Beyond Numbers: Physical Simulation with Complex States

Harold Fellermann

Senior Research Associate

Newcastle University School of Computing Science Nat's Group

Algorithmic Nature of Biology

"Computers are to Biology as Mathematics is to Physics."

• Biological systems are highly organized

Harold Morowitz

- We recognize data structures and programs
- Nature Computes!
- Especially true for Synthetic Biology

Outline

Physical simulation for Synthetic Biology

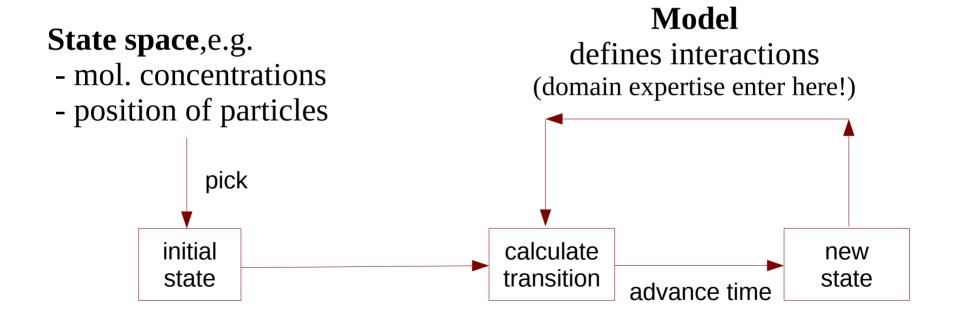
- Self-replicating emulsion compartments
- Molecular DNA/RNA replicators
- DNA assembly and computing

Formal calculi for Synthetic Biology

- Molecular DNA/RNA replicators
- Compartmented reaction systems
- Reconfiguring biological DNA

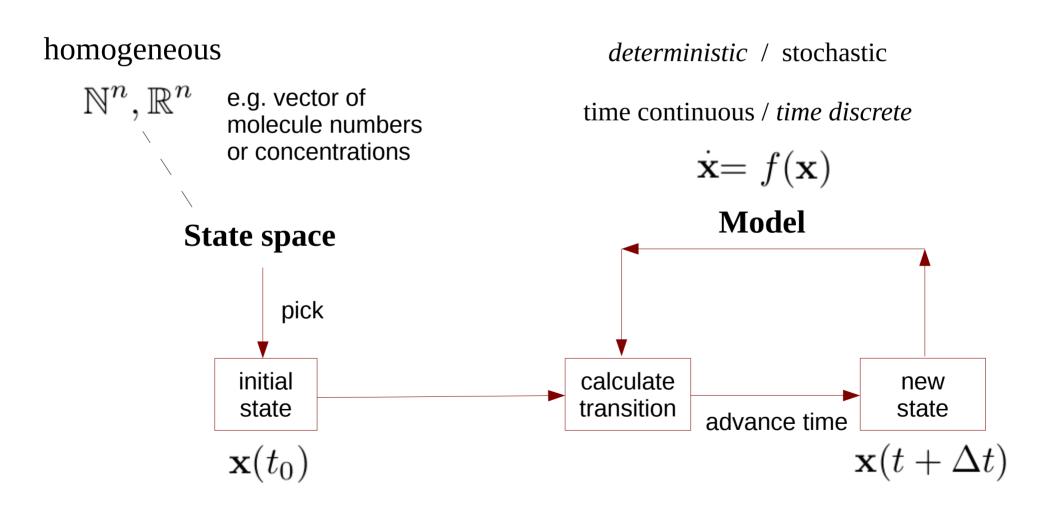
Conclusion

Simulation – The Mathematics of Time

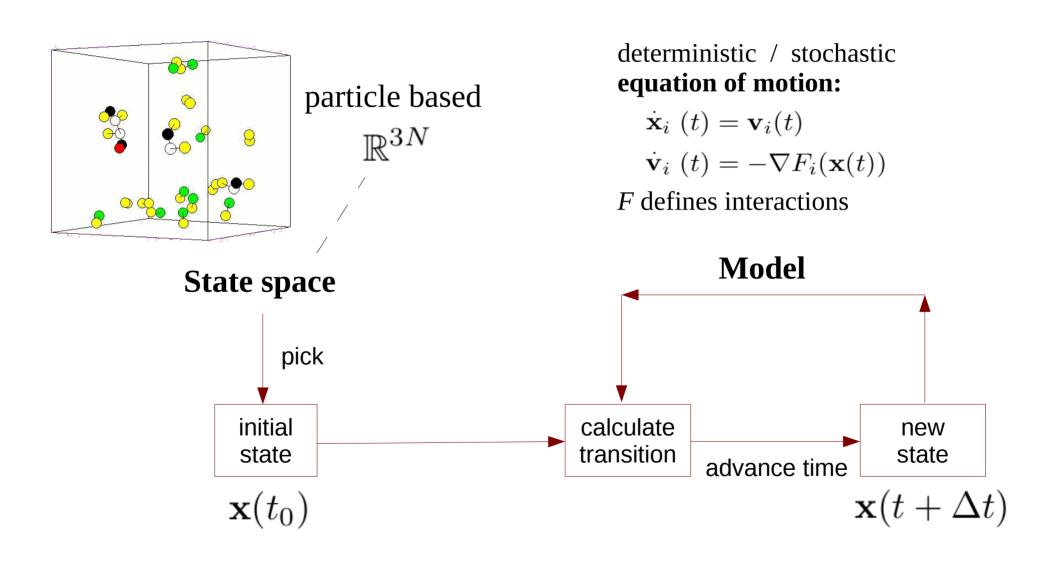


predict, explain, guide experiments, illuminate uncertainties, ...

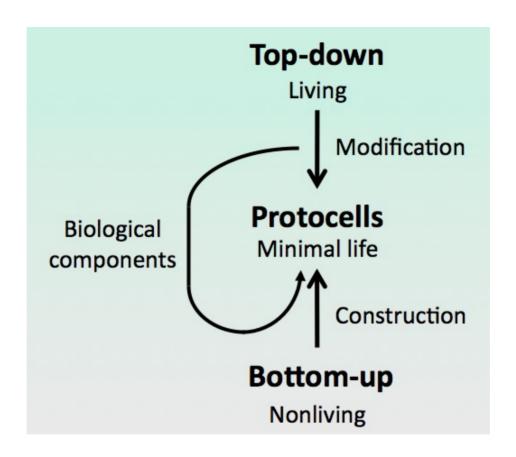
Simulation – The Mathematics of Time



Simulation – The Mathematics of Time



Top-Down & Bottom-Up Synthetic Biology



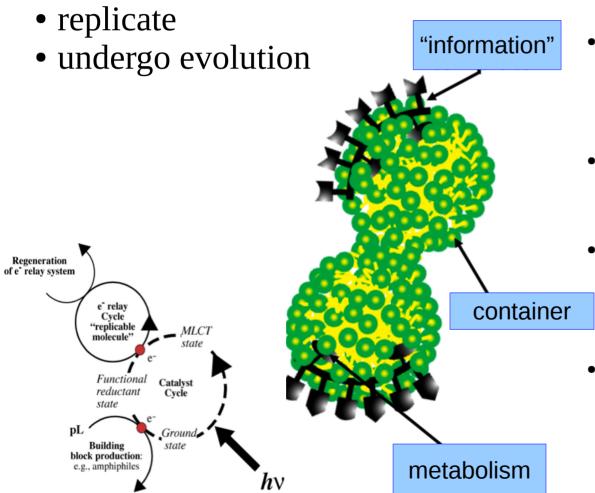
This talk is about bottom-up approaches:

Biomolecules are used to assemble biomimetic system: Amphiphiles (lipids), DNA/RNA, proteins

Protocells: Bottom-Up Synthetic Biology

Aim:

De novo creation of chemical aggregates able to

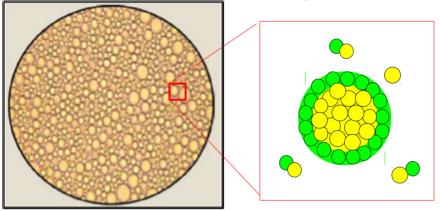


- Everything attached to the external interface of a lipid aggregate
- A single reaction mechanism for all metabolic reactions
- direct participation of information molecules in the metabolic reaction (no proteins!)
- Information is sequencedependent but not encoding

Rasmussen et al., Artif. Life, 2003

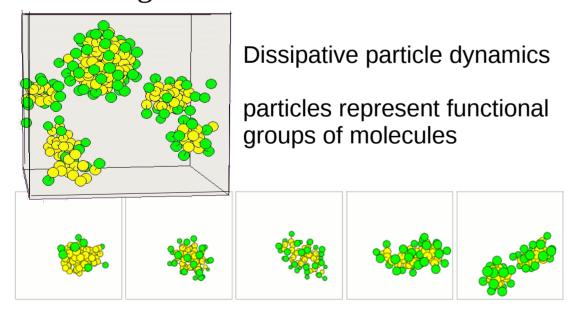
Protocells: Replicating Compartments

Oil-water-surfactant systems form emulsion compartments



Metabolism that can transform oily precursor into functional surfactant:

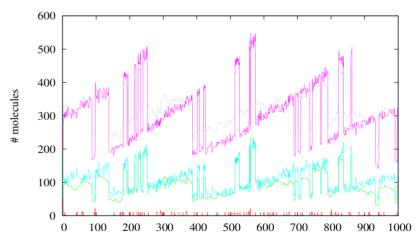
"Coarse-grained" simulation



Fellermann & Sole, Phil. Trans. R. Soc., B, 2007

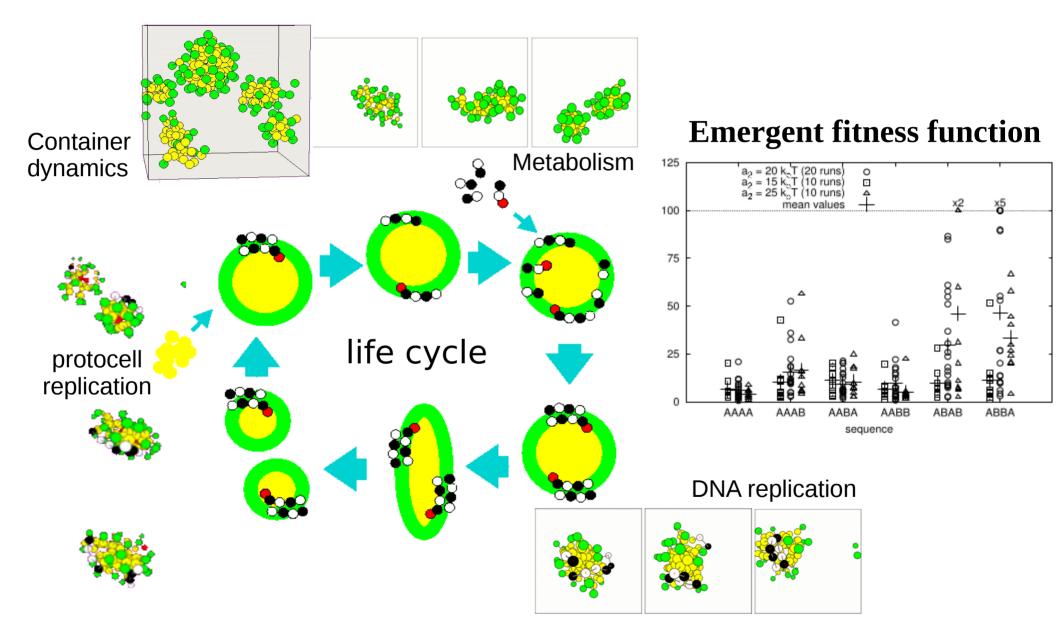
Non-Spatial simulation

$$(L, L_{\mathrm{P}})_{(L^{\mathrm{tot}}, L_{\mathrm{P}}^{\mathrm{tot}})} \in \mathbb{N}^4$$



stochastic (Gillespie) simulation

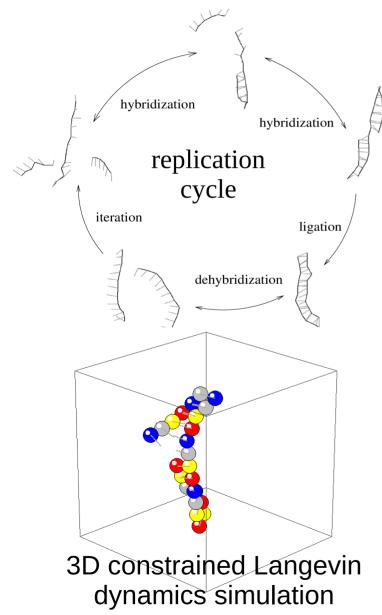
Protocells: Physical Simulation



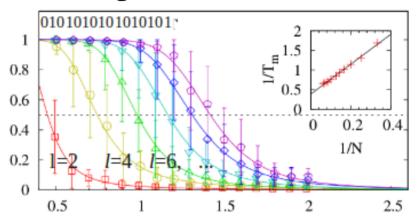
Fellermann & Sole, *Phil. Trans. R. Soc.*, *B*, (2007) **362:** 1803

Non-enzymatic DNA/RNA replication

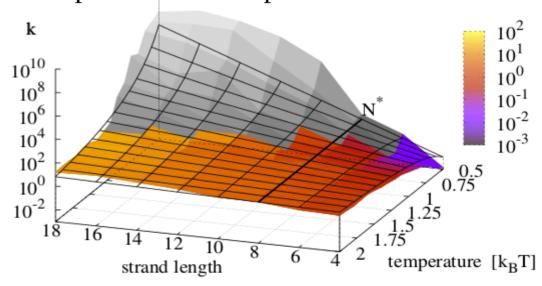
Template directed replication reaction



melting curve measurements



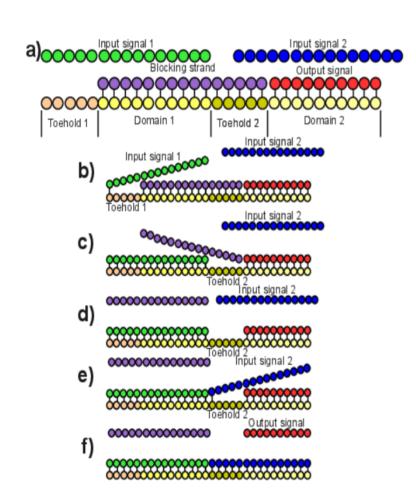
replication rate dependence

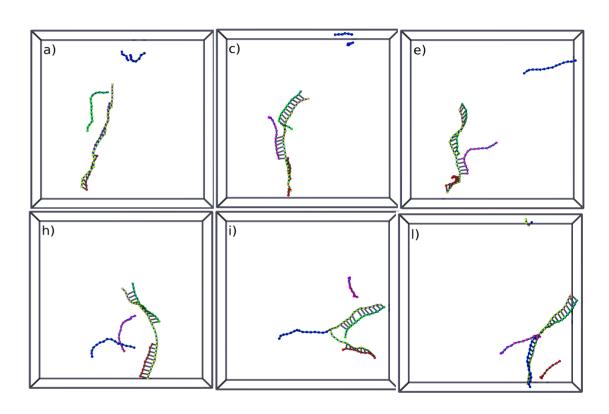


Fellermann, Rasmussen, Entropy 2011

DNA Strand Displacement Computing

DNA strand displacement join gate (Cardelli, 2010)





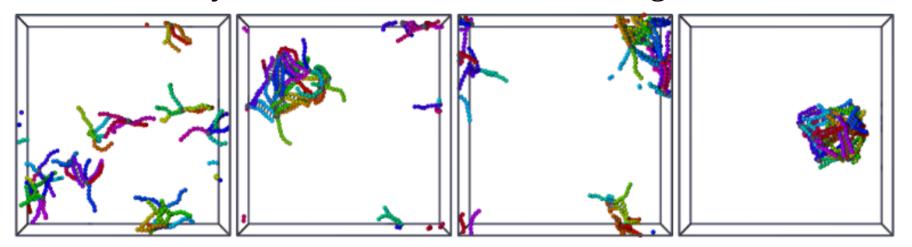
Fidelity of the gate:

11	0.95 ± 0.05
10	0.02 ± 0.01
01	0.58 ± 0.15
00	0.00 ± 0.00

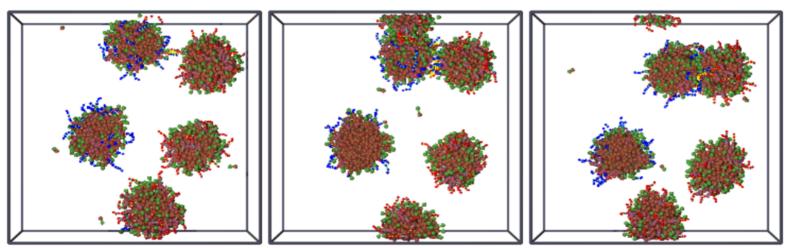
Svaneborg, Fellermann, Rasmussen *Lect. Notes Comput. Sc.* 2012

Physical Simulation of DNA Assembly

DNA assembly of an icosahedron from trisoligomers

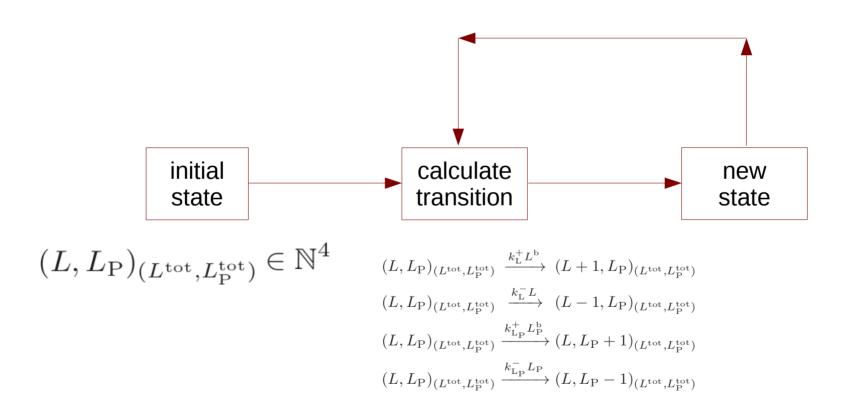


DNA induced association and fusion of oil-in-water compartments



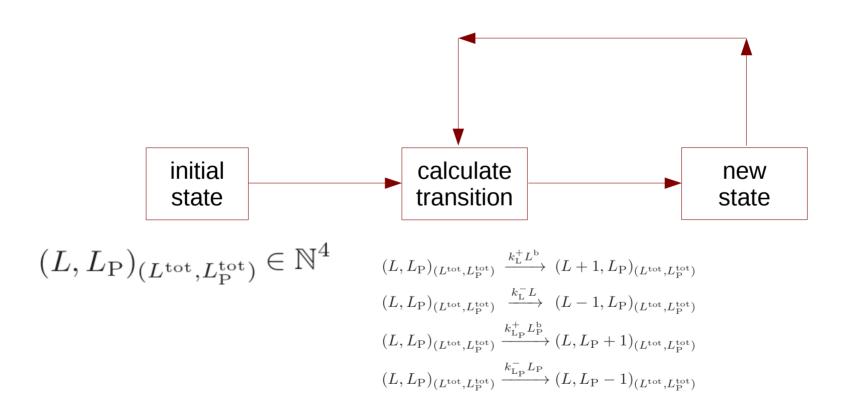
Svaneborg, Fellermann, Rasmussen Lect. Notes Comput. Sc. 2012

Most simulation frameworks operate over a simple, static and relatively small state space.



The state is dynamic, but it is embedded in a static state space.

Most simulation frameworks operate over a simple, static and relatively small state space.

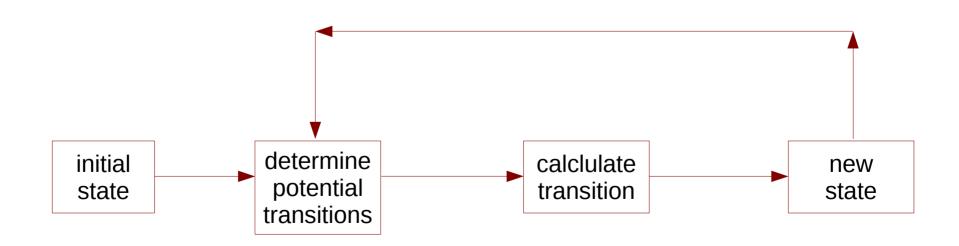


The state is dynamic, but it is embedded in a static state space.

