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ABSTRACT
Symbolic regression and modeling are tightly linked in many
Bioinformatics, Systems and Synthetic Biology problems. In
this paper we briefly overview two problems, and the ap-
proaches we have use to tackle them, that can be deemed to
represent this entwining of regression and modeling, namely,
the evolutionary discovery of (1) effective energy functions
for protein structure prediction and (2) models that cap-
ture biological behavior at the gene, signaling and metabolic
networks level. These problems are not, strictly speaking,
”regression problems” but they do share several character-
istics with the latter, namely, a symbolic representation of
a solution is sought , this symbolic representation must be
human understandable and the results obtained by the sym-
bolic and human interpretable solution must fit the available
data without over-learning.

Categories and Subject Descriptors
J.3 [Life And Medical Sciences]: Biology and genetics;
I.2.6 [Artificial Intelligence]: Learning—knowledge acqui-
sition

General Terms
Algorithms, Design, Experimentation

Keywords
Evolutionary Search, Modeling, Data Mining, Optimisation,
Genetic Programming, P Systems, Protein Structure, Sys-
tems Biology, Synthetic Biology

1. INTRODUCTION
Evolutionary Algorithms (EA), more prominently Genetic

Programming (GP), have been successfully applied to a vari-
ety of symbolic regression problems such as the investigation
of molecular docking[5], protein structure energy function
inference [46], anticancer therapeutic response prediction [4],
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modeling the release kinetics of pesticides [1], as well as more
traditional – albeit equally challenging – regression problems
such as fibonacci, squares and other numerical series [21].
In this paper we briefly overview two problems that can be
deemed to represent a challenging ”entwining” of symbolic
regression and modeling, namely, the evolutionary discovery
of (1) effective energy functions for protein structure predic-
tion and (2) models that capture biological behavior at the
gene, signaling and metabolic networks level. We describe
next each of them in turn. In the first of these two prob-
lems we used standard Genetic Programming while for the
other problem we employ a combination of metaheuristics
that evolve and fine tune executable structures.

2. EVOLVING ENERGY FUNCTION FOR
PROTEIN STRUCTURE PREDICTION

The following section sumarises material that originally
appeared in our papers [45, 46]. The goal of protein struc-
ture prediction is to construct a 3D model of a protein struc-
ture, that is to find coordinates of the protein atoms from
its 1D description given as an ordered sequence of amino
acids. It is believed that this sequence contains enough in-
formation to derive from it an exact protein shape. Precise
1D → 3D transformation is, however, not yet possible as
the algorithm of protein folding remains unknown.

The protein structure is generally predicted using a search
method that iteratively alters models of the structure to
minimise their energy. Whenever possible the initial mod-
els are adapted from the native structure of closely related
proteins.This procedure is based on the thermodynamic hy-
pothesis [3] which states that the protein in its native folded
state is in the thermodynamic equilibrium and thus its free
energy is minimal.

In the most challenging template-free category at CASP
[6], top ranked predictors, e.g. I-TASSER [47] or Robetta
[38], define the energy function as a linear combination of
energy terms designed by experts. This terms do not reflect
the protein potential energy explicitly but they rather ex-
press a probability that the observed structure is native-like
based on the statistical distribution of features among the
experimentally determined known protein structures.

The weights of specific terms of the energy function are
optimised on a training set of computer generated protein
models (also called decoys). The goal of the optimisation
is to maximise the correlation between the structure en-
ergy and its structural similarity to the known native struc-
ture. The more dissimilar is the structural model the higher
should be its energy. It is also desired that all the decoys
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Figure 1: Dependency between the energy and
distance to the native structure. Blue solid line
shows the ideal case of a perfect linear fit. Red
dashed line shows more realistic non-linear depen-
dency where energy discriminates between distant
structures more easily. Orange dots are an indica-
tive cartoon of what can be expected in terms of
correlation for energy potentials that are currently
in use by structure predictors.

have a higher energy than the real native structure. An
energy function with such properties is then able to dis-
tinguish between near-native and dissimilar structures (see
Figure 1). In the best case the decoys sorted by the values
of energy function would be in the same order as when sort-
ing is done by the structural similarity to the target native
structure. Therefore, in general, the more information about
the structural similarity is captured by the energy function
the better.

2.1 Methods
In the simplest case, where the energy function is just a

weighted sum of energy terms, it could be fitted to reflect the
structural similarity by the linear regression. This approach
is used to design the Rosetta’s energy function [42]. More
complex approach is used in I-TASSER where apart from
linear regression also a correlation coefficient and a separa-
tion from the native are used in the objective function [48].
However, in general case the energy function could be ex-
pressed by any functional combination of the energy terms
without limiting it to the linear combination.

The goal of the optimisation is to have an energy function
that reflects the structural similarity to the target native
structure and is alone enough to navigate the search pro-
cess in the protein structure prediction. This differs from
standard regression as the function doesn’t have to be fit to
the data in the strict sense. It is enough to obtain a good
approximation of decoys relative quality, that is an energy
based ranking that would be similar to the ranking based
on structural similarity. For a more high level assessment
of how fit the function is, even a simple correlation coeffi-
cient might be sufficient. Examples of a correlation between
the energy end the similarity to the native for decoys gen-
erated by both I-TASSER and Rosetta prediction methods
are shown in Figure 2.

When the energy function is a general functional combina-
tion of energy terms, not just a weighted sum, it could cap-

Figure 2: Examples of correlation between energy
and distance to the native structure measured as
root mean square deviation (RMSD) for I-TASSER
and Rosetta generated decoys. Each panel repre-
sents a single protein chain (name and the correla-
tion coefficient is given on top), and each dot in a
panel represents a single decoy.

ture the information about the structural similarity more
precisely. Moreover, as it features a range of basic alge-
braic operators and/or transcendental functions operating
on a fixed set of symbols (energy terms) it is meant to be
human-interpretable and have a knowledge discovery poten-
tial. Going a step further, with more atomic energy com-
ponents, being for example low level characteristics of the
selected protein atoms (instead of high level statistical ag-
gregates), the symbolic regression could generate much more
fine-tuned energy functions and discover which properties
are most useful for different types of proteins.

2.2 Results
The first symbolic regression approach to the design of

energy functions that could be useful in the process of pro-
tein structure prediction was made with a use of the genetic
programming [46]. The key element of the GP algorithm
design in that work was the definition of a fitness. Its def-
inition was based on the distance between two rankings of
decoys: the reference ranking RR generated using the root
mean square deviation (see below) as a reference measure
and the evolved ranking RE generated using the evolved
energy function. In case of the ideal energy function the
evolved ranking would be identical to the reference one, as
the energy function would perfectly reflect the structural
similarity to the native state.

The exact procedure to compute the total fitness was as
follows:

1. construction of the reference ranking RR

(decoys sorted by the similarity to native)

3 1 5 0 4 7 6 2

2. rank decoys using evolved energy function RE

(decoys sorted by energy)

5 1 3 4 0 2 6 7
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3. comparison of rankings — RR vs. RE

4. total fitness = average distance for m proteins

F =
1

m

mX
i=1

d(RRi, REi)

The reference ranking was constructed using RMSD, the
oldest and de facto standard measure of similarity between
protein structures. It is calculated as a root mean square
deviation between 3D coordinates of Cα atoms of two struc-
tures minimised with respect to the rotation using Kabsch
algorithm [26][11].

RMSD =

vuut 1

N

i=NX
i=1

δ2i (1)

The ties in the ranking construction were solved in two
ways. First, a tie was called when RMSD values were the
same up to the first two decimal places, what corresponds to
a precision of 1 picometer (in terms of inter-atomic distance).
Then a second sorting criterion was used, being the original
I-TASSER energy of the decoys being compared. As this
method was not very efficient (I-TASSER energy alone does
not reflect well the structural similarity), another approach
was assigning an averaged rank to all decoys with the same
RMSD value. The drawback of this approach was that only
the Spearman distance (see below) could be used to compare
the ranks as other measures require a permutation as an
input.

