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Formal Verification

“Making (mathematically) sure that systems
perform as expected”

System Representation

—

Model Checker

Temporal Formula f

l

fis True / False (Counterexample)




Real-World Impact

* Pnueli received the 1996 Turing Award (‘Nobel
prize of computing’) for temporal logic

e Clarke, Emerson, and Sifakis received the 2007
Turing Award for (temporal logic) model checking

* Massive real-world impact:

— most hardware designs (e.g., smartphone chips) are
now formally verified

— used by large companies (Intel, Microsoft, etc.)



Temporal Logic

A formal (mathematical) notation to
express temporal relations between events

For example, a microwave oven should satisfy:

" The oven doesn’t heat up until the door is closed
® Not heat_up holds until door_closed
" (~ heat_up) U door closed

® A((~ heat_up) U door_closed)



Model Checking

An intelligent exhaustive search
of the state space of the design

State-transition graph
describes system evolution
over time
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Verification of Stochastic Models

" Temporal properties over the model’s
(stochastic) evolution

" For a property @ and a fixed O<U<1, we ask
whether

P.o (@) or P_s(®P)

" For example: “does GFP reach 4,000 within
20 minutes, with probability at least 0.997?”



Simulation-based Verification

State Space Exploration infeasible for large systems

= Symbolic MC with OBDDs can address large state spaces

= But scalability depends on the structure of the system

Pros: simulation is feasible for many more systems

= Often easier to simulate a complex system than to build the
transition relation for it

Pros: easier to parallelize

Cons: answers may be wrong

= But error probability can be bounded

Cons: simulation is incomplete (continuous state spaces)



Statistical Model Checking

Key idea

(Haakan Younes, 2001)

= Suppose system behavior w.r.t. a (fixed) property @ can
be modeled by a Bernoulli of parameter p:

= System satisfies @ with (unknown) probability p
= Questions: P4 (®)? (for a fixed 0<9<1)

" Draw a sample of system simulations and use:
= Statistical hypothesis testing: Null vs. Alternative hypothesis

Ho: M= Pso(¢)  Hi: M Pey(9)

= Statistical estimation: returns “p in (a,b)” (and compare a with )




Nondeterministic Systems

" Problem: sampling-based methods have
no way to choose which pure non-
deterministic action or outcome to follow
when creating a sample execution trace.

Markov Decision
Processes (MDPs)




Resolving Nondeterminism

" Memory-less stochastic policy or
“scheduler” can resolve nondeterminism.

" Specifies choices in each state:

MDP

O (O Discrete-time Markov chain




Nondeterministic Systems

" Different resolution of nondeterminism
(schedulers) can result in different behaviors

" Max and min probability that a property @
holds

" Question: is Prob(®)<9, for all schedulers?

" How to find the optimal scheduler:
" maximizes (minimizes) probability that @ holds
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Bounded Linear Temporal Logic

Bounded Linear Temporal Logic (BLTL): A version of LTL
with time bounds on temporal operators.

Let o= (s, t,), (5, t;), - . . be an execution of the model
" along statess, s, ...
= the system stays in state s, for time t;

= divergence of time: , t; diverges (i.e., non-zeno)
o': Execution trace starting at state i

A model for simulation traces



BLTL: Examples

= “within 600 time units, the number of p53
molecules will be greater than 900"

FS% ( p53 > 900 )

= “within 200 time units, p53 will stay below
33,000 for 900 time units”

FZOO( G200 ( p53 <3.3x10% ) )

= “within 100 t.u., p53 will pass 2,000, and in the
next 100 t.u. it will eventually be below 1,000

F100( p53 > 2,000 & F'%° ( p53<1,000))




Semantics of BLTL

The semantics of BLTL for a trace o*:

= ok = AP

" o = O,vO,

» ok F-0

" o F O, U0,
1) o FE O,
2) Ity St

iff atomic proposition AP true in state s,
iff oK = ®, or o O,
iff o = @ does not hold

iff there exists natural /i such that

3) foreachO<j<i c"F @,
“within time t, @, will be true and @, will hold until then”

» |n particular, FF ® = true ‘Ut @, GO =-F -0



SMC for Markov Decision Processes

" A guided search for the optimal scheduler
using reinforcement learning:

= Simulate the system keeping track of the
transitions taken, and check property @

= Reinforce the “good” transitions (i.e., those
leading to property satisfaction)

= Recall that: MDP + scheduler = DTMC
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Scheduler Evaluation & Improvement

= | earn the most adversarial choices at each
state, by successively refining an initial guess.

/
4 R F %

Scheduler Scheduler
Evaluation Improvement

\_ Y, \_ Y,
/N

Initial
Scheduler —
Guess

" Reinforcement learning, where quality is
based on how often state/action choices occur
in traces that satisfy the property in question.



Scheduler Evaluation & Improvement

= Quality Q,(s, a) of state s, action a is

Prob _(traces satisfying @ and containing (s, a))

= Scheduler evaluation:

" Q_(s, a) is estimated via simulation

" Scheduler improvement:

= Give more probability to transitions with
higher quality (i.e., higher Q_(s, a))



Scheduler Evaluation & Improvement

= Quality Q (s, a) is estimated via finite
sample-size simulation:
#Hr|mk+-¢ A(s,a) €}
#{m| (s,a) € m}

Qs(s,a) =

" Improving a scheduler o:

Qs (s, a)
e Qo (s, @)

More details in our QEST 2012 paper...

o'(s,a) =



Convergence

= \Value of a state under a scheduler:
V.(s) =Prob,(m|m+¢A(s,a) Em A
a € A(s))

= Note that:
Prob,(m | m + ¢p) = V,(5)

= ) 0600, (.0)

acA(s)



Convergence

= We show that if g is a scheduler and ¢’is
our improved scheduler, then:

Va’(s_) = VO‘(§)

" But we might converge to a local
optimum ...



Correctness

Question: is Prob (@) < §, for all schedulers o?

If we find a scheduler o such that
Prob_(®) > 0

then we are done. The answer is ‘no’ and we
can trust it.

Otherwise:
" The question above may be true; or
" We ended up in a local optimum

We restart the algorithm to exponentially
increase confidence in answer ‘yes’



SMC for Markov Decision Processes

" Parallel implementation in Prism
" Can be faster than Prism on some problems

" Can provide counterexample schedulers



Experiments: Network protocols

(7] 0.5 0.8 0.85 0.9 0.95 PRISM
Cith out F F F T T 0.86
t 1.7 11.5 35.9 115.7 111.9 136
CSMA (7] 0.3 0.4 0.45 0.5 0.8 PRISM
36 out F F F T T 0.48
t 2.5 9.4 18.8 1339 119.3 2995
(7] 0.5 0.7 0.8 0.9 0.95 PRISM
Cith out F F F F T 0.93
t 3.5 3.7 17.5 69.0 232.8 || 16244
CSMA (7] 0.5 0.7 0.8 0.9 0.95 PRISM
46 out F F F F F timeout
t 3.7 4.1 4.2 26.2 258.9 timeout
(7] 0.1 0.15 0.2 0.25 0.5 PRISM
WLBAN out F F T T T 0.18
t 4.9 11.1 124.7 104.7 103.2 1.6
(7] 0.1 0.15 0.2 0.25 0.5 PRISM
WLEAN out F F T T T 0.18
t 5.0 11.3 127.0 104.9 102.9 1.6




Experiments: Two robots

" nbyngrid
= Robot movements are imprecise (r = scattering radius)

Robot 7] 0.9 0.95 0.99 PRISM
n = 50 out F F F 0.999
r=1 t 23.4 27.5 40.8 1252.7
Robot 7] 0.9 0.95 0.99 PRISM
n = 50 out F F F 0.999
r—=72 t (1.7 73.9 250.4 || 3651.045
Robot 7] 0.95 0.97 0.99 PRISM
n=7175 out F F F timeout
r—=72 t 3825 | 377.1 2676.9 timeout
Robot 7] 0.85 0.9 0.95 PRISM
n = 200 out F F T timeout
r—=23 t 903.1 | 1129.3 | 2302.8 timeout




Conclusions (Part |)

= Simulation-based verification of MDP is:
= Possible!

= Efficient (better than Prism in some cases)

= Possible extensions:

* Unbounded properties, general schedulers,
CTMDP (?), etc.



Part Il: Stochastic Hybrid Systems

" Hybrid System:

T <18

= Combine
continuous
and discrete
evolution

7)

TYA(T" =

= A model for
cyber-physical
systems

(T

(T' =T) A (¢’

7)



Reachability

" Reachability properties:

" Does the system reach the bad region?

N

y

System evolution

. Bad region

=

\ 4



A Step Back

" Reachability is undecidable* even for linear
(differential) hybrid systems!!

" So, the question is too hard for a computer,
and we need to “relax” it

" We need to reformulate the reachability
problem into an easier one

*It is impossible to develop an algorithm that for any hybrid system and region
will tell us whether the system evolution reaches the region




6-Reachability

" 5-reachability (Gao, Avigad, Clarke 2012) is
instead decidable

" For 6 >0, the system evolution may:

—

1. Getto a distance < 6 from the bad
5-satisfiable — region, without entering it

2. Enter the bad region

unsatisfiable { 3. Stay out of the bad region (more than )

An algorithm solving the problem above is called 6-complete




6-Reachability

Larger than §, so reachability is unsatisfied

Bad region

v



6-Reachability

Smaller than 6, so reachability is 6-satisfiable

Bad region

v



Stochastic Hybrid Systems

" We study Hybrid Systems with random initial
parameters (US Navy grant with Clarke)

" E.g.: the initial temperature in the thermostat
model is, say, normally distributed (Gaussian)

= Question: what is the probability that the
temperature reaches 20C within 10mins?

F. Shmarov, P. Zuliani. 2014.



Probabilistic 6-Reachability

" We want a 6-complete procedure for SHS
with random initial parameters

" This boils down to computing integrals with

verified results:

" the integration algorithm returns an interval
(size < 8) which is guaranteed to contain the
true result

" based on verified simulation algorithms for
solving ODEs (computing interval enclosures)



Probabilistic 6-Reachability

Thermostat model (6=10-):

# k T Probability interval CPU

[ |
1 1 0.6 [0/006693073099383227. 0/006693073733195108] 31
2 5 1.8  [0.002635117907540255. 0.002635118445341895] 188
3 7 24 [0.00160257761701815, 0.001602578290160313] 413

k = number of discrete transitions, 7 = global time, CPU = CPU time in seconds



Probabilistic 6-Reachability

Thermostat model with 4 modes (6=107):

# k T Probability interval CPU
| 2 0.6 [0.0007687433606520627, 0.0007687433607436878] 53

2 6 1.7 [9.585015171225825e-08, 9.684797129694618e-08] 343
3 6 1.8 [0.003967491767795972, 0.003967492552568959] 708

k = number of discrete transitions, 7 = global time, CPU = CPU time in seconds



Next Steps

= SHS with random initial parameters and
nondeterministic parameters

" Allow stochastic differential equations in
the modes

® Curtis has written a SBML->SMT2 translator

= Parameter estimation for ODE models
" Synbio design: pruning out unfeasible models

" For papers, tools, etc. please see my homepage