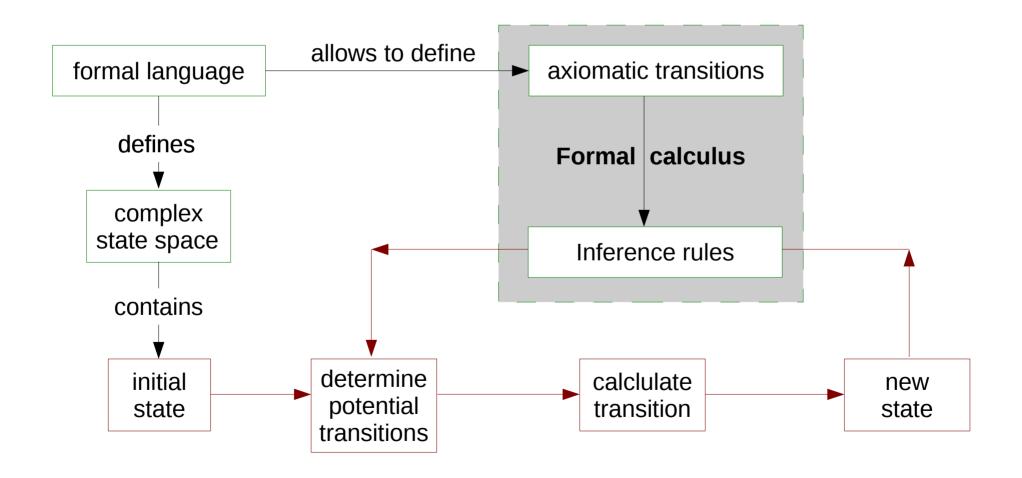
- Most simulation frameworks operate over a simple, static and relatively small state space.
- Biological state spaces are often dynamic, complex, and can be arbitrarily large.

- Examples:
 - Reconfiguring polymers (RNA, DNA, oligosaccharides)
 - Protein complexes
 - Compartment structures

- Most simulation frameworks operate over a simple, static and relatively small state space.
- Biological state spaces are often dynamic, complex, and can be arbitrarily large.
- CS offers tools to operate over "dynamic" state spaces.



• CS offers tools to operate over dynamic state spaces.



Alphabet of monomers: $A = \{0,1\} = \{0,0\}$

Polymers are strings over A^*

We assume the following processes:

$$l.m \longrightarrow l+m$$

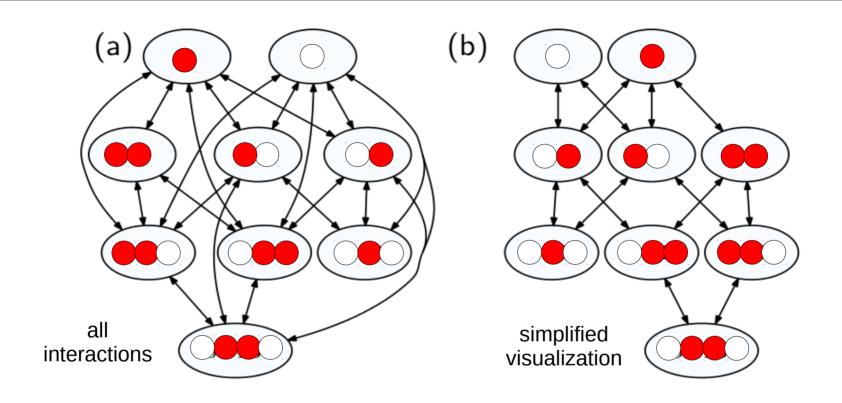
$$l+m\longrightarrow l.m$$



3. Autocatalysis:
$$l + m + l.m \longrightarrow 2 l.m$$

The number of possible species A^* is infinite and scales exponential with strand length.

Tanaka, Fellermann, Rasmussen. *Euro Phys Lett*, (submitted)

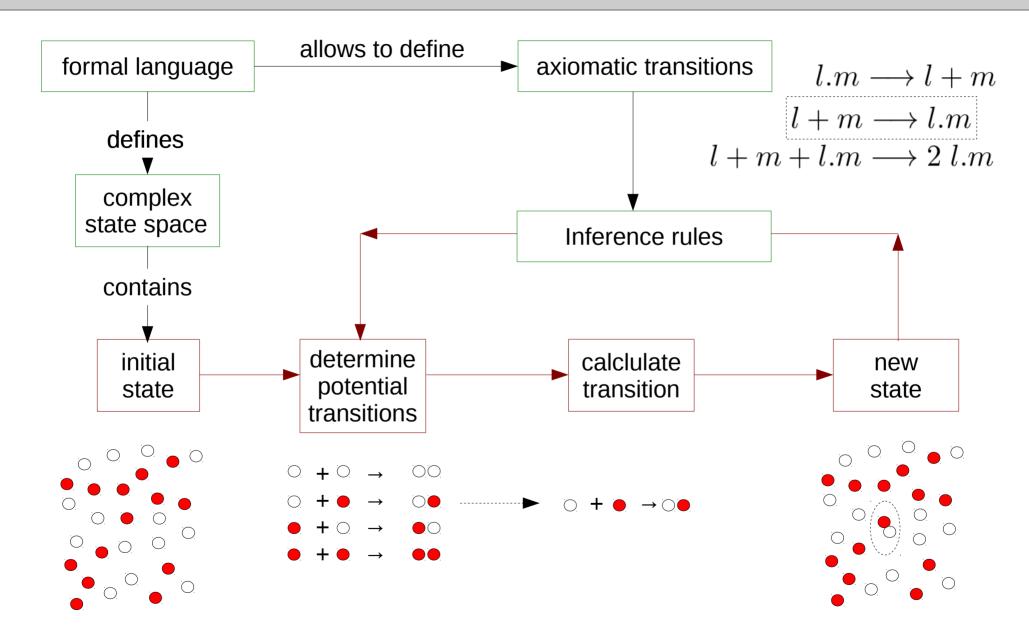


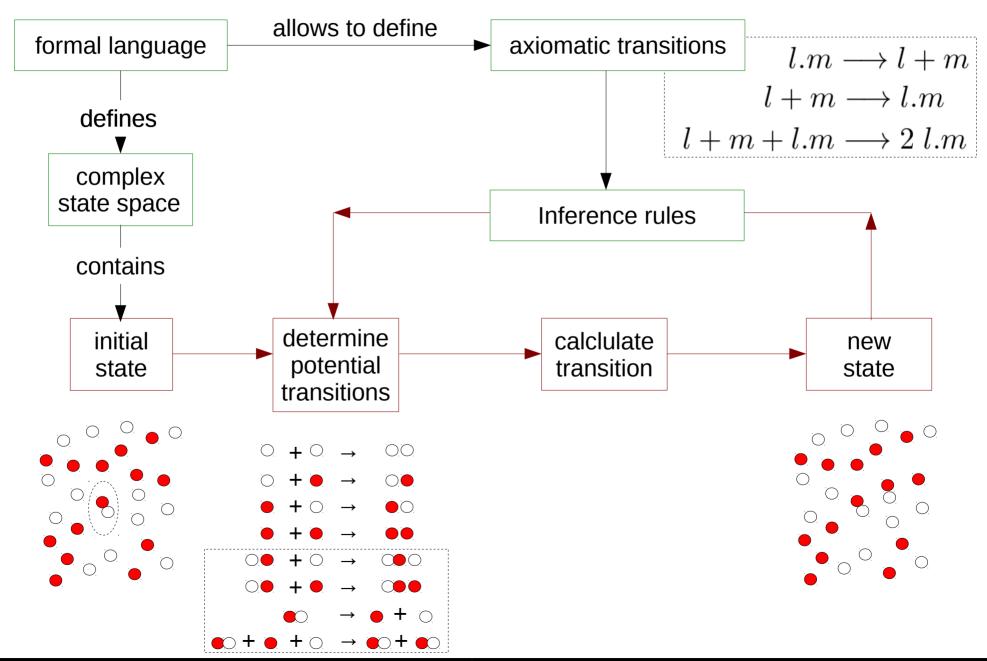
Replicators compete for resources.

They are each other's reaction and degradation products.

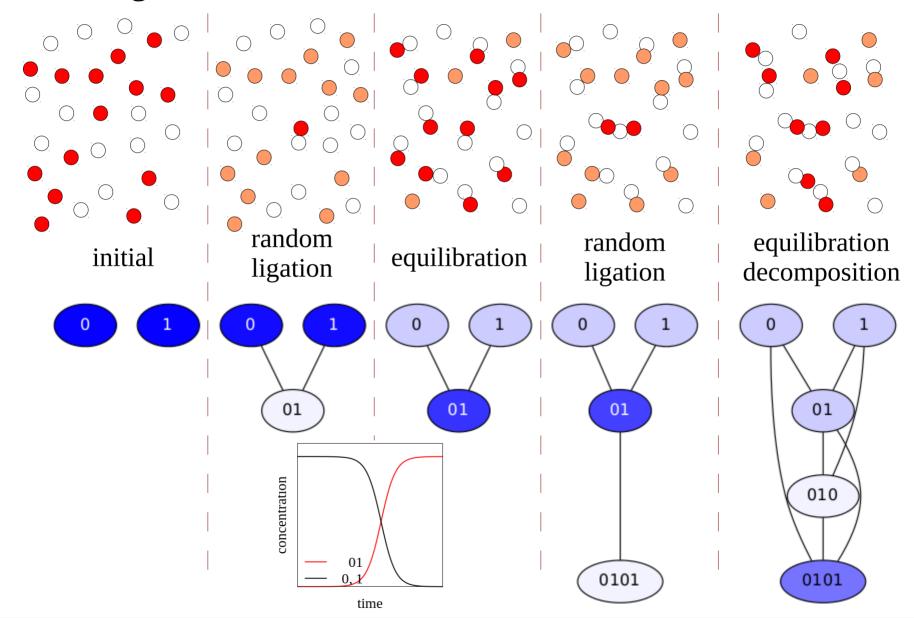
System is closed but energy flow is assumed.

What happens in a pool of monomers?





If random ligation is rare



If random ligation is rare, highly ordered sequence patterns emerge:

Gillespie simulation over infintie dimensional state space

HCA of final states

0.9

0.8

0.7

0.6

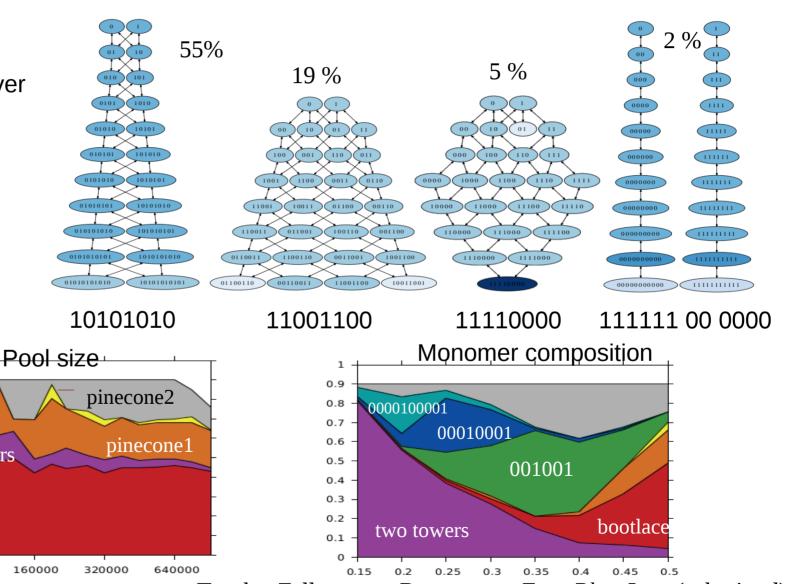
0.5

0.4

0.2

0.1

40000



Tanaka, Fellermann, Rasmussen. Euro Phys Lett, (submitted)

bootlace

two towers

80000

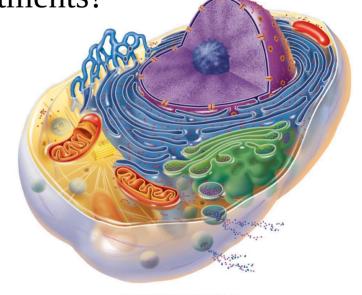
Compartment Dynamics

Biological systems are commonly compartmentalized.

How to capture dynamics in <u>and of</u> compartments?

Language of nested parentheses:

Recursive grammar:



Copyright © 2010 Pearson Education, Inc.

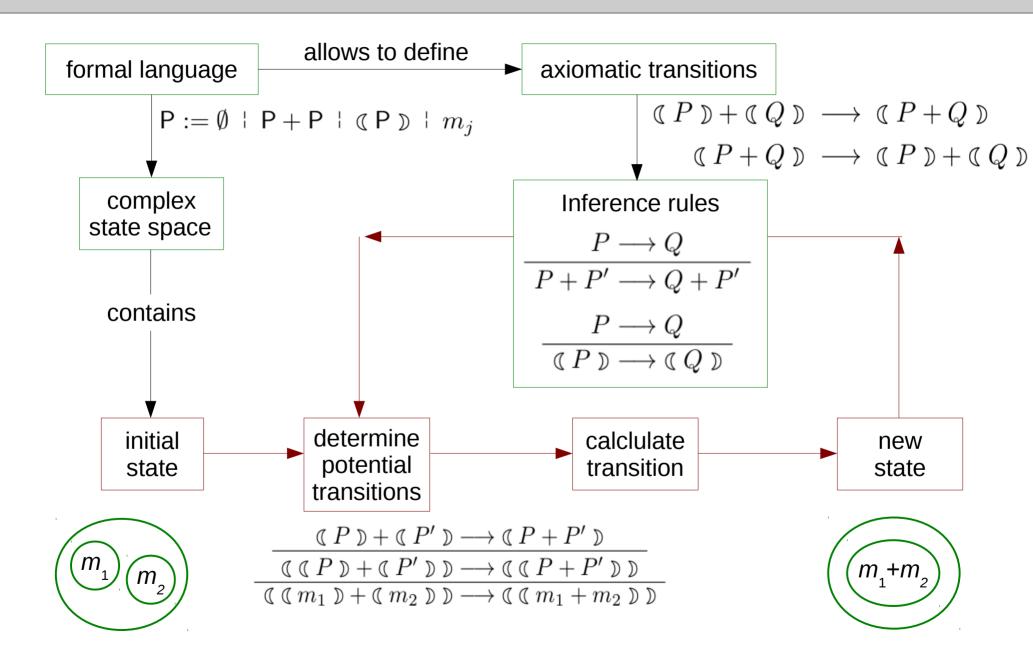
Transitions among compartments:

e.g. brane calculus:

$$^{\mathrm{mate}_{i}} \mathrm{\textit{(}} P \mathrm{\textit{()}} + \mathrm{\textit{mate}}_{i}^{\mathrm{\top}} \mathrm{\textit{(}} Q \mathrm{\textit{()}} \longrightarrow \mathrm{\textit{(}} P + Q \mathrm{\textit{()}}$$

Cardelli, 2005

Example: Compartment Dynamics



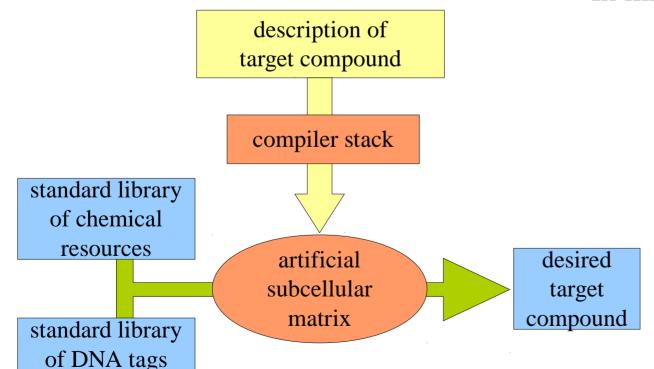
MATCHIT – Matrix for Chemical IT

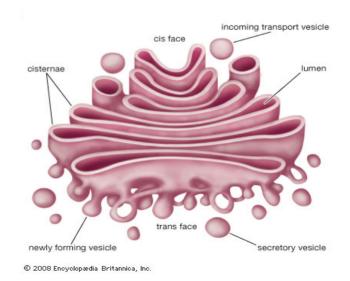
Aim:

Toward personal chemical manufactoring in an "artificial subcellular matrix".

Methodology:

Integrating molecular computing and chemical production in microfluidic environments.

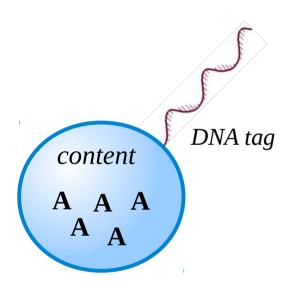




Golgi apparatus

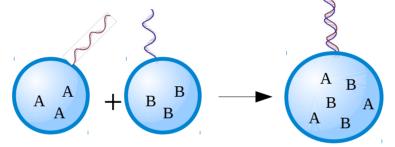
Programming Chemistry in Addressable Microcompartments

"Chemtainer" approach

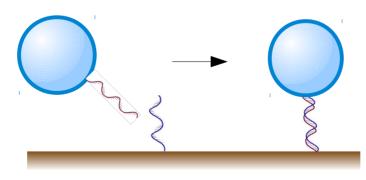


e.g. lipid vesicles, oil droplets, DNA nanocages...

DNA programmable chemtainer interactions

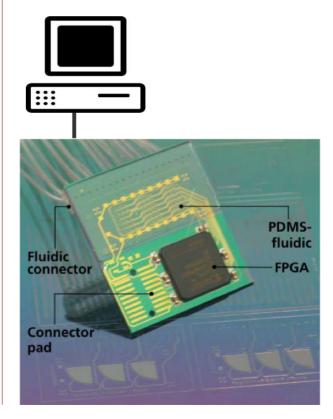


Chemtainer-chemtainer interaction



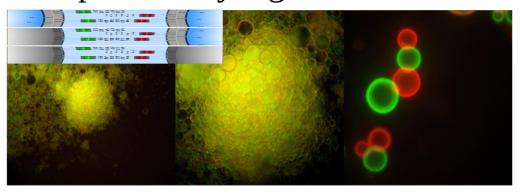
Chemtainer-matrix interaction

microfluidic embedding and computer control

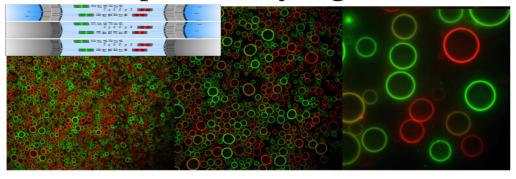


Experimental Chemtainer Interactions

Complementary tags

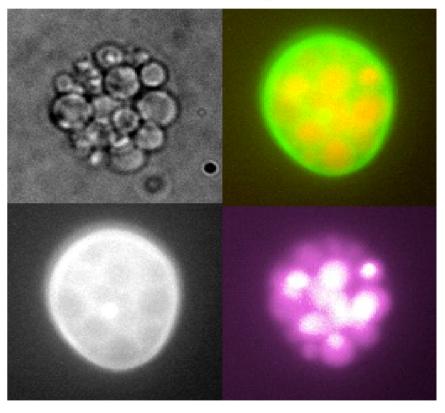


Non-complementary tags



4x 10x 100x

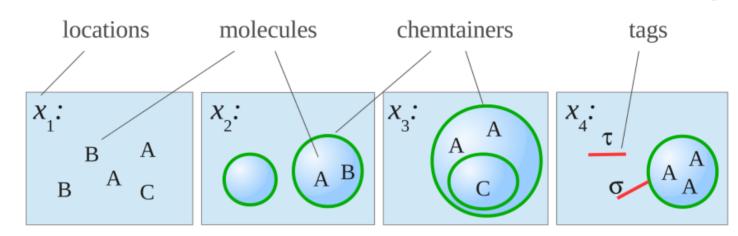
Hierarchical encapsulation



Hadorn, Bönzli, Sørensen, Fellermann, Eggenberger Hotz, Hanczyc; *PNAS* 109(47) 2012 Hadorn, Bönzli, Hanczyc, Eggenberger-Hotz; *PLOS One* 2012

Chemtainer Calculus: Grammar

System states are arrangements of localized molecules, chemtainers, and DNA tags



Example:

$$x_1:2A+2B+C\circ x_2: \texttt{(D)}+\texttt{(A+B)}\circ x_3: \texttt{(2A+(C))}\circ x_4:\tau+\sigma\texttt{(3A)}$$

Grammar:

global state
$$S := \emptyset + S \circ S + x_i : P$$

local state $P := 0 + P + P + q^* (P) + q + m_j$
tag $q := s + s^* \triangleright s^*$

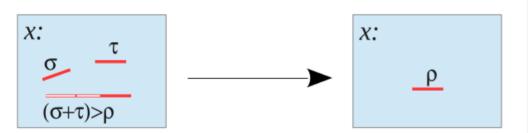
Chemtainer Calculus: Transitions

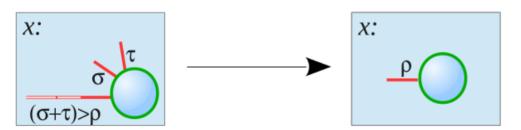
Autonomous transitions:

1. Application chemistry

$$P_i + M_i E_{x_i}^* \longrightarrow P_{i+1} + E_{x_i}$$

2. DNA join & fork gates $s_1^* \triangleright s_2^*$ $s_1^* \triangleright s_2^* + s_1^* \longrightarrow s_2^*$





Induced transitions:

Triggered by microfluidic control

6 - 8 operations, e.g.

tag:

$$x: s+q^* \in P \supset \longrightarrow x: (s+q^*) \in P \supset$$



Chemtainer Calculus: Language

- Domain specific language specified in non-deterministic structural operational semantics
- Sequential imperative language

$$\frac{\langle \pi, S'' \rangle \longrightarrow S \qquad I: S' \longrightarrow S''}{\langle I; \pi, S' \rangle \longrightarrow S}$$

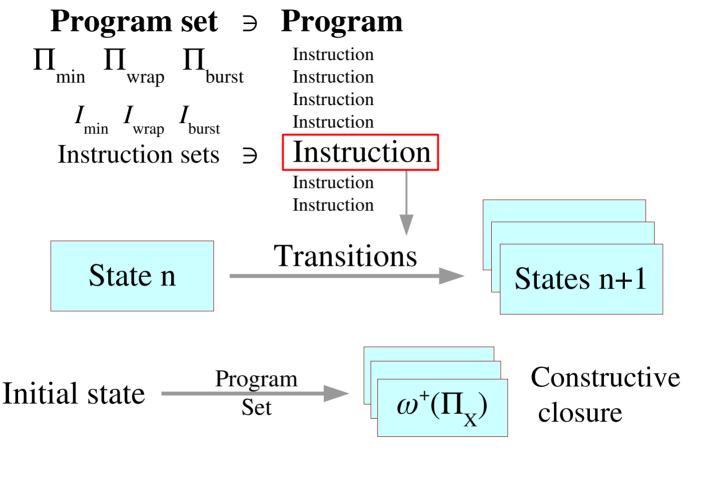
• Parallel composition

$$\frac{\langle \pi', S' \rangle \longrightarrow \bar{S}' \qquad \langle \pi'', S'' \rangle \longrightarrow \bar{S}''}{\langle \pi' | \pi'', S' \circ S'' \rangle \longrightarrow \bar{S}' \circ \bar{S}''}$$

• Spontaneous transitions may occurr any time during execution

$$\frac{\langle \pi, S \rangle \longrightarrow S'}{\langle \pi, S \rangle \longrightarrow S''}$$

Chemtainer Calculus: Programming



$$\omega^+(\Pi_{\min}) \subset \omega^+(\Pi_{\operatorname{\mathbf{wrap}}}) \subset \omega^+(\Pi_{\operatorname{\mathbf{burst}}}) = L(G_{\mathsf{S}})$$

Constructive proof.

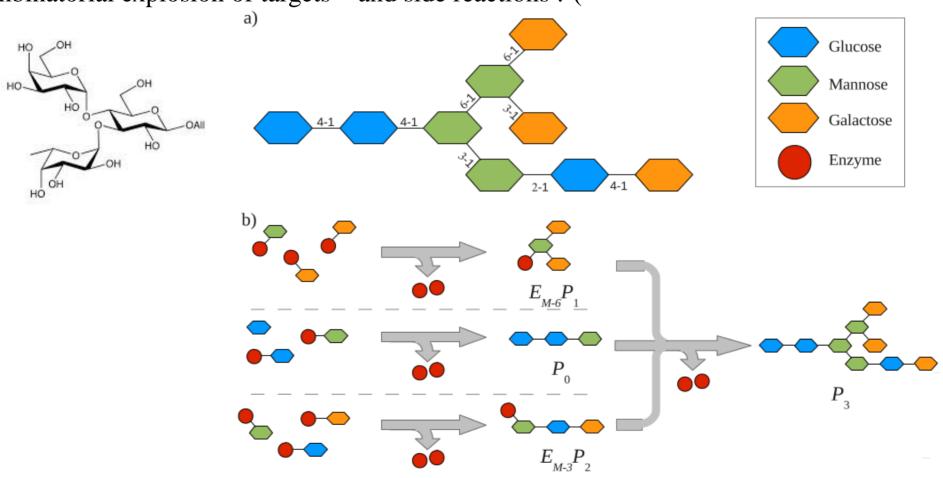
We can automatically derive programs to build any given target state.

Chemtainer Calculus: Programmable Synthesis

Branches oligo-saccharides (e.g. antibodies)

Limited number of monomers and linking sites

Combinatorial explosion of targets – and side reactions :-(



Weyland, Füchslin, Sorek, Lancet, Fellermann, Rasmussen, Comp. Math. Meht. Med. 2013

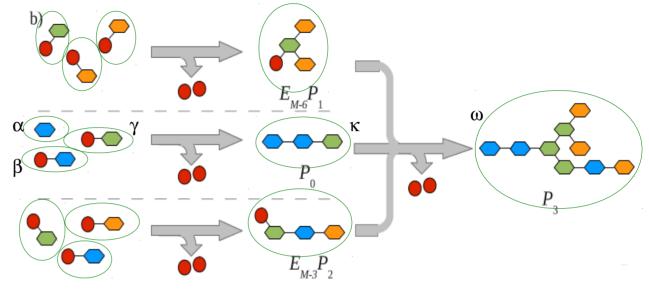
Chemtainer Calculus: Programmable Synthesis

Reaction cascades

$$P_i + M_i E_{x_i}^* \longrightarrow P_{i+1} + E_{x_i}$$

are encoded in DNA gates:

$$(\alpha + \beta + \gamma) \rhd \kappa$$
$$(\delta + \epsilon + \zeta) \rhd \lambda$$
$$(\eta + \theta + \iota) \rhd \mu$$
$$(\kappa + \lambda + \mu) \rhd \omega$$



DNA computing reports fusion-induced chemical reactions on the chemtainer surface:

$$x_0: (\alpha+\beta+\gamma) \rhd \kappa () \rhd \kappa_S: \alpha (\operatorname{Gal}) + \beta (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \gamma (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{move}(\alpha,x_S,x_0) \quad x_0: (\alpha+\beta+\gamma) \rhd \kappa () + \alpha (\operatorname{Gal}) \circ x_S: \beta (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \gamma (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{move}(\beta,x_S,x_0) \quad x_0: (\alpha+\beta+\gamma) \rhd \kappa () + \alpha (\operatorname{Gal}) + \beta (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) \circ x_S: \gamma (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{move}(\gamma,x_S,x_0) \quad x_0: (\alpha+\beta+\gamma) \rhd \kappa () + \alpha (\operatorname{Gal}) + \beta (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \gamma (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{fuse}(x_0) \quad x_0: (\alpha+\beta+\gamma) \rhd \kappa) (\operatorname{Gal}) + \beta (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \gamma (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{fuse}(x_0) \quad x_0: (\alpha+\beta+(\alpha+\beta+\gamma) \rhd \kappa) (\operatorname{Gal}) + \beta (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \gamma (\operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{fuse}(x_0) \quad x_0: (\alpha+\beta+(\alpha+\beta+\gamma) \rhd \kappa) (\operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{fuse}(x_0) \quad x_0: (\alpha+\beta+\gamma+(\alpha+\beta+\gamma) \rhd \kappa) (\operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{fuse}(x_0) \quad x_0: (\alpha+\beta+\gamma+(\alpha+\beta+\gamma) \rhd \kappa) (\operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{fuse}(x_0) \quad x_0: (\alpha+\beta+\gamma+(\alpha+\beta+\gamma) \rhd \kappa) (\operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Gal}) + \operatorname{E}_{\operatorname{Gal-4}}^* \operatorname{Man})$$

$$\mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0)$$

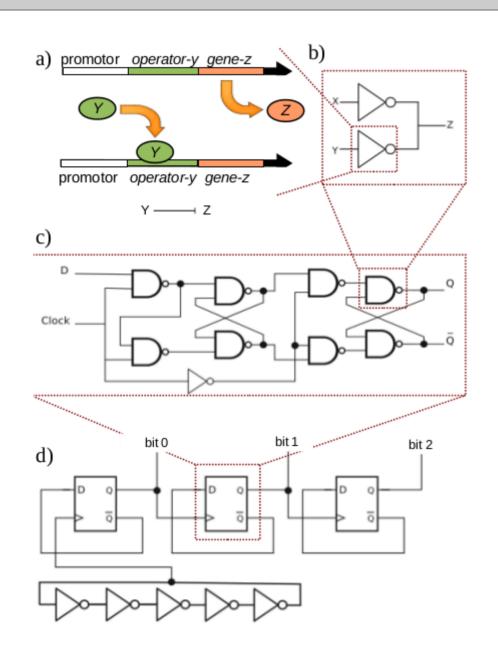
$$\mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0)$$

$$\mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0)$$

$$\mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0)$$

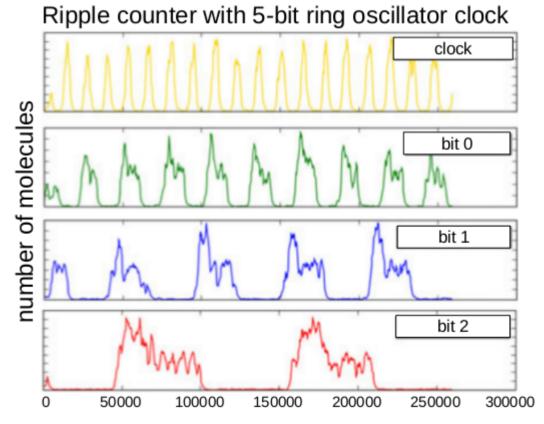
$$\mathbf{fuse}(x_0) \quad \mathbf{fuse}(x_0) \quad \mathbf{fuse}(x$$

Distributed Molecular Computing



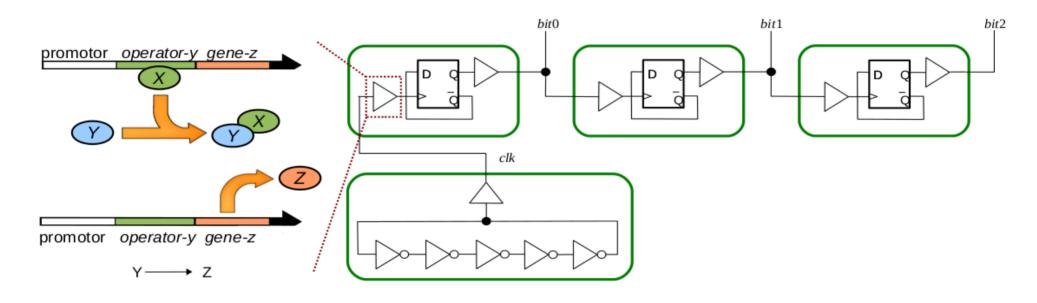
Complex circuits builts from gene regulatory networks

Smaldon et al. Syst. Synth. Biol. 4(3), 2010



Distributed Molecular Computing

Using chemtainer calculus, we compile and wire a distributed implementation from few standard parts.



Example wiring of a flipflop by fusing transducers:

Fellermann, Krasnogor, CiE proceedings 2014 (accepted) Fellermann, Hadorn, Füchslin, Krasnogor, *JETC* 2014 (submitted)

Calculus for DNA manipulation

Formal language to denote domains on plasmids/chromosome:

```
\begin{aligned} \mathsf{STATE} &:= 0 \mid \mathsf{STATE} + \mathsf{STATE} \mid \mathsf{DNA} \mid \mathsf{RNA} \mid \mathsf{PROT} \\ \mathsf{DNA} &:= [\mathsf{DSEQ}] \mid < \mathsf{DSEQ} > \\ \mathsf{DSEQ} &:= \epsilon \mid \mathsf{DSEQ}.\mathsf{DSEQ} \mid \mathsf{DSEQ} \cap \mid \{\mathsf{RNA}\}\mathsf{DSEQ} \mid \mathsf{DOM} \\ \mathsf{RNA} &:= [\mathsf{SEQ}] \mid < \mathsf{SEQ} > \\ \mathsf{SEQ} &:= \epsilon \mid \mathsf{SEQ}.\mathsf{SEQ} \mid \{\}\mathsf{SEQ} \mid \mathsf{DOM} \\ \mathsf{DOM} &:= \mathsf{TYPE} : \mathsf{IDENT} \end{aligned}
```

Domain can be promoters, operators, terminators, introns, restriction sites, etc.

```
pUC19 = <P:x.G:lacZ.G:AmpR.T:y.P:z.pMB1.T:y>
```


pUC18/19

Calculus for DNA manipulation

Axiomatic transitions for

Translation

$$P: x.s \longrightarrow P: x.\{\epsilon\}s$$

$$\{r\}0: x.s \longrightarrow 0: x.\{r\}s$$

$$\{r\}T: x \longrightarrow T: x + [r]$$

Transcription

$$B:x.r \longrightarrow B:x.\{\}r$$

 $\{\}G:x.r \longrightarrow G:x.\{\}r+x$

Splicing

$$r.\mathtt{I}:x.r'\longrightarrow r.r'$$

Operon regulation

$$x + [s.0:x.s'] \longrightarrow [s.\emptyset:x.s']$$

- Restriction
- Recombination

• Transposons, etc.

Conclusion

- Physical simulations give detailed insight into biological systems
 - prediction
 - verification
 - explaining
 - design of experiments
 - design of systems

- Formal calculi allow to apply physical simulations to complex states
 - applicable to unbounded state spaces
 - capture logical organization
 - allow for analytic treatment (proofs!)

Thanks for you attention!

Questions?