To compute the distance between the rankings several dif-
ferent measures were used:

• Levenshtein edit distance [29], a popular string metric
where distance is given by the minimum number of op-
erations (insertion, deletion or substitution of a char-
acter) needed to transform one string into the other,

L(a, b) = dn,n

di,0 = d0,i = i for i = 0 . . . n

di,j = min{di−1,j + 1, di,j−1 + 1, di−1,j−1 + c(i, j)}

c(i, j) =

(
0 if a(i) = b(i)

1 if a(i) 6= b(i)

• Kendall tau distance [28], the number of inversions be-
tween two permutations also known as the bubble-sort
distance,

K(a, b) = |{(i, j) : i < j ∧ a(i) < a(j) ∧ b(i) > b(j)}|

• Spearman edit distance [13], the sum of differences be-
tween the ranks of elements.

S(a, b) =

nX
i

|a(i)− b(i)|

These measures differs in computation cost, e.g. for the
Levenshtein distance a dynamic programming algorithm has
a complexity of O(n2) and the Spearman distance can be cal-
culated in linear time. They also differ in the range of possi-
ble distance values, i.e. maximum distance for the Kendall

measure is n(n−1)
2

, for the Spearman measure it is 1
2
n2, while

the Levenshtein distance, similarly to many other editing
distance metrics on permutations such as Hamming metric,
Cayley distance or Ulam metric, is bounded by the O(n).

The best evolved energy functions has been shown to have
over 10% higher fitness than the functions found by the ran-
dom walk with the same number of fitness evaluations. The
fitness was as well higher than in case of the naive sum of
all energy terms Enaive =

P
i Ti.

Also the linear combination of of terms Elinear =
P
i wiTi

with a vector of weights ~w optimised using the Nelder-Mead
downhill simplex method [33][32] was outperformed by GP
with best fitness being over 10% higher.

Moreover, the GP algorithm was able to discover the most
and the least useful energy terms without knowing the cor-
relation of these terms to the RMSD. The most frequently
used energy terms in the best evolved functions had the
highest correlation to RMSD and the least frequently used
energy terms were the ones with the correlation to RMSD
closest to zero.

3. INFOBIOTICS MODEL EVOLUTION IN
SYSTEMS AND SYNTHETIC BIOLOGY

The following section sumarises material that originally
appeared in our papers [39, 9, 15]. Living cells are com-
plex systems that arise from a rich array of interrelated
biomolecular processes. In order to understand, manipu-
late and even coerce a cellular system into producing a tar-
get phenotype, the development of good models is a crit-
ical steppingstone. Thus sibling disciplines systems [2, 27]
and synthetic [7] biology depend crucially on the availability
of sophisticated and expressive modeling methodologies and
tools. Infobiotics approaches [40, 25], also called Executable
biology [14] and Algorithmic Systems Biology[35] are gaining
momentum as alternative ways of modeling large biologi-
cal complex systems. Infobiotics is based on models that
are built not by specifying differential equations but rather
mechanistically by defining algorithms (under a variety of
possible formalisms) whose execution mimics the causal re-
lation behind change and time/space dynamics in biological
systems. Existent executable biology methodologies are rig-
orous and mathematically sound modeling techniques. Exe-
cutable biology models are deemed to be expressive as they
seamlessly capture the modularity behind many biological
systems. Infobiotics models have been successfully used to
model a variety of biological systems [37, 12, 18]. A fun-
damentally appealing property of Infobiotics models is that
being intrinsically executable structures, they are appealing
from an evolutionary computing point of view. These mod-
els represent large collections of relatively short algorithms
that execute in a stochastic fashion to produce an emer-
gen behaviour. Hence, they bring forth several interesting
challenges to the evolutionary computing community. More-
over, evolving models to fit data (see below) is similar but
not identical to standard symbolic regression as here the
model is itself a (biological) computer program that must
be run (i.e. simulated) and from this execution an emergent
behaviour will be compared to the data to be fitted.

3.1 Methods
The approach discussed here uses a computational, mod-

ular and discrete-stochastic modelling approach based on P
systems[36]. More specifically, a variant called stochastic
P systems developed for the specification and simulation of
cellular systems is used [40].
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A stochastic P system is a construct

Π = (O,L, µ,Ml1 ,Ml2 , . . . ,Mln , Rl1 , . . . , Rln)

whereO is a finite alphabet of objects representing molecules.
L = {l1, . . . , ln} is a finite set of labels identifying compart-
ment types. µ is a membrane structure containing n ≥ 1
membranes defining compartments arranged in a hierarchi-
cal manner. Each membrane is identified in a one to one
manner with labels in L which determines its type. Mli for
each 1 ≤ i ≤ n, is the initial configuration of membrane
i consisting of a multiset of objects over O initially placed
inside the compartment defined by membrane with label li.
Rli = {rli1 , . . . , r

li
kli
}, for each 1 ≤ i ≤ n, is a finite set of

rewriting rules associated with the compartment with label
li ∈ L and of the following general form:

o1[o2]l
c−→ o′1[o′2]l (2)

with o1, o2, o
′
1, o
′
2 multisets of objects over O (potentially

empty) and l ∈ L a label. These multiset rewriting rules af-
fect both the inside and outside of membranes. An applica-
tion of a rule of this form replaces simultaneously a multiset
o1 outside membrane l and a multiset o2 inside membrane l
by multisets o′1 and o′2, respectively. A stochastic constant c
is associated specifically with each rule in order to compute
its propensity according to Gillespie’s theory of stochastic
kinetics [19]. More specifically, rewriting rules are selected
according to an extension of Gillespie’s well known Stochas-
tic Simulation Algorithm (SSA) [19] to the multicompart-
mental structure of P system models [34].

A biological module is a separable discrete entity that de-
fines a particular biological function [22]. A P system module
is a set of rewriting rules (such as those in 2) where some of
the objects, kinetic constants or labels, might be variables.
This increases reusability because large models can be con-
structed by combining common modules instantiated with
specific values. At the end, the result is a set or rewriting
rules representing a particular cellular model. Formally, a
module M is specified as M(V,C, L) where V constitutes
object variables, which can be instantiated with specific ob-
jects, C are variables for the kinetic constants, and L are
variables for the labels of the compartments appearing in
the rules. For example the module Constitutive or Unregu-
lated expression states how gene, gX, is firstly transcribed
into its mRNA, rX, without any transcriptional regulatory
factor; and then, the mRNA, rX, is translated into the cor-
responding protein pX. Cell machinery can also degrade the
mRNA and protein. These processes take place in compart-
ment l according to the kinetic constants c1, . . . , c4.

UnReg({X}, {c1, c2, c3, c4}, {l}) =

=

8>>><>>>:
r1 : [gX]l

c1−→ [gX + rX]l
r2 : [rX]l

c2−→ [rX + pX]l
r3 : [rX]l

c3−→ [ ]l
r4 : [pX]l

c4−→ [ ]l

9>>>=>>>;
X is a variable that can be instantiated with a concrete

gene. Kinetic constants may take specific values represent-
ing different transcription, translation and degradation rates.
Further details and examples of other modules are available
in [39, 9, 15]. In the automated generation of systems or
synthetic biology models one is given (a) a set of experi-
mental data, e.g., microarray datasets, phenotype arrays,
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Figure 3: A number of target time series is given and
the models must match the profiles of all of them si-
multaneously. The time series are noisy, have differ-
ent scales (M1,M2) and differ in their key features,
e.g., response times, half-lives, etc.

optical density maps, etc, (see Fig. 3) and (b) a library of
model modules and is asked to evolve a model, which might
be ”bootstrapped” with modules from the library, that when
simulated reproduces the given data. [39, 9, 15] dealt with
the problem of evolving P systems model structures and pa-
rameters. A variety of fitness functions were analysed as
well as several metaheuristic algorithms.

Suppose we have N target time series (X1, X2, . . . , XN ),
each representing a specific protein, gene, rna, etc and where
Xj = (x1

j , x
2
j , . . . , x

M
j )T , that is, each time series has up

to M data points. Each candidate stochastic model is run
multiple times and an average model output obtained for
each of the N time series: (X̂1, X̂2, . . . , X̂N ) where X̂j =
(x̂1
j , x̂

2
j , . . . , x̂

M
j )T , j = 1, . . . , N . These output time series

are then used to calculate fitness as follows:
In the Equally Weighted Sum Method (F1), the fitness

calculation formula for this method is:

Fitness (F1) =

NX
j=1

MX
i=1

(|x̂ij − xij |)

This is the most commonly used method [31] in which all
the error items from different objects are considered to have
the same significance. As we depict in Fig. 3, using this
method the fitness function can be dominated by the errors
of the time series with large values, neglecting the errors of
objects with small values. This can prevent the algorithm
from finding a good compromise model for all the objects.

Data normalization is an important data preprocessing
technology for many applications. Sola and Sevilla [43] sys-
tematically studied the importance of input data normaliza-
tion for the application of neural networks to complex indus-
trial problems by experimenting with five different data nor-
malization procedures on the training data set. In essence,
data normalization consists in the transformation of the orig-
inal data into the range [0,1] in order to make the data com-
parable at the same level. There are many such transforma-
tions, for example, the Normalisation Method (F2)
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f̂i(x) =
fi(x)−min{fi(x)}

max{fi(x)} −min{fi(x)} (3)

used in [10].
normalises the absolute error for each data point. Hence

the formula to calculate the fitness using the F2 method is
as follows:

Fitness (F2) =

NX
j=1

MX
i=1

(|x̂ij − xij |)−min(|x̂ij − xij |)
max(|x̂ij − xij |)−min(|x̂ij − xij |)

The above normalization method removes the saliency of
large absolute errors and brings all the time series and their
misfit values into an equal footing. On the other hand, by
compressing all the data into a [0, 1] interval some of the
time series subtleties might be lost.

Another possible fitness function could be the Randomly
Weighted Sum Method (F3). This method is similar to F1
but instead of assuming equal contribution from all the er-
rors, here they are adjusted according to a normalized weight
vector generated randomly.

A weight vector (w1, w2, . . . , wN ) is called normalized if it
meets the following condition:

∀j wj ≥ 0 and

NX
j=1

wj = 1

This method was proposed by Ishibuchi and Murata [23]
to deal with the case of fitness functions that are composed
of a weighted sum of partial objectives. As this approach
does not assure uniform sampling of the normalized weight
vectors, Jaszkiewicz proposed the following algorithm in [24]
to ensure that the weights vectors are drawn with uniform
probability distribution:

λ1 = 1− J−1
p
rand()

· · ·

λj = (1−
j−1P
l=1

λl)(1− J−1−j
p
rand())

· · ·

λJ = 1−
J−1P
l=1

λl

where function rand() returns a random value within the
range (0,1) with uniform probability distribution. The al-
gorithm above is used to randomly generate a normalized
weight vector and then the weighted sum of all errors is
used as the fitness value. This procedure is repeated K
times and the average is used as the final fitness. Thus, the
fitness calculation formula for this method is as follows:

Fitness (F3) =

KP
n=1

NP
j=1

(wnj
MP
i=1

(|x̂ij − xij |))

K

where wnj is the random weight for the jth target time series
generated at the nth time.

Finally, we have also tested the Equally Weighted Product
Method (F4). This fitness method is obtained by multiplying
all the error items for each target time series and the fitness
calculation formula is:

Fitness (F4) =

NY
j=1

MX
i=1

(|x̂ij − xij |)

Figure 4: GA for P system model structure opti-
mization.

Bridgman [8] was the first author to refer to this approach
and later Gerasimov and Repko [17] successfully applied this
method to the multi-objective optimization of a truss. These
fitness functions were plugged into a nested Evolutionary
Algorithm to evolve P system models that could match a
biological phenotype that is specified through a collection of
time series representing molecular concentrations of various
species. The EA’s first layer searches for model structures
using a genetic algorithm (GA); while the inner layer, also
implemented as a GA, acts as a local search for the continu-
ous parameters of the model. The pseudo code of the main
GAs is shown in Fig. 4.

In [15] the internal parameter optimisation algorithm was
improved by replacing the GA by a Variable Neighborhood
Search with Evolutionary Components. In [30], Lozano and
Garćıa-Mart́ınez introduced a novel methodology to design
hybrid algorithms, which invoked EAs as inner components.
The idea was to replace classic components of well-known
optimisation methods by specialised EA approaches per-
forming the same tasks, but more satisfactorily. They called
these EA approaches evolutionary components. Later, they
presented a model based on Variable Neighbourhood Search
method (VNS) [20] where the original three components
were replaced by three evolutionary components [16]: Gen-
eration: At the beginning, CMA-ES is executed to generate
an initial solution sc. The applied parameter values were
the ones suggested in the C code available at the webpage
of the author1. Improvement: Afterwards, Continuous Local
EA [16] locally optimises the current solution, attempting to
accurately reach a local optimum. An important remark of
Continuous Local EA is that it employs a specific replace-
ment strategy and mating scheme to gather up and exploit
valuable information from the search space. Shaking: Mirco
Cross-generational elitist selection, Heterogeneous recombi-
nation, and Cataclysmic mutation [16] perturbs the best so-
lution so far trying to get out of the valley where it lies.
Following the idea in the original VNS, the intensity of per-

1http://www.lri.fr/∼hansen/cmaes_inmatlab.html
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turbation performed by this component (Nk) is strengthen
when the previous improvement process could not improve
the best solution so far, and weaken otherwise. The new
solution is given to Continuous Local EA to be optimised.
The second and third steps are then repeated until a stoping
condition is fulfilled.

3.2 Results
Using the methods F1, F3 or F4 the algorithm always

finds good models that can accurately reproduce the dy-
namical behavior of the target cellular system. F2, usually
reports worse results than the alternative fitness functions.
Specifically, for simple cases all these methods consistently
find a single model structure, i.e. the target one, never-
theless the diversity of the models found by our algorithm
using the methods increases significantly with the complex-
ity of the target data set. More interestingly, some of these
models are simpler than the target one. This result is very
encouraging as it could help biologists to design new exper-
iments to discriminate among competing hypothesis (mod-
els) and then only engineered in the lab the one that has
been proven as the best. This is a potentially very useful
feature to help close the loop between modeling and experi-
mentation in both synthetic and systems biology. Generally
speaking, if some target output objects of the predesigned
cellular system have very different orders of magnitude in
their time series, F3 and F4 work better than F1 when try-
ing to obtain a good compromise solution. Moreover, we
also run five different EAs specifically in what relate to the
optimisation of the models parameters, i.e., their structures
were assumed to be known. We analysed their scalability
in terms of the numbers of dimensions to search. For rela-
tively low dimensional problems, population based methods
worked better while as the number of dimensions increased
procedures whose search processes are focused on just one
solution, such as VNS-ECs described above become more
profitable.

4. CHALLENGES
Both of the problems and the methods described in the

previous sections are a complex mixture of regression and
modeling in which one is interested not only on fitting data
but also on being able to generalize and explain. There are
several challenges that remain unsolved in these two prob-
lems.

4.1 Design of Effective Fitness Functions
The design of effective fitness functions for these prob-

lems is a critical and yet unmet milestone. In the case of
the Genetic Programming Evolution of a Protein Structure
energy function, a more optimal ranking construction and
comparison and a better choice of robust reference measures
of structural similarity are needed. In addition, the selec-
tion of operators and low-level attributes that would enable
more complex computations (including conditional clauses
or loops) while keeping the evolved functions compact and
human-interpretable would be desirable. As it is, in prin-
ciple, more difficult to evolve a single general function that
would be able to capture the knowledge about structural
similarity of many different kinds of proteins, the set of GP
operators could be extended with conditional clauses operat-
ing on low-level protein attributes (e.g. length) or predicted
features (e.g. secondary structure or recursive convex hull
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Figure 5: Symbolic regression and modeling under
complex genotype → phenotype → fitness mappings

[44]), to automatically tune the evolving functions to differ-
ent protein types. Moreover, it is not yet understood how
general the evolved functions are and whether the simulta-
neous use of different set of proteins or decoys generated
by different predictors will not reveal any over-training we
might have missed. In terms of the evolution of systems and
synthetic biology models, the design of effective fitness func-
tions remains elusive. Researchers have naively assume that
minimising the sum of squared errors would always be the
best strategy. We have shown that, as expected, there is no
single best fitness function and that depending on the type
of input data and problem at hand different fitnesses must
be used. Moreover, in automated model building, additional
fitness criteria might be considered [9] such as parameters
sensitivity, model robustness and parsimony, etc. The ques-
tion of whether a meta-algorithm could auto-tune the fitness
function remains open.

4.2 What Space is Being Searched and How?
The two combined symbolic regression and modeling prob-

lems described in this paper show a complex genotype →
phenotype → fitness mapping (see Fig. 5). In both cases,
highly structured genotypes are interpreted by a series of
algorithms and data sets that introduce both nonlineariries
and noise into the mapping.

In turn, these phenotypes (mathematical functions in one
case and computer models in the other) are interpreted / ex-
ecuted and a fitness is assigned to these executional traces.
We discussed above the perils of the last stage of this process,
namely, that of fitness assignment yet the entire mapping
must be taken into account as to be able to develop robust
search algorithms. For example, the fitness function used
in the protein structure energy function case must be suffi-
ciently fine-grained as to be able to distinguished between
similar, yet not identical, rankings (i.e. phenotypes). Cur-
rently, the distances between any two rankings are limited to
a range of O(n2), where n is the protein structure size, and
this makes distinguishing between candidate energy func-
tions difficult. In the case of the search for alternative sys-
tems/synthetic biology models one faces the prospect of try-
ing to fit just a few data samples with a high dimensional
model that might produce good fit to the existing data but
not be able to generalise to new, yet unseen, samples. Dis-
tinguishing amongst model structures (i.e. phenotypes) and
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their parameters before simulating them (e.g. by partially
checking the models) could be a promising way of better un-
derstanding the search space that is being explored. Thus
developing effective techniques for avoiding resampling, op-
timising signal to noise ratios, detecting multimodality, etc
are some important open challenges.

4.3 CPU hungry problems
Ideally, when evolving the energy functions for protein

structure prediction one would use Turing-complete GP con-
structs, multiple decoys and data sets as input as well as
multiple structure comparison techniques. Clearly, these re-
quirements would make an already expensive problem even
more cpu-hungry. In the case of the evolution of models
for systems and synthetic biology, a quite immediate con-
cern is that the computational bottleneck lies with the sim-
ulation of the candidate models. As biological systems are
stochastic and noisy, a judicious selection of the number of
replicas could substantially speed-up the evaluation stages.
Moreover, a multi-stage algorithm that uses first surrogate
fitness functions to zoom-in into promising model structures
and then shifts to full simulations for the fine tuning of
model parameters seems to be a promising avenue. Interest-
ingly, the possibility of partial evaluation of P systems (and
other executable biology) models could prove to be a promis-
ing avenue for achieving substantial speed ups. Finally, in
both problems, state of the art distributed and parallel code
would be critical contributors to future progress.

4.4 Human understandability and biological
plausibility

In both problems, it is of critical importantance that the
evolved entities are human understandable and biologically
plausible. In terms of the evolution of energy functions for
the protein structure prediction problem, one could refine
the building blocks we have used and include other physi-
cally realistic constraints, e.g. similar to those used in [41],
in the search process. In the case of the evolvability of
systems biology models, our methods promote understand-
ability through the use of clearly defined and intuitive P
systems modules than can be combined into larger models.
However, ensuring biological plausibility still remains a chal-
lenge. Different avenues could be considered in solving this
problem, e.g., collecting a database of model composition
constraints, adding a filtering stage of text mining to the
evolutionary problem whereby biological papers abstracts
could be scanned for the co-ocurrence of modules within
papers content, and the biasing of the search process itself
based on collected statistics on the co-location of biological
modules and network motifs across species.
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