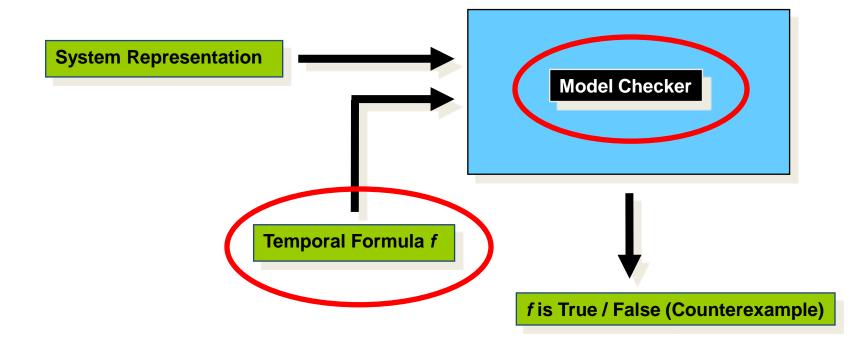
Simulation-based Verification for Stochastic Systems

Paolo Zuliani

- Formal verification and Model Checking
- Part I: Markov Decision Processes
- Part II: Stochastic Hybrid Systems

Formal Verification

"Making (mathematically) <u>sure</u> that systems perform as expected"



Real-World Impact

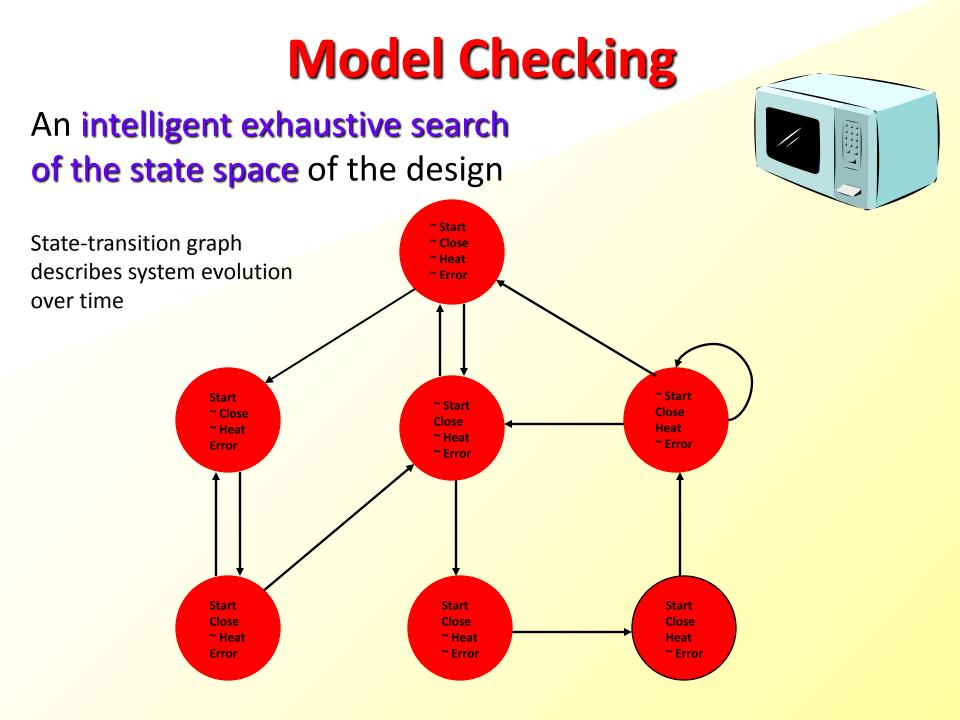
- Pnueli received the 1996 *Turing Award* ('*Nobel* prize of computing') for temporal logic
- Clarke, Emerson, and Sifakis received the 2007 *Turing Award* for (temporal logic) model checking
- Massive real-world impact:
 - most hardware designs (*e.g.*, smartphone chips) are now *formally verified*
 - used by large companies (Intel, Microsoft, etc.)

