excellent fit!

Ne¢

C+ D aC

j=lj#i
rC | 1-
K

1

Used to describe
dynamics of natural
populations.

Species = compotypes
J. Theor. Biol (2014) 31



Quasispecies
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RELATIVE CONCENTRATIONS

Error catastrophe
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Real GARD — Raphael Zidovetzki, U. California Riverside

Real lipids: phosphate-idyl-(serine / amine / choline), sphingo-myelin
and cholesterol.

Actual physical properties (charge, length, unsaturation).

Mo run description [ool_paper_runs/ool_runs_2010_08_25_paper_step_7_r635/run_03_comp_20_size_100] (kmeans propertypes
[best] k=2)

Wesicle Properties Compared by Euclidean Distance (on color [0,3]) Overall-Scaled
100 = = = — 3

Variability of lipid lengths in vesicle is highly correlated to
vesicle replication time

3.2 . . . ¢

Armstrong, Markovitch, Zidovetzki 0.5 0.6 0.7 0.8 0.9
and Lancet, Phys. Biol. 8 (2011). St. dev of lipid length in vesicle
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