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Formal Verification 

“Making (mathematically) sure that systems 
perform as expected” 

Model Checker 

System Representation 

Temporal Formula f 

f is True / False (Counterexample) 



Real-World Impact 

• Pnueli received the 1996 Turing Award (‘Nobel 
prize of computing’) for temporal logic 

• Clarke, Emerson, and Sifakis received the 2007 
Turing Award for (temporal logic) model checking 

• Massive real-world impact: 

– most hardware designs (e.g., smartphone chips) are 
now formally verified  

– used by large companies (Intel, Microsoft, etc.) 

 



 The oven doesn’t heat up until the door is closed 

 

 Not heat_up holds until door_closed 

 

 (~ heat_up) U door_closed 

 

 A ((~ heat_up) U door_closed) 

Temporal Logic 

A formal (mathematical) notation to 
express temporal relations between events 

For example, a microwave oven should satisfy: 



~ Start 
~ Close 
~ Heat 
~ Error 

Start 
~ Close 
~ Heat 
Error 
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Model Checking 
An intelligent exhaustive search 
of the state space of the design 

State-transition graph 
describes system evolution 
over time 



Transition System 
(Automaton, Kripke structure) 

Hardware Description 

(VERILOG, VHDL, SMV) 
Informal  
Specification 

Temporal Logic Formula 
(CTL, LTL, etc.) 

Model Checking 



Transition System 

Informal  
Specification 

Temporal Logic Formula 
(CTL, LTL, etc.) 

Safety Property: 
Is bad state         unreachable: 

 
satisfied 

Initial State 

Counterexamples 

Program or circuit 



Transition System 

Program or circuit 
Informal  
Specification 

Temporal Logic Formula 
(CTL, LTL, etc.) 

Initial State 

Safety Property: 
bad state        unreachable 
 

Counterexamples 



Transition System 

Program or circuit 
Informal  
Specification 

Temporal Logic Formula 
(CTL, LTL, etc.) 

Initial State 

Safety Property: 
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Counterexamples 

Counterexample 



Verification of Stochastic Models 

 Temporal properties over the model’s 
(stochastic) evolution 

 For a property Ф and a fixed 0<θ<1, we ask 
whether 

P≥θ (Ф)    or   P<θ (Ф) 

 For example: “does GFP reach 4,000 within 
20 minutes, with probability at least 0.99?” 



Simulation-based Verification 

 State Space Exploration infeasible for large systems 

 Symbolic MC with OBDDs can address large state spaces 

 But scalability depends on the structure of the system 

 Pros: simulation is feasible for many more systems 

 Often easier to simulate a complex system than to build the 
transition relation for it 

 Pros: easier to parallelize 

 Cons: answers may be wrong 

 But error probability can be bounded 

 Cons: simulation is incomplete (continuous state spaces) 



 
Key idea 

(Haakan Younes, 2001) 

 Suppose system behavior w.r.t. a (fixed) property Ф can 
be modeled by a Bernoulli of parameter p: 

 System satisfies Ф with (unknown) probability p 

 Questions: P≥θ (Ф)? (for a fixed 0<θ<1)  

 Draw a sample of system simulations and use: 
 Statistical hypothesis testing: Null vs. Alternative hypothesis 

 

 Statistical estimation: returns “p in (a,b)” (and compare a with θ) 

 

Statistical Model Checking 



 Problem: sampling-based methods have 
no way to choose which pure non-
deterministic action or outcome to follow 
when creating a sample execution trace. 

Nondeterministic Systems 

Markov Decision 
Processes (MDPs) 



 Memory-less stochastic policy or 
“scheduler” can resolve nondeterminism. 

 Specifies choices in each state: 

Resolving Nondeterminism 

MDP 

Discrete-time Markov chain 



Nondeterministic Systems 

 Different resolution of nondeterminism 
(schedulers) can result in different behaviors 

 Max and min probability that a property Ф 
holds 

 Question: is Prob(Ф)≤θ, for all schedulers? 

 How to find the optimal scheduler: 

 maximizes (minimizes) probability that Ф holds 



 

 

Our Approach 

D. Henriques, J. Martins, P. Zuliani, A. 
Platzer and E. M. Clarke. QEST 2012. 



Bounded Linear Temporal Logic 

 Bounded Linear Temporal Logic (BLTL): A version of LTL 
with time bounds on temporal operators. 

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model 

 along states s0, s1, . . . 

 the system stays in state si for time ti 

 divergence of time: Σi ti  diverges (i.e., non-zeno) 

 σi: Execution trace starting at state i 

 A model for simulation traces 



BLTL: Examples 

 “within 600 time units, the number of p53 
molecules will be greater than 900”  

F600 ( p53 > 900 ) 

 “within 200 time units, p53 will stay below 
33,000 for 900 time units” 

F200 ( G900 ( p53 < 3.3 x 104 ) ) 

 “within 100 t.u., p53 will pass 2,000, and in the 
next 100 t.u. it will eventually be below 1,000” 

F100 ( p53 ≥ 2,000  & F100 ( p53 ≤ 1,000 ) ) 



Semantics of BLTL 

The semantics of BLTL for a trace σk: 

 σk        AP    iff atomic proposition AP true in state sk 

 σk        Φ1 v Φ2   iff  σk      Φ1 or σk      Φ2 

 σk       ¬Φ    iff  σk      Φ does not hold 

 σk        Φ1 Ut Φ2   iff  there exists natural i such that 

1)  σk+i      Φ2  

2)  Σj<i tk+j ≤ t 

3)  for each 0 ≤ j < i, σk+j     Φ1 

 “within time t, Φ2  will be true and Φ1 will hold until then” 

 
 In particular, Ft Φ = true Ut Φ,  Gt Φ = ¬Ft ¬Φ 



SMC for Markov Decision Processes 

 A guided search for the optimal scheduler 
using reinforcement learning: 

 Simulate the system keeping track of the 
transitions taken, and check property Ф 

 Reinforce the “good” transitions (i.e., those 
leading to property satisfaction) 

 Recall that: MDP + scheduler = DTMC 

 

 



 

 

Our Approach 



 Learn the most adversarial choices at each 
state, by successively refining an initial guess. 

 

 

 

 

 Reinforcement learning, where quality is 
based on how often state/action choices occur 
in traces that satisfy the property in question. 

Scheduler Evaluation & Improvement 



 Quality Qσ(s, a) of state s, action a is  

Probσ(traces satisfying Ф and containing (s, a))  

 Scheduler evaluation: 

 Qσ(s, a) is estimated via simulation 

 Scheduler improvement:  

 Give more probability to transitions with 
higher quality (i.e., higher Qσ(s, a))  

Scheduler Evaluation & Improvement 



 Quality Qσ(s, a) is estimated via finite 
sample-size simulation: 

𝑄𝜎 𝑠, 𝑎 =
# 𝜋  𝜋 ⊢ 𝜙 ∧ 𝑠, 𝑎 ∈ 𝜋} 

# 𝜋  𝑠, 𝑎 ∈ 𝜋}
 

 Improving a scheduler σ: 

𝜎′ 𝑠, 𝑎 =
𝑄𝜎 𝑠, 𝑎

 𝑄𝜎 𝑠, 𝛼𝛼

 

More details in our QEST 2012 paper… 

Scheduler Evaluation & Improvement 



 Value of a state under a scheduler: 

𝑉𝜎 𝑠 = 𝑃𝑟𝑜𝑏𝜎 𝜋  𝜋 ⊢ 𝜙 ∧ 𝑠, 𝑎 ∈ 𝜋 ∧ 

   𝑎 ∈ Α(𝑠)) 

 Note that: 

𝑃𝑟𝑜𝑏𝜎 𝜋  𝜋 ⊢ 𝜙) = 𝑉𝜎 𝑠 

=  𝜎 𝑠 , 𝑎 ⋅ 𝑄𝜎 (𝑠 , 𝑎)

𝑎∈Α(𝑠 )

 

 

 

Convergence 



 We show that if 𝜎 is a scheduler and 𝜎′is 
our improved scheduler, then: 

𝑉𝜎′ 𝑠 ≥ 𝑉𝜎 𝑠  

 But we might converge to a local 
optimum … 

Convergence 



Correctness 

 Question: is Probσ(Ф) ≤ θ, for all schedulers σ? 

 If we find a scheduler σ such that  

   Probσ(Ф) > θ 

then we are done. The answer is ‘no’ and we 
can trust it. 

 Otherwise: 

 The question above may be true; or 

 We ended up in a local optimum 

 We restart the algorithm to exponentially 
increase confidence in answer ‘yes’ 

 



SMC for Markov Decision Processes 

 Parallel implementation in Prism 

 Can be faster than Prism on some problems 

 Can provide counterexample schedulers 



Experiments: Network protocols 



Experiments: Two robots 
 n by n grid 
 Robot movements are imprecise (r = scattering radius) 



Conclusions (Part I) 

 Simulation-based verification of MDP is: 

 Possible! 

 Efficient (better than Prism in some cases) 

 Possible extensions: 

 Unbounded properties, general schedulers, 
CTMDP (?), etc. 

 



Part II: Stochastic Hybrid Systems 

 Hybrid System: 

 Combine 
continuous 
and discrete 
evolution 

 A model for 
cyber-physical 
systems 



 Reachability properties: 

 Does the system reach the bad region? 

Reachability 

Bad region 

x 

y 

System evolution 



A Step Back 

 Reachability is undecidable* even for linear 
(differential) hybrid systems!! 

 So, the question is too hard for a computer, 
and we need to “relax” it 

 We need to reformulate the reachability 
problem into an easier one 

*It is impossible to develop an algorithm that for any hybrid system and region 
will tell us whether the system evolution reaches the region 



 δ-reachability (Gao, Avigad, Clarke 2012) is 
instead decidable 

 For δ > 0, the system evolution may: 

 

δ-Reachability 

1. Get to a distance < δ from the bad 

region, without entering it 

2. Enter the bad region 

3. Stay out of the bad region (more than δ)  
 

δ-satisfiable 

unsatisfiable 

An algorithm solving the problem above is called δ-complete 



 

δ-Reachability 

Bad region 

x 

y 

δ 

Larger than δ, so reachability is unsatisfied 



 

δ-Reachability 

Bad region 

x 

y 

δ 

Smaller than δ, so reachability is δ-satisfiable 



Stochastic Hybrid Systems 

 We study Hybrid Systems with random initial 
parameters (US Navy grant with Clarke) 

 E.g.: the initial temperature in the thermostat 
model is, say, normally distributed (Gaussian) 

 Question: what is the probability that the 
temperature reaches 20C within 10mins? 

F. Shmarov, P. Zuliani. 2014. 



Probabilistic δ-Reachability 

 We want a δ-complete procedure for SHS 
with random initial parameters 

 This boils down to computing integrals with 
verified results: 
 the integration algorithm returns an interval 

(size < δ) which is guaranteed to contain the 
true result 

 based on verified simulation algorithms for 
solving ODEs (computing interval enclosures) 



Probabilistic δ-Reachability 

Thermostat model (δ=10-9): 



Probabilistic δ-Reachability 

Thermostat model with 4 modes (δ=10-9): 



Next Steps 

 SHS with random initial parameters and 
nondeterministic parameters 

 Allow stochastic differential equations in 
the modes 

 Curtis has written a SBML->SMT2 translator 
 Parameter estimation for ODE models 

 Synbio design: pruning out unfeasible models 

 For papers, tools, etc. please see my homepage 

 


