In-vivo implementation of bioengineering circuits

ICOS seminars

March 1st, 2016

Charles Winterhalter

Supervision: Birgit Koch, Natalio Krasnogor

Centre For Bacterial Cell Biology

Outline

What is bioengineering?

- Taking a bit of biology and appending it some physics, electronics, computer science...
- Examples:
 - biomedical equipment (MRI/CT scan)
 - prosthetic limbs
 - astronaut suits

Genetic circuits in synthetic biology

a Transcriptionally based modules

b Translationally based modules

theo	Tc	NAND	NOR	AND
-	-	5.4	8.1	0.0
-	•	4.3	2.0	6.1
•	-	5.9	u	7.0
+	+	0.0	0.0	26.2

c Post-translationally based modules

Nature Reviews | Molecular Cell Biology

Oscillatory behaviour

Protein expression or degradation

Positive/negative feedback loops

Cell-to-cell communication

Electrical circuit diagrams

Cell-to-cell communication

Quorum-sensing as molecular wire

- Quorum-sensing is used to modulate multicellular synchronisation in *V. fischeri*
- Small molecules diffusion through bacterial membranes

Microfluidics rhymes with microdistances

Study of bacterial communication via chemical wires

- 1. Restricted space in growth chambers: fixed number of cells
- 2. Diffusion speed/response between distant bacterial colonies

Sender-receiver system

From the lux operon of V. fischeri

Detects AHL and complexes with LuxR to

activate red fluorescence (mCherry)

Produces the quorum-sensing signal N-(3-oxohexanoyl) homoserine lactone (**AHL**) and green fluorescence (**sfGFP**)

States behaviour

Easy maths for biologists

How to figure out the production rate of the sender?

Sender mathematical model

Activity of the pBad promoter

$$P_{BAD} = \frac{k_1 + k_2 C}{1 + k_1 + k_2 C + k_3 C_F}$$

Expression of autoinducer protein

 $\frac{\delta S}{\delta t} = \rho P_{BAD} - \Delta S$

Production/diffusion of wiring molecule

$$\frac{\delta L}{\delta t} = D \times \frac{d^2 L}{dx^2} + \lambda_S - \Delta_L$$

Physical model

Bioform, a 3D physical modelling environment (Jonathan Naylor)

Pseudo-Newtonian physics simulation

Sender induction: green fluorescence detection

Flow-cytometer (3rd floor, CBCB)

Plate reader (4th floor, CBCB)

Receiver induction: luciferase activity detection

Plate reader (4th floor, CBCB)

Microfluidics chips fabrication

Polymer preparation Air removal

Crosslinking Cut chips / ports Plasma activation Bonding

live-imaging

Diffusion distance / cell copy number

Pulse generator: the Plux-Rcl promoter

How it works in large-scale microfluidics

nature

Vol 463 21 January 2010 doi:10.1038/nature08753

ARTICLES

A synchronized quorum of genetic clocks

Tal Danino¹*, Octavio Mondragón-Palomino¹*, Lev Tsimring² & Jeff Hasty^{1,2,3}

A really nice genetic clock synchronisation

Band detector

How to wire circuits of sender-receiver systems?

Down to the physics with Bioform

Band detector

Propagating pulse generator

Quorum-sensing crosstalk

A list of AHLs can create potential crosstalk in LuxR/LuxI -like systems

Summary

- Integration / characterisation of *V. fischeri* LuxR/LuxI system into *E. coli* as a sender-receiver system
- Assess AHL diffusion distances between independent bacterial colonies via microflulidics
- Based on the collected data:
 - Generate a library of quorum-sensing sender-receiver systems
 - Use soft-photolithography to design new circuits that wire multiple sender-receiver systems

Can we build such circuits with bacteria?

Acknowledgements

Engineering and Physical Sciences Research Council

and thanks to everyone having helped me one way or another