Temporal Logic

A formal (mathematical) notation to express *temporal relations* between events

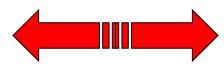
For example, a microwave oven should satisfy:

- The oven doesn't heat up until the door is closed
- Not heat_up holds until door_closed
- (~ heat_up) U door_closed
- A ((~ heat_up) U door_closed)



Model Checking

Hardware Description (VERILOG, VHDL, SMV)

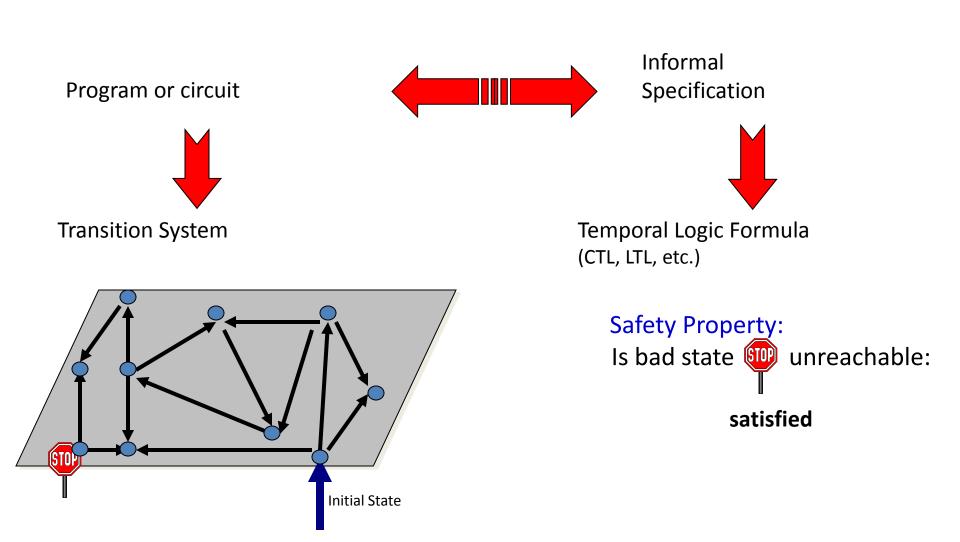


Informal Specification

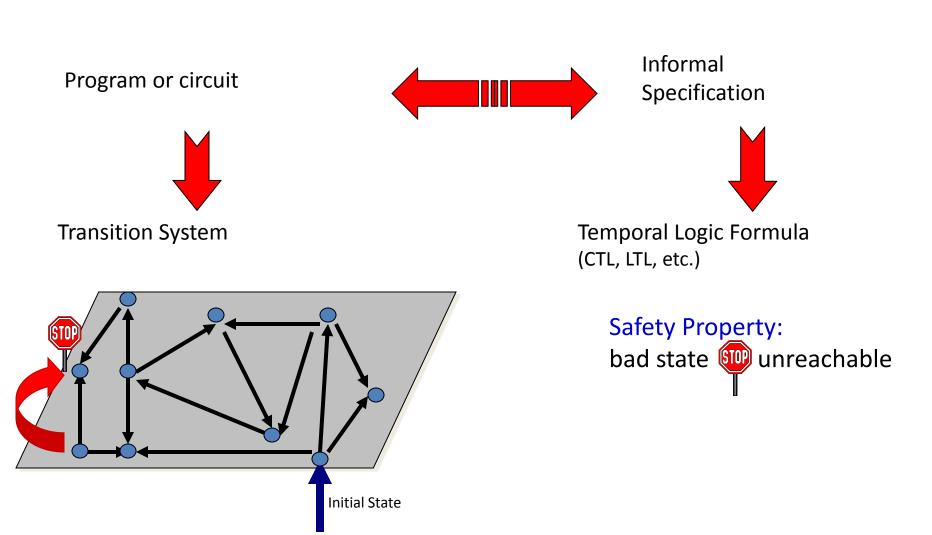
Transition System (Automaton, Kripke structure)

Temporal Logic Formula (CTL, LTL, etc.)

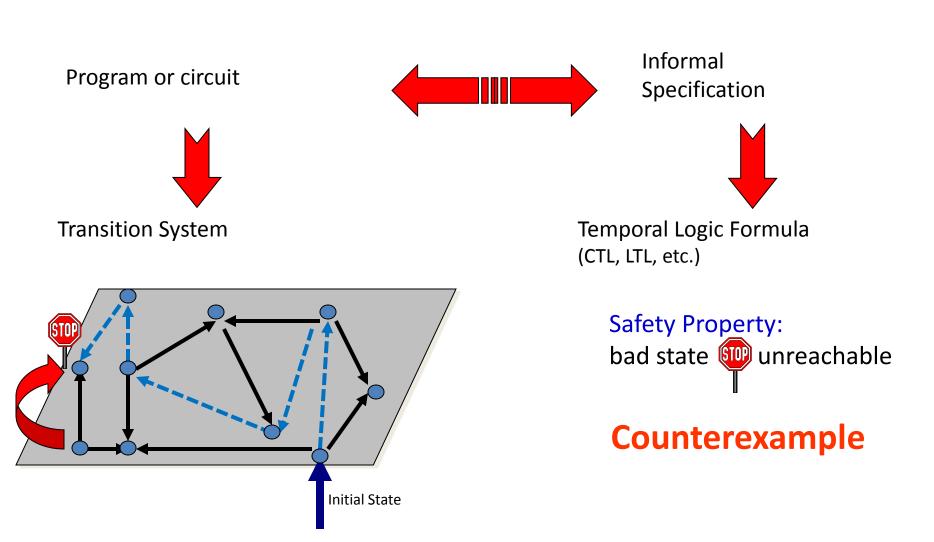
Counterexamples



Counterexamples



Counterexamples



Verification of Stochastic Models

- Temporal properties over the model's (stochastic) evolution
- For a property Φ and a fixed O<ϑ<1, we ask whether

$$P_{\geq \vartheta}(\Phi) \text{ or } P_{<\vartheta}(\Phi)$$

 For example: "does GFP reach 4,000 within 20 minutes, with probability at least 0.99?"

Simulation-based Verification

- State Space Exploration infeasible for large systems
 - Symbolic MC with OBDDs can address large state spaces
 - But scalability depends on the structure of the system
- Pros: simulation is feasible for many more systems
 - Often easier to simulate a complex system than to build the transition relation for it
- Pros: easier to parallelize
- Cons: answers may be wrong
 - But error probability can be bounded
- Cons: simulation is incomplete (continuous state spaces)

Statistical Model Checking

<u>Key idea</u>

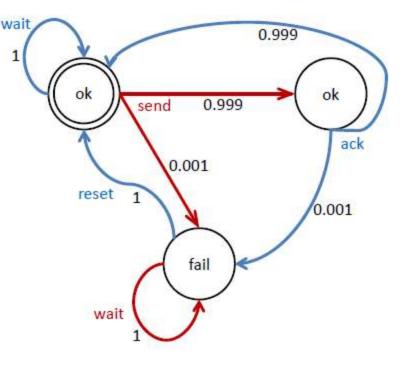
(Haakan Younes, 2001)

- Suppose system behavior w.r.t. a (fixed) property Φ can be modeled by a Bernoulli of parameter p:
 - System satisfies \$\varPhi\$ with (unknown) probability \$p\$
- Questions: $P_{\geq \vartheta}(\Phi)$? (for a fixed $0 < \vartheta < 1$)
- Draw a sample of system simulations and use:
 - Statistical hypothesis testing: Null vs. Alternative hypothesis $H_0: \mathcal{M} \models P_{\geqslant \theta}(\phi) \qquad H_1: \mathcal{M} \models P_{<\theta}(\phi)$
 - Statistical estimation: returns "p in (a,b)" (and compare a with ϑ)

Nondeterministic Systems

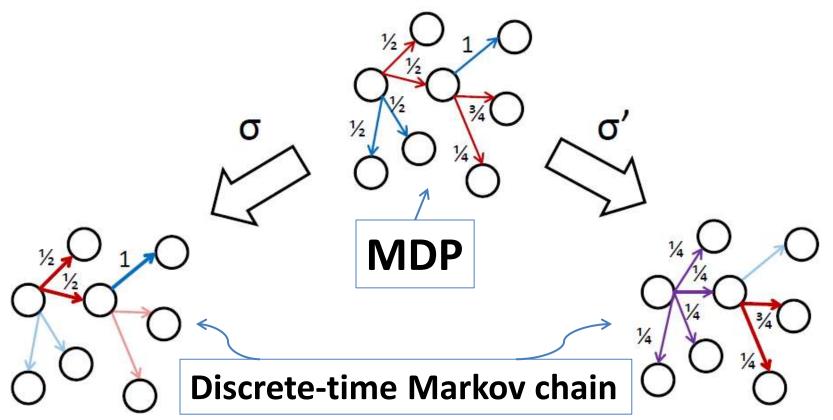
 Problem: sampling-based methods have no way to choose which pure nondeterministic action or outcome to follow when creating a sample execution trace.

Markov Decision Processes (MDPs)



Resolving Nondeterminism

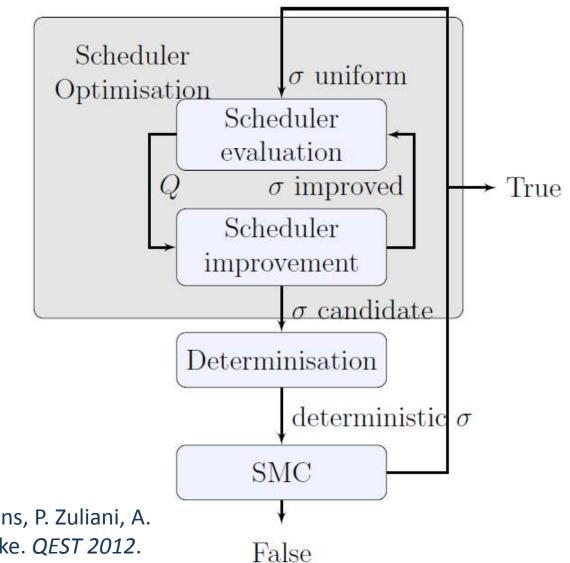
- Memory-less stochastic policy or "scheduler" can resolve nondeterminism.
- Specifies choices in each state:



Nondeterministic Systems

- Different resolution of nondeterminism (schedulers) can result in different behaviors
- Max and min probability that a property Φ holds
- Question: is $Prob(\Phi) \leq \vartheta$, for **all schedulers**?
- How to find the optimal scheduler:
 - maximizes (minimizes) probability that ϕ holds

Our Approach



D. Henriques, J. Martins, P. Zuliani, A. Platzer and E. M. Clarke. *QEST 2012*.

Bounded Linear Temporal Logic

- Bounded Linear Temporal Logic (BLTL): A version of LTL with time bounds on temporal operators.
- Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be an execution of the model
 - along states s₀, s₁, ...
 - the system stays in state s_i for time t_i
 - divergence of time: Σ_i t_i diverges (i.e., non-zeno)
- σ^i : Execution trace starting at state *i*
- A model for simulation traces

BLTL: Examples

 "within 600 time units, the number of p53 molecules will be greater than 900"

 "within 200 time units, p53 will stay below 33,000 for 900 time units"

$$\mathbf{F}^{200}\left(\;\mathbf{G}^{900}\left(\;p53<3.3\,\mathrm{x}\;10^{4}\;\right)\;\right)$$

• "within 100 t.u., p53 will pass 2,000, and in the next 100 t.u. it will eventually be below 1,000"

 $\mathbf{F}^{100}\,(\text{ p53}\geq2,\!000\,\,\&\,\mathbf{F}^{100}\,(\,\text{p53}\leq1,\!000\,\,)\,)$

Semantics of BLTL

The semantics of BLTL for a trace σ^k :

- $\sigma^k \models AP$ iff atomic proposition *AP* true in state s_k
- $\sigma^k \models \Phi_1 \lor \Phi_2$ iff $\sigma^k \models \Phi_1$ or $\sigma^k \models \Phi_2$
- $\sigma^k \models \neg \Phi$ iff $\sigma^k \models \Phi$ does not hold
- $\sigma^{k} \models \Phi_{1} \mathcal{U}^{t} \Phi_{2}$ iff there exists natural *i* such that 1) $\sigma^{k+i} \models \Phi_{2}$
 - 2) $\Sigma_{j < i} t_{k+j} \le t$
 - 3) for each $0 \le j < i, \sigma^{k+j} \models \Phi_1$

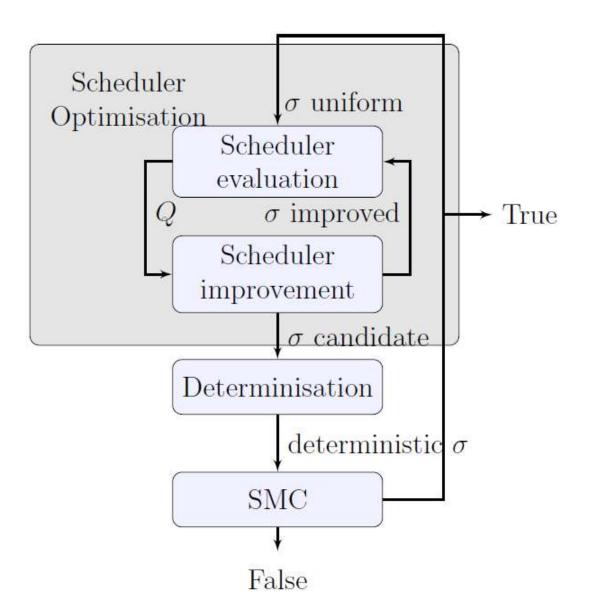
"within time *t*, Φ_2 will be true and Φ_1 will hold until then"

• In particular, $F^{t} \Phi = true U^{t} \Phi$, $G^{t} \Phi = \neg F^{t} \neg \Phi$

SMC for Markov Decision Processes

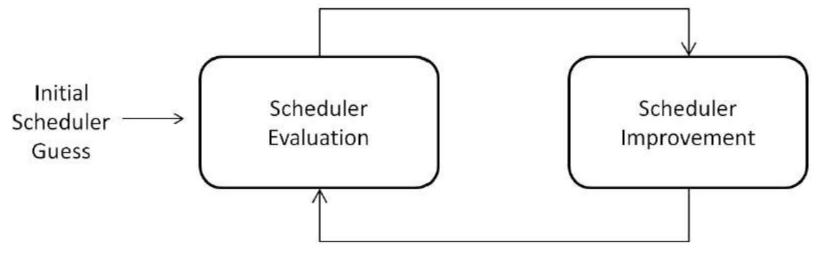
- A guided search for the optimal scheduler using reinforcement learning:
 - Simulate the system keeping track of the transitions taken, and check property Φ
 - Reinforce the "good" transitions (*i.e.*, those leading to property satisfaction)
- Recall that: MDP + scheduler = DTMC

Our Approach



Scheduler Evaluation & Improvement

 Learn the most adversarial choices at each state, by successively refining an initial guess.



Reinforcement learning, where quality is based on how often state/action choices occur in traces that satisfy the property in question.

Scheduler Evaluation & Improvement

• Quality $Q_{\sigma}(s, a)$ of state *s*, action *a* is

*Prob*_{σ}(traces satisfying Φ and containing (*s*, *a*))

- Scheduler evaluation:
 - $Q_{\sigma}(s, a)$ is estimated via simulation
- Scheduler improvement:
 - Give more probability to transitions with higher quality (*i.e.*, higher $Q_{\sigma}(s, a)$)

Scheduler Evaluation & Improvement

 Quality Q_σ(s, a) is estimated via finite sample-size simulation:

$$\widehat{Q_{\sigma}}(s,a) = \frac{\#\{\pi \mid \pi \vdash \phi \land (s,a) \in \pi\}}{\#\{\pi \mid (s,a) \in \pi\}}$$

Improving a scheduler σ:

$$\sigma'(s,a) = \frac{\widehat{Q_{\sigma}}(s,a)}{\sum_{\alpha} \widehat{Q_{\sigma}}(s,\alpha)}$$

More details in our QEST 2012 paper...

Convergence

Value of a state under a scheduler:

$$V_{\sigma}(s) = Prob_{\sigma}(\pi \mid \pi \vdash \phi \land (s, a) \in \pi \land a \in A(s))$$

Note that:

$$Prob_{\sigma}(\pi \mid \pi \vdash \phi) = V_{\sigma}(\bar{s})$$
$$= \sum_{a \in A(\bar{s})} \sigma(\bar{s}, a) \cdot Q_{\sigma}(\bar{s}, a)$$

Convergence

• We show that if σ is a scheduler and σ' is our improved scheduler, then:

$V_{\sigma'}(\bar{s}) \ge V_{\sigma}(\bar{s})$

But we might converge to a local optimum ...

Correctness

- **Question**: is $Prob_{\sigma}(\Phi) \leq \vartheta$, for all schedulers σ ?
- If we find a scheduler σ such that

 $Prob_{\sigma}(\Phi) > \vartheta$

then we are done. The answer is 'no' and we can trust it.

- Otherwise:
 - The question above may be true; or
 - We ended up in a local optimum
- We restart the algorithm to exponentially increase confidence in answer 'yes'

SMC for Markov Decision Processes

- Parallel implementation in Prism
- Can be faster than Prism on some problems
- Can provide *counterexample* schedulers

Experiments: Network protocols

CSMA	θ	0.5	0.8	0.85	0.9	0.95	PRISM
	out	F	F	F	Т	Т	0.86
34	t	1.7	11.5	35.9	115.7	111.9	136
CSMA	θ	0.3	0.4	0.45	0.5	0.8	PRISM
	out	F	F	F	Т	Т	0.48
36	t	2.5	9.4	18.8	133.9	119.3	2995
CSMA	θ	0.5	0.7	0.8	0.9	0.95	PRISM
4 4	out	F	F	F	F	Т	0.93
	t	3.5	3.7	17.5	69.0	232.8	16244
CSMA	θ	0.5	0.7	0.8	0.9	0.95	PRISM
4 6	out	F	F	F	F	F	timeout
	t	3.7	4.1	4.2	26.2	258.9	timeout
WLAN	θ	0.1	0.15	0.2	0.25	0.5	PRISM
5	out	F	F	Т	Т	Т	0.18
	t	4.9	11.1	124.7	104.7	103.2	1.6
WLAN	θ	0.1	0.15	0.2	0.25	0.5	PRISM
6	out	F	F	Т	Т	Т	0.18
	t	5.0	11.3	127.0	104.9	102.9	1.6

Experiments: Two robots

- n by n grid
- Robot movements are imprecise (r = scattering radius)

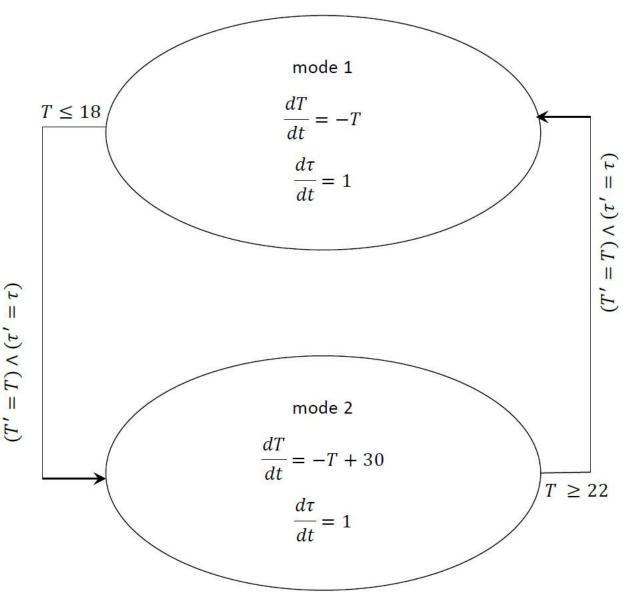
Robot	θ	0.9	0.95	0.99	PRISM	
<i>n</i> = 50	out	F	F	F	0.999	
<i>r</i> = 1	t	23.4	27.5	40.8	1252.7	
Robot	θ	0.9	0.95	0.99	PRISM	
<i>n</i> = 50	out	F	F	F	0.999	
<i>r</i> = 2	t	71.7	73.9	250.4	3651.045	
Robot	θ	0.95	0.97	0.99	PRISM	
<i>n</i> = 75	out	F	F	F	timeout	
<i>r</i> = 2	t	382.5	377.1	2676.9	timeout	
Robot θ		0.85	0.9	0.95	PRISM	
<i>n</i> = 200	out	F	F	Т	timeout	
<i>r</i> = 3	t	903.1	1129.3	2302.8	timeout	

Conclusions (Part I)

- Simulation-based verification of MDP is:
 - Possible!
 - Efficient (better than Prism in some cases)
- Possible extensions:
 - Unbounded properties, general schedulers, CTMDP (?), etc.

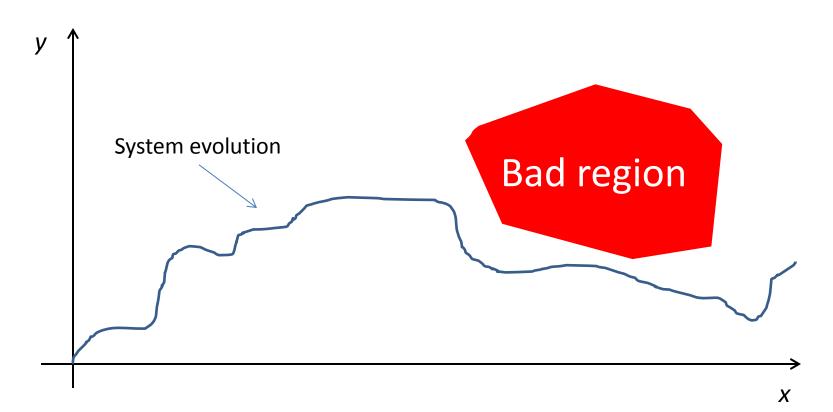
Part II: Stochastic Hybrid Systems

- Hybrid System:
 - Combine
 continuous
 and discrete
 evolution
 - A model for cyber-physical systems



Reachability

- Reachability properties:
 - Does the system reach the bad region?



A Step Back

- Reachability is undecidable* even for linear (differential) hybrid systems!!
- So, the question is too hard for a computer, and we need to "relax" it
 - We need to reformulate the reachability problem into an easier one

*It is **impossible** to develop an algorithm that for any hybrid system and region will tell us whether the system evolution reaches the region

δ-Reachability

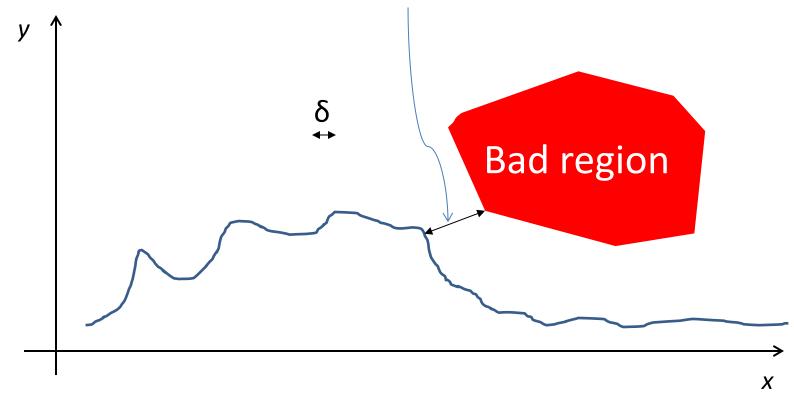
- δ-reachability (Gao, Avigad, Clarke 2012) is instead decidable
- For $\delta > 0$, the system evolution may:

 δ -satisfiable $\begin{bmatrix} 1. & \text{Get to a distance} < \delta \text{ from the bad} \\ \text{region, without entering it} \\ 2. & \text{Enter the bad region} \end{bmatrix}$

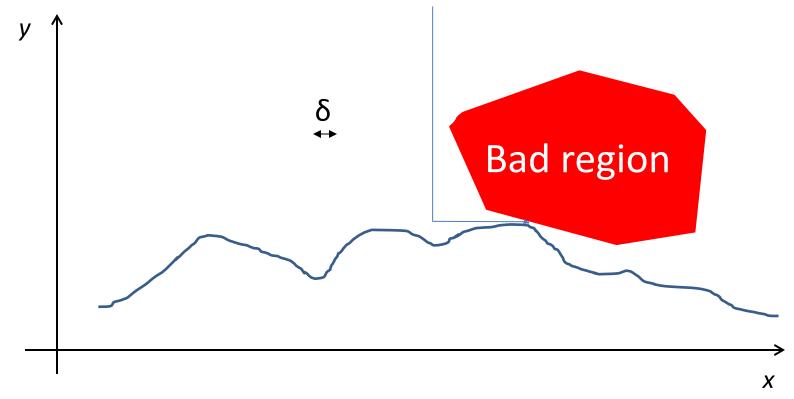
unsatisfiable \langle 3. Stay out of the bad region (more than δ)

An algorithm solving the problem above is called δ -complete

Larger than δ , so reachability is unsatisfied



Smaller than δ , so reachability is δ -satisfiable



Stochastic Hybrid Systems

- We study Hybrid Systems with random initial parameters (US Navy grant with Clarke)
- E.g.: the initial temperature in the thermostat model is, say, normally distributed (Gaussian)
- Question: what is the probability that the temperature reaches 20C within 10mins?

F. Shmarov, P. Zuliani. 2014.

Probabilistic δ-Reachability

- We want a δ-complete procedure for SHS with random initial parameters
- This boils down to computing integrals with verified results:
 - the integration algorithm returns an interval (size < δ) which is guaranteed to contain the true result
 - based on *verified simulation* algorithms for solving ODEs (computing interval enclosures)

Probabilistic δ-Reachability

Thermostat model (δ =10⁻⁹):

#	k	au	Probability interval	CPU
1	1	0.6	[0.006693073099383227, 0.006693073733195108]	31
2	5	1.8	[0.002635117907540255, 0.002635118445341895]	188
3	7	2.4	[0.00160257761701815, 0.001602578290160313]	413

k = number of discrete transitions, $\tau =$ global time, CPU = CPU time in seconds

Probabilistic δ-Reachability

Thermostat model with 4 modes (δ =10⁻⁹):

#	k	au	Probability interval	CPU
1	2	0.6	[0.0007687433606520627, 0.0007687433607436878]	53
2	6	1.7	[9.585015171225825e-08, 9.684797129694618e-08]	343
3	6	1.8	[0.003967491767795972, 0.003967492552568959]	708

k = number of discrete transitions, $\tau =$ global time, CPU = CPU time in seconds

Next Steps

- SHS with random initial parameters and nondeterministic parameters
- Allow stochastic differential equations in the modes
- Curtis has written a SBML->SMT2 translator
 - Parameter estimation for ODE models
 - Synbio design: pruning out unfeasible models
- For papers, tools, *etc.* please see my homepage