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Abstract— Automatic protein structure predictors use the
notion of energy to guide the search towards good candidate
structures. The energy functions used by the state-of-the-art
predictors are defined as a linear combination of several energy
terms designed by human experts. We hypothesised that the
energy based guidance could be more accurate if the terms
were combined more freely. To test this hypothesis, we designed
a genetic programming algorithm to evolve the protein energy
function. Using several different fitness functions we examined
the potential of the evolutionary approach on a set of candidate
structures generated during the protein structure prediction
process. Although our algorithms were able to improve over the
random walk, the fitness of the best individuals was far from the
optimum. We discuss the shortcomings of our initial algorithm
design and the possible directions for further research.

I. INTRODUCTION

The most widely accepted hypothesis explaining the pro-
cess of protein folding was formulated by Christian Anfinsen.
In a Nobel prize winning experiment he found that a refolded
protein always forms the same native structure [1]. He
therefore concluded that all the information needed to fold
a protein has to be contained in its sequence and nature is
applying a “folding algorithm” with a protein sequence as
an input and native state as an output. Anfinsen’s thermo-
dynamic hypothesis stated that the native configuration is in
the thermodynamic equilibrium and explained the algorithm
of folding as a process of minimisation of the protein’s free
energy .

The free energy is defined as a function of structure and
is used in so called ab initio folding, where the prediction
cannot rely on sequence similarity to previously solved
structures. The model of the structure has to be built from
“scratch” and is based on the physical principles of folding,
namely, the protein inter-atomic interactions [2].

For the last few decades several models of protein force
fields have been proposed such as AMBER99, CHARMM22
or OLPS-AA [3]. However, due to the high computational
cost of the all-atom energy functions, their practical use is
limited to the molecular dynamic simulation of short protein
chains. Consider for example massively distributed projects
such as Folding@home [4] or Rosetta@home [5] that are
able to gather vast computational resources. Even though
Folding@home is currently the most powerful computing
system on Earth (it operates at 4 peta FLOPS performance
level [6]), a simulation of 10µs of protein folding uses
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10 000 CPU days while proteins usually fold in a millisecond
timescale [7].

To lower the computational cost of prediction, high level
simplified models of proteins are commonly used, such as
SICHO [8], UNRES [9], CABS [10] or CAS [11]. Instead
of an exact atomic representation these models use a reduced
representation, where coordinates of groups of atoms are
replaced with a single high level entity (pseudo-atom), e.g.
the group center of mass.

Due to the loss of details, the protein free energy in
the reduced models cannot directly rely on intermolecular
forces. The knowledge-based potentials are used instead.
They are derived from an analysis of known structures and
represent the likelihood of observing a specific feature in
the native state. As a consequence, the energy function does
not capture the physical free energy explicitly but represents
a probability that a given structure is native-like. Because
this extra knowledge is being used, the prediction process is
no longer considered to be ab initio. Instead, the structure
prediction community gathered around CASP experiment
[12] uses the term “template free”.

In the CASP (Critical Assessment of Techniques for
Protein Structure Prediction) experiment, participants are
given the protein sequences of unknown three dimensional
structure to be determined computationally. In parallel the
structures are determined experimentally and used to assess
the prediction accuracy of the methods. Structure prediction
methods are divided in two categories: template based mod-
elling (target sequence has close homologue - template, or
adopts a known fold) and template free modelling (targets
with a new topology).

The two most successful prediction methods in the “tem-
plate free” category of the CASP7 experiment [13][14][15]
are Robetta [16] and I-TASSER [17]. Both methods build
the initial protein models from short fragments of known
structures similar on a sequence level. Small random changes
are applied to these models and the Monte Carlo method is
used to find a structure with minimal energy. In both methods
the energy is formulated as a weighted sum of knowledge-
based potentials.

To determine the optimal set of weights both methods
generate a set of candidate structures, so called decoys, by
applying small random changes to a known native structure.
The optimisation objective is to maximise the correlation
between the value of energy function and the similarity of
decoys to the native structure. Therefore, the energy function
is expected to have the lowest value for the decoys that are
most similar to the native structure. Similarity is measured as



the root mean square deviation (RMSD) of euclidean distance
between Cα atoms of a decoy and the native structure.

In the weight optimisation process, Robetta used a training
set of 21 proteins. For each protein 30 000 decoys were
generated and the linear regression against RMSD was used
as an objective function [18]. I-TASSER used 30 proteins,
with 60 000 decoys each, and maximised complex objective
function with correlation to RMSD as its main element [19].
Both prediction methods are able to distinguish between
native-like (RMSD value < 0.4nm) and non-native decoys
(RMSD value > 0.8nm). However, the actual correlation
coefficient between the energy and similarity is not too high,
eg. Zhang et al. [19] report it to be 0.54 for naive combination
of terms and 0.65 for the optimised one.

A critical analysis of the approach described above reveals
two drawbacks. Firstly, the set of decoys created by randomi-
sation of the native structure is biased towards that structure,
resulting in potential overfitting of the energy function. The
process itself is also the exact opposite of what predictors
do in practice, where the native structure is unknown and
decoys have to be built from scratch. Secondly, the linear
combination of energy terms is a very simple but potentially
very restrictive approach to construct the energy function.

With this paper we tried to address both issues. Using
the set of decoys generated during the prediction process
we designed a genetic programming (GP) algorithm to test
the hypothesis that a more general functional combination of
energy terms will result in higher correlation of the energy
function with the similarity to the protein native structure.

We have selected a subset of eight energy terms used by
I-TASSER and pre-calculated their values for each decoy. In
a number of experiments we applied genetic programming
to evolve non-linear energy functions featuring a range of
basic algebraic operators and transcendental functions. Using
several different fitness definitions we tried to determine how
difficult it is to evolve an energy function that is highly
correlated with structural similarity to the native state.

In Section II, we present the methodology of our research,
a detailed description of the data sets used and the GP
parametrisation. In Section III, we describe the experiments
carried out and the results obtained. We then present a
discussion of the results and concluding remarks.

II. METHODS

A. Energy terms
We have implemented eight I-TASSER energy terms.

Three short-range potentials between Cα atoms E13, E14

and E15, long-range pairwise potential between side chain
centres of mass Epair, environment profile potential Eenv ,
local stiffness potential Estiff and electrostatic interactions
potential Eelectro as described in [19][11] and the hydrogen
bonds potential EHB as explained in supplementary materi-
als to [20].

The first five of these energy terms use a distribution
of structural features that is derived from the data base of
known protein structures. Stiffness and hydrogen bond poten-
tials represent structural bias towards regular arrangements

of predicted secondary structure and penalise irregularities.
Electrostatic potential uses the Debye-Hückel equation to
calculate the interaction energy of ions in the solution.

We left out potentials using data from the threading pro-
cess (e.g. distance map or contact order) and the hydrophobic
potential introduced in [17] using neural network [21] as
they depend on external feature predictors which were not
available for local use at the time of writing this paper.

B. Data preprocessing

In our experiments we used 54 protein chains used by
Zhang et. al [17]. For each protein we used a set of decoys
generated by I-TASSER along the Monte Carlo optimisation
process [22] (available online [17]). To eliminate highly
similar decoys we have taken a 10% sample of each set (one
decoy from every 10th I-TASSER iterations), resulting in a
training set of 1250–2000 decoys per protein. For each decoy
we have pre-calculated the values of all eight energy terms
mentioned above.

For each protein we have measured the similarity of
generated decoys to the known native structure. As a measure
we used the root mean square deviation (RMSD) between 3D
coordinates of Cα atoms of two structures minimised with
respect to the rotation using Kabsch algorithm [23][24]. As
a non-weighted average of all Cα–Cα distances the RMSD
is sensitive to local errors and might return high values of
distance even if global topology is correct. Despite known
limitations of RMSD as a measure of protein structural sim-
ilarity [25], we decided to use it to make the fair comparison
to the previous work [19][17].

To compensate for the noise introduced by RMSD, we
decided not to rely on the absolute RMSD values directly,
but rather on the relative rank order. That is, for given
decoys A and B we decide only if RMSD(A,native) <
RMSD(B,native) ignoring the scale of absolute difference
in the distance to a native δ = RMSD(A,native) −
RMSD(B,native). This approach simplifies the optimisa-
tion objective, as ranking is more robust than a matrix of
exact distances between all pairs of decoys.

For each protein we sorted the decoys in increasing order
of the RMSD to generate the reference ranking Rr. In case
of ties, we used the original I-TASSER energy as a second
criterion (lower energy corresponds to lower index in the
ranking). A tie between decoys was called when RMSD
values were the same up to the first two decimal places.
This gives us a precision of a 1 picometer (for reference, the
radius of hydrogen atom is 25 pm).

For the same set of protein chains we ran the Rosetta
ab initio prediction [16] and obtained the same number of
decoys as in I-TASSER case. These decoys were only used
for visual assessment of correlation between Rosetta energy
and RMSD (see Section III).

C. Genetic programming experiment

We used a set of 16 terminals and 8 operators. Half of
the terminals were the energy terms T1–T8 described in II-A
(see Table II for the mapping to I-TASSER terms), half were



ephemeral random constants in range [-1,1]. Operators were
both binary (addition, subtraction, multiplication, division)
and unary (sine, cosine, exponential function, natural loga-
rithm). We did not impose any selection bias towards any of
the primitives.

The fitness function used to evaluate the energy function
was based on a comparison of the reference ranking Rr
(obtained in the preprocessing stage) to the evolutionary
ranking Re. For each protein the evolved energy function was
used to rank the decoys and obtain ranking Re. A normalised
distance between rankings d(Rr, Re) was calculated for each
protein, and then averaged for all proteins to produce the total
fitness.

We used several different methods to calculate the distance
between rankings (see examples in Table I):
• Levenshtein edit distance [26] - a popular string met-

ric where distance is given by the minimum number
of operations (insertion, deletion or substitution of a
character) needed to transform one string into the other,

L(a, b) = dn,n

di,0 = d0,i = i for i = 0 . . . n
di,j = min{di−1,j + 1, di,j−1 + 1, di−1,j−1 + c(i, j)}

c(i, j) =

{
0 if a(i) = b(i)
1 if a(i) 6= b(i)

• Kendall τ distance [27] - the number of inversions
between two permutations also known as the bubble-
sort distance,

K(a, b) = |{(i, j) : i < j ∧ a(i) < a(j) ∧ b(i) > b(j)}|

• Spearman footrule distance [28] - the sum of differences
between the ranks of elements.

S(a, b) =
n∑
i

|a(i)− b(i)|

TABLE I
EXAMPLES OF USE OF SELECTED RANKING DISTANCE MEASURES.

Levenshtein Kendall Spearman weighted Spearman
distance = 2 distance = 3 distance = 10 distance = 4.6 ( 23

5
)

1 2 3 4 5 1 2 3 4 5 4 3 2 1 5 4 3 2 1 5
1 3 4 5 2 1 3 4 5 2 3 4 1 5 2 3 4 1 5 2

1 1 1 4 3 1 1 1 4 3
5
5

4
5

3
5

2
5

1
5

Notice that the measures differ in the computational cost.
For the Levenshtein distance a dynamic programming algo-
rithm has to be used with a complexity of O(n2). Kendall
distance can be computed in O(nlogn) time by counting in-
versions during the merge sort procedure. Spearman distance
is the simplest measure of these three and can be calculated
in linear time.

Both Kendall and Spearman distances are bounded by
O(n2), having the maximum possible distance equal to

respectively n(n−1)
2 and 1

2n
2 for the reversed ranking. Leven-

shtein distance, similar to many other editing distance metrics
on permutations such as Hamming metric, Cayley distance
or Ulam metric, is bounded by the O(n).

An additional weighting mechanism was applied to the
Spearman distance to promote correct order at the beginning
(more native-like) of the ranking and to be less sensitive to
differences in the order at the end (less native-like). We used
two weighting functions:

• linear function decreasing from 1 to 0 along the position
in the ranking,

w(i) = 1− i/N , for 0 ≤ i < N

• sigmoid function with inflection point (weight 0.5) at
25% of the ranking length.

w(i) =
1

1 + exp( i−0.25N
scale∗N )

scale =

{
0.25N
width if i < 0.25N
0.75N
width if i ≥ 0.25N

We have implemented the genetic programming algorithm
using the Open BEAGLE framework [29]. In all experiments
we used two replacement strategies: generational and steady-
state [30], with the tournament selection [31] and 1000
generations. The population size was set to 100, crossover
probability was 0.8 with 0.1 probability that the crossover
point is a leaf and 0.05 probability of reproduction without
modification. Three mutation operators were used with 0.05
probability each: sub-tree replacement with a random tree,
tree shrink where node is replaced by one of its child
nodes, sub-tree swap with 0.5 probability that mutation
point is a leaf. The initial exploratory trial from which this
configuration is derived is not reported here due to space
limitations.

We have run two rounds of experiments. In the first round
we used Levenshtein, Kendall and non-weighted Spearman
distances. In the second round we drop the worst performing
Levenshtein distance and applied the linear and sigmoid
weighting to the Spearman distance. To have higher selection
pressure we increased the tournament size from 2 in the
previous round to 4, 6 and 8. We added one additional run
configuration: generational replacement with strong elitism
(keeping 5 best individuals from each generation), single
mutation operator (replacement with a random tree) applied
with probability of 0.1 and the crossover with probability
0.9.

Additionally, a random walk was performed for reference.
In each generation the population was created using the half-
and-half initialization operator [32][33].

Each experiment was repeated 5 times with different
random seeds. In the next section we report results of the
best run, as we are interested in obtaining the best possible
GP-designed energy function that could perhaps be human-
competitive.



Fig. 1
SCATTER PLOTS OF I-TASSER ORIGINAL ENERGY (VERTICAL AXIS) VS.

RMSD (LEFT COLUMN) AND RANK (RIGHT COLUMN). EACH PLOT

REPRESENTS DECOYS FOR A SINGLE PROTEIN. THE CORRELATION

COEFFICIENTS ARE GIVEN IN BRACKETS.

III. MAIN RESULTS

A. Energy correlation

To compare the ability of the original energy functions
used by I-TASSER and Robetta to distinguish between
native-like and non-native structures, we plot the relation
between the energy and similarity to the native for all decoys.
Figure 1 shows the I-TASSER energy correlation to RMSD
(left column) and rank (right column) for selected proteins
with a high, average and low correlation coefficient (given in
brackets). The average correlation coefficient for all proteins
was 0.44 ± 0.23 (second value is a standard deviation).
Interestingly, even a high correlation coefficient (1pqx ), was
not enough to point to the most native-like structure as we
observe a flat cloud in the lowest energy region stretched over
a distance of 0.1–0.2nm. This cloud becomes wider with a
decrease of the correlation coefficient and its center tends to
shift towards greater values of RMSD.

This difficulty in selecting the most native-like decoys is
even more visible when the energy is plotted against the rank
(right column of Figure 1). Instead of a clear trend with the
energy decreasing along the decreasing rank, the trend line is
very flat and thick. Several slightly slanted vertical stripes are
visible in regions were a number of decoys equally distant
from the native have a different energy (2f3nA, 10f9A).

Fig. 2
SCATTER PLOTS OF ROSETTA ORIGINAL ENERGY (VERTICAL AXIS) VS.

RMSD (LEFT COLUMN) AND RANK (RIGHT COLUMN). EACH PLOT

REPRESENTS DECOYS FOR A SINGLE PROTEIN. THE CORRELATION

COEFFICIENTS ARE GIVEN IN BRACKETS.

Overall, the correlation to the rank was almost half as low as
in the case of RMSD with the total average of 0.25± 0.16.

Similar plots for decoys generated by Rosetta are shown
in Figure 2. As the decoys cover a wider RMSD range and
are not concentrated in a single region, the total average
correlation coefficient to the rank, equal to 0.28, is only 0.02
lower than the coefficient of correlation to RMSD. However,
similar to the I-TASSER energy, pointing out the native-like
decoys using the value of Rosetta energy is in most cases
very difficult.

B. I-TASSER energy terms

Coefficients for individual energy terms are shown in
Table II. The values for our decoys are significantly lower
than the one reported by Zhang et al. [19]. Notice the
negative correlation of selected terms which decreases the
average correlation nearly to zero. The low values of the ρ2

coefficient could, however, be somewhat misleading as they
are hiding the spread amongst different proteins. The relative
standard deviation for ρ2 ranged from 82% for T2 to 942%
for T6.

The average correlation coefficient for the naive sum of
energy terms EN =

∑8
i=1 Ti was 0.12 ± 0.16. Correlation

between the naive sum of energy terms and the rank was



lower as in the case of original I-TASSER energy, and the
coefficient value was 0.07± 0.16.

TABLE II
BOTH ρ1 AND ρ2 SHOW THE AVERAGE CORRELATION BETWEEN A

SINGLE ENERGY TERM AND THE SIMILARITY TO THE NATIVE

STRUCTURE MEASURED BY RMSD. ρ1 IS THE COEFFICIENT

ORIGINALLY REPORTED BY ZHANG ET AL. [19] AND ρ2 IS THE

COEFFICIENT CALCULATED FOR OUR IMPLEMENTATION OF I-TASSER
ENERGY TERMS ON 54 PROTEINS USED IN OUR EXPERIMENT. ρE IS THE

COEFFICIENT OF CORRELATION BETWEEN A SINGLE ENERGY TERM AND

THE ORIGINAL I-TASSER ENERGY.

energy term ρ1 ρ2 ρE

T1 (E13) 0.27 0.03± 0.11 0.08± 0.15
T2 (E14) 0.56 0.20± 0.17 0.38± 0.16
T3 (E15) 0.33 0.15± 0.15 0.34± 0.19
T4 (Estiff ) 0.25 0.24± 0.22 0.44± 0.24
T5 (EHB) 0.51 −0.16± 0.20 −0.36± 0.23
T6 (Epair) 0.38 0.01± 0.14 0.12± 0.13
T7 (Eelectro) 0.27 −0.20± 0.23 −0.34± 0.26
T8 (Eenv) 0.34 0.04± 0.16 0.03± 0.15

average 0.40 0.06 0.09

C. Fitness distance correlation

The optimisation objective was to minimise the distance
d(Rr, Re) between the reference ranking Rr and the ranking
Re produced by the evolved function. The range of distances
was normalised to the [0,1] fitness range, where maximum
distance (comparison with reversed Rr) gives fitness equal
to 0 and zero distance corresponds to fitness equal to 1.

To compare the landscape difficulty of different fitness
functions we have measured the fitness distance correlation
on the phenotype level. Starting from a random reference
ranking Rr of length 100, for each of t ∈ {1, . . . , 1000} steps
20 new permutations were generated by applying a random
transposition to the permutations from previous step t − 1.
The correlation of the fitness functions to the distance to Rr
measured in number of applied transpositions, as well as the
direct correlation between the fitness functions, is shown in
Figure 3.

Notice that the minimum number of transpositions needed
to transform n-element permutation a to b, known as Cayley
distance, is bounded by O(n−1) and equal to n−c, where c
is the number of cycles in the disjoint cycle decomposition of
ab−1. Because of that, for n > 100 a fluctuation of the fitness
value is observed in plots A–C of Figure 3. As the range
of values that the fitness function based on the Levenshtein
distance can obtain is a square of the range obtainable for
Spearman and Kendall distances, the fluctuation range is also
lower.

This limitation is visible even more clearly in plots D
and E of Figure 3. The distinct horizontal stripes appear
for groups of permutations equally distant from Rr in the
Levenshtein metric space but easily distinguishable by the
other two distances. The gaps between the stripes are an-
other indicator of sparse space of values of the Levenshtein

Fig. 3
CORRELATION BETWEEN FITNESS AND NUMBER OF TRANSPOSITIONS

APPLIED TO THE REFERENCE RANKING (PLOTS A–C) AND DIRECT

CORRELATION BETWEEN FITNESS FUNCTIONS (PLOTS D–F). THE

CORRELATION COEFFICIENTS ARE GIVEN IN BRACKETS.

distance. The horizontal stripes become longer near the
maximum of Levenshtein distance, showing inablity of this
measure to distinguish between many samples slightly above
the middle of other two distances.

D. First round of experiments

The average fitness for the Levenshtein distance diverged
in a tiny range very close to the maximum distance (see
Figure 4. For Spearman distance we observed a fast improve-
ment of the average fitness in the first 50–100 generations
and the later saturation around 40% of the maximum fitness.
For the Kendall distance the initial improvement seems to be
more rapid but the spread of fitness was equal only to a very
small 3% range of the maximum fitness. The improvement
in fitness of the best found individual over the random walk
was only 1.3% for the Kendall distance and almost 5.5% for
the Spearman distance (see Table III).
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Fig. 4
FITNESS THROUGHOUT THE GENERATIONS IN THE FIRST ROUND OF EXPERIMENTS FOR THE BEST RUN FOR EACH FITNESS FUNCTION. THE LINES

SHOW AVERAGE (THICK BLACK LINE) AND THE MAXIMUM (THIN RED LINE) FITNESS IN THE POPULATION.

TABLE III
MAXIMUM FITNESS AND IMPROVEMENT OVER THE RANDOM WALK FOR

TWO RUN CONFIGURATIONS AND THREE FITNESS FUNCTIONS USED IN

THE 1ST ROUND OF EXPERIMENTS.

steady-state generational

measure max improvement max improvement

Levenshtein 0.004 25.91% 0.003 13.01%
Spearman 0.417 4.72% 0.420 5.49%
Kendall 0.520 0.97% 0.522 1.34%

E. Second round of experiments

The linear weighting mechanism did not change the fit-
ness landscape but the sigmoid weighting did. As shown
in Figure 6 the Spearman distance with sigmoid weights
reached over 20% higher average and maximum fitness value
than the non-weighted Spearman distance. It also seem that
the evolutionary progress for the best runs of both linear
and sigmoid weighted Spearman distance continues steadily
without the early saturation observed in the first round of
experiments (see Figure 5). However the spread of fitness
values is again low, covering only about 10% of the fitness
range (see Figure 6).

We did not observe a significant change in the evolutionary
improvement over the random walk for the Kendall distance.
In case of the Spearman distance with linear weights the
improvement seems to be even twice as big (up to 11%) as
in the previous round. However, the maximum fitness values
are still in the 0.4–0.5 range, so similarly far away from the
maximum as in the first round of experiments.

The run configuration with elitism and single mutation
operator performs best (in terms of improvement over the
random walk) with the sigmoid weighted Spearman distance.
For the overall best evolved function (with fitness 0.530) we
checked the correlation to RMSD and found the coefficient
to be 0.26 ± 0.17, which is over two times higher than the
correlation of the naive sum of terms (see Section III-B) but
only 0.02 greater than the highest correlation of a single term
(see Table II).

TABLE IV
MAXIMUM FITNESS AND IMPROVEMENT OVER THE RANDOM WALK FOR

THREE RUN CONFIGURATIONS WITH DIFFERENT TOURNAMENT SIZE AND

THREE FITNESS FUNCTIONS USED IN THE 2ND ROUND OF EXPERIMENTS.

steady-state generational elitism

measure ts max impr max impr max impr

Kendall
4 0.516 0.19% 0.522 1.49% 0.514 -0.08%
6 0.515 0.01% 0.517 0.42% 0.513 -0.25%
8 0.520 1.03% 0.514 -0.12% 0.517 0.45%

Spearman
linear

4 0.416 6.24% 0.429 9.47% 0.418 6.67%
6 0.430 9.79% 0.404 3.10% 0.408 4.18%
8 0.419 6.78% 0.436 11.34% 0.423 7.80%

Spearman
sigmoid

4 0.518 7.49% 0.503 4.38% 0.527 9.47%
6 0.516 7.11% 0.514 6.71% 0.511 6.04%
8 0.515 6.98% 0.508 5.38% 0.530 9.96%

IV. DISCUSSION

To be useful, the energy function has to guide the search
process towards the region of native-like proteins. It seems
reasonable to measure this usefulness with a correlation
coefficient between energy and similarity to native. However,
as we have shown in Figures 1–2, even the high coefficient
(> 0.7) does not mean that the native-like structure would
be easy to distinguish from the others. This is reflected in
an even lower correlation to rank, where decoys within the
same energy range are spread across many ranks.

The difference in correlation of single energy terms be-
tween our implementation and the original work by Zhang et
al. (see TableII) shows the difference in difficulty of choosing
native-like structure between different decoys sets. While we
have used a sample from the conformational search process
that is initialised with fragments of other proteins similar
on the sequence level and has no knowledge of the native
structure, I-TASSER and Robetta used the decoys generated
by randomisation of the native resulting in a biased set.
Moreover, the decoys we used are often very similar to each
other, whereas Zhang kept them separated by large 0.35nm
RMSD distance. Our results show that decoys generated by
the predictor are more difficult to assess and it might be
inadequate to optimise the energy based on the randomised
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Fig. 5
FITNESS THROUGHOUT THE GENERATIONS IN THE SECOND ROUND OF EXPERIMENTS FOR THE BEST RUN FOR EACH FITNESS FUNCTION. THE LINES

SHOW AVERAGE (THICK BLACK LINE) AND THE MAXIMUM (THIN RED LINE) FITNESS IN THE POPULATION.
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Fig. 6
BOX PLOT OF THE FITNESS DISTRIBUTION ACHIEVED BY A RANDOM

WALK FOR DIFFERENT FITNESS FUNCTIONS. MIDDLE LINE IS THE

MEDIAN OF THE AVERAGE FITNESS IN POPULATION ACROSS ALL

GENERATIONS. BOX SIZE REPRESENTS THE MEDIAN OF THE

POPULATION FITNESS STANDARD DEVIATION. TOP AND BOTTOM

WHISKERS MARKS MAXIMUM AND MINIMUM FITNESS ACROSS ALL

INDIVIDUALS.

and highly separated set of decoys, as this is not what
predictors have to deal with in practise.

The main reason why the correlation to RMSD of the
naive combination of energy terms compared to the original
I-TASSER energy were much lower, is probably in the choice
of energy terms. In future work we may extend the set of
energy terms adding data from protein features predictors
e.g. distance maps, contact order, contact restraints or solvent
accessibility [34][35][36] to make it more comparable to
what I-TASSER is using.

We decided to build the ranking with a picometer RMSD
precision, since in the structure optimisation process it is
important to be able to measure the energetic outcome of
each structural change. Still, this caused many ties in the

rank. The permutational approach, when the tie is decided by
the original I-TASSER energy might not be the best choice as
the I-TASSER energy itself was not highly correlated with
RMSD. In the future work we might average the ranks in
case of ties not to enforce any arbitrary ordering.

Regardless of a fitness function used the average fitness
saturated around the maximum after only 50–200 genera-
tions. The major factor that may cause this early saturation
is the polynomial bound on the number of possible values
that the fitness function could take, which was in the best
case limited by O(n2). As a result, many different energy
functions had the same value of the fitness function. This
explains the poor performance of the the fitness function
using the O(n) bounded Levenshtein distance.

Another important factor might be related to the amount
of data we used in the evolutionary process. Maybe with a
smaller number of decoys or a smaller number of proteins
we could obtain better evolutionary improvement. Moreover,
as the decoy sets seem to be very uneven and noisy (in
terms of original energy) we could apply a filtering method
to sample only those decoys, for which the original energy
is highly correlated to RMSD. Perhaps in this way, a good
energy function could be evolved more easily and as long as
the filtered sample is sufficiently representative, it could be
applied successfully to the set of all decoys.

V. CONCLUSIONS

In this paper we have proposed the use of genetic program-
ming to evolve novel forms of energy function for protein
structure prediction. We have demonstrated an initial GP
design which, although not perfect yet, might lead in the
future to significant improvements in the quality of protein
structure prediction with perhaps human-competitive results.

We hope to address some of the limitations discussed in the
text in the near future and extend the scope of the experiment
to both I-TASSER and Rosseta generated decoys.

ACKNOWLEDGMENT

We would like to thank Yang Zhang for making the decoys
data available online and for explaining the details of I-
TASSER energy terms implementation.



This research was supported by the Marie Curie Ac-
tion MEST-CT-2004-7597 under the Sixth Framework Pro-
gramme of the European Community.

REFERENCES

[1] C. Anfinsen, “Principles that Govern the Folding of Protein Chains,”
Science, vol. 181, pp. 223–30, July 1973. doi:10.1126/
science.181.4096.223.

[2] P. E. Bourne, Structural Bioinformatics, ch. CASP and CAFASP
experiments and their findings, pp. 499–505. Wiley-Liss, 2003. doi:
10.1002/0471721204.ch24.

[3] J. A. MacKerell, “Empirical force fields for biological macro-
molecules: Overview and issues,” Journal of Computational Chem-
istry, vol. 25, no. 13, pp. 1584–1604, 2004. doi:10.1002/jcc.
20082.

[4] V. S. Pande, I. Baker, J. Chapman, S. P. Elmer, S. Khaliq, S. M. Larson,
Y. M. Rhee, M. R. Shirts, C. D. Snow, E. J. Sorin, and B. Zagrovic,
“Atomistic protein folding simulations on the submillisecond time
scale using worldwide distributed computing,” Biopolymers, vol. 68,
no. 1, pp. 91–109, 2003. doi:10.1002/bip.10219.

[5] R. Das, B. Qian, S. Raman, R. Vernon, J. Thompson, P. Bradley,
S. Khare, M. D. Tyka, D. Bhat, D. Chivian, D. E. Kim, W. H.
Sheffler, L. Malmström, A. M. Wollacott, C. Wang, I. Andre, and
D. Baker, “Structure prediction for CASP7 targets using extensive all-
atom refinement with Rosetta@home,” Proteins: Structure, Function,
and Bioinformatics, vol. 69, no. S8, pp. 118–128, 2007. doi:
10.1002/prot.21636.

[6] “Folding@home client statistics.,” [online]. 2008 [cited 2008-10-10].
[7] S. E. Jackson, “How do small single-domain proteins fold?,” Folding

and Design, vol. 3, pp. R81–R91, Aug. 1998. doi:doi:10.1016/
S1359-0278(98)00033-9.

[8] A. Kolinski and J. Skolnick, “Assembly of protein structure
from sparse experimental data: An efficient Monte Carlo
model,” Proteins: Structure, Function, and Genetics, vol. 32,
pp. 475–494, Jan. 1998. http://dx.doi.org/10.1002/(SICI)1097-
0134(19980901)32:4¡475::AID-PROT6¿3.0.CO;2-F doi:
10.1002/(SICI)1097-0134(19980901)32:4<475::
AID-PROT6>3.0.CO;2-F.

[9] A. Liwo, S. Oldziej, C. Czaplewski, U. Kozlowska, and H. Scher-
aga, “Parametrization of Backbone-Electrostatic and Multibody Con-
tributions to the UNRES Force Field for Protein-Structure Predic-
tion from Ab Initio Energy Surfaces of Model Systems,” J. Phys.
Chem. B, vol. 108, no. 27, pp. 9421–9438, 2004. doi:10.1021/
jp030844f.

[10] A. Kolinski, “Protein modeling and structure prediction with a reduced
representation.,” Acta Biochimica Polonica, vol. 51, no. 2, pp. 349–
371, 2004 [cited 2007-08-06].

[11] Y. Zhang and J. Skolnick, “Tertiary Structure Predictions on a Com-
prehensive Benchmark of Medium to Large Size Proteins,” Biophys.
J., vol. 87, pp. 2647–2655, Oct. 2004. doi:10.1529/biophysj.
104.045385.

[12] J. Moult, “A decade of CASP: progress, bottlenecks and prognosis in
protein structure prediction,” Current Opinion in Structural Biology,
vol. 15, pp. 285–289, June 2005. doi:10.1016/j.sbi.2005.
05.011.

[13] D. Chivian. “CASP7 server ranking for FM category (GDT MM),”
[online]. 2006 [cited 2007-08-06].

[14] Y. Zhang. “CASP7 server ranking for FM category (TM-Score),”
[online]. 2006 [cited 2007-08-06].

[15] J. N. D. Battey, J. Kopp, L. Bordoli, R. J. Read, N. D. Clarke,
and T. Schwede, “Automated server predictions in CASP7,” Proteins:
Structure, Function, and Bioinformatics, vol. 69, no. S8, pp. 68–82,
2007. doi:10.1002/prot.21761.

[16] C. A. Rohl, C. E. M. Strauss, K. M. S. Misura, and D. Baker,
“Protein Structure Prediction Using Rosetta,” in Numerical Computer
Methods, Part D (L. Brand and M. L. Johnson, eds.), vol. Volume 383
of Methods in Enzymology, pp. 66–93, Academic Press, Jan. 2004.
doi:10.1016/S0076-6879(04)83004-0.

[17] S. Wu, J. Skolnick, and Y. Zhang, “Ab initio modeling of small
proteins by iterative TASSER simulations.,” BMC Biol, vol. 5, p. 17,
May 2007. doi:10.1186/1741-7007-5-17.

[18] K. T. Simons, I. Ruczinski, C. Kooperberg, B. A. Fox, C. Bystroff,
and D. Baker, “Improved recognition of native-like protein structures
using a combination of sequence-dependent and sequence-independent
features of proteins,” Proteins: Structure, Function, and Genetics,

vol. 34, no. 1, pp. 82–95, 1999. http://dx.doi.org/10.1002/(SICI)1097-
0134(19990101)34:1¡82::AID-PROT7¿3.0.CO;2-A doi:
10.1002/(SICI)1097-0134(19990101)34:1<82::
AID-PROT7>3.0.CO;2-A.

[19] Y. Zhang, A. Kolinski, and J. Skolnick, “TOUCHSTONE II: A New
Approach to Ab Initio Protein Structure Prediction,” Biophys. J.,
vol. 85, pp. 1145–1164, Aug. 2003 [cited 2007-03-13].

[20] Y. Zhang, I. A. Hubner, A. K. Arakaki, E. Shakhnovich, and J. Skol-
nick, “On the origin and highly likely completeness of single-domain
protein structures,” PNAS, vol. 103, pp. 2605–2610, Feb. 2006. doi:
10.1073/pnas.0509379103.

[21] H. Chen and H.-X. Zhou, “Prediction of solvent accessibility and
sites of deleterious mutations from protein sequence,” Nucleic Acids
Research, vol. 33, pp. 3193–3199, June 2005. doi:10.1093/nar/
gki633.

[22] Y. Zhang, D. Kihara, and J. Skolnick, “Local energy landscape flat-
tening: Parallel hyperbolic Monte Carlo sampling of protein folding,”
Proteins: Structure, Function, and Genetics, vol. 48, no. 2, pp. 192–
201, 2002. doi:10.1002/prot.10141.

[23] W. Kabsch, “A discussion of the solution for the best rotation to
relate two sets of vectors,” Acta Crystallographica Section A, vol. 34,
pp. 827–828, Sep 1978. doi:10.1107/S0567739478001680.

[24] E. A. Coutsias, C. Seok, and K. A. Dill, “Using quaternions to cal-
culate RMSD,” Journal of Computational Chemistry, vol. 25, no. 15,
pp. 1849–1857, 2004. doi:10.1002/jcc.20110.

[25] D. Barthel, J. D. Hirst, J. Blazewicz, and N. Krasnogor, “ProCKSI: A
Decision Support System for Protein (Structure) Comparison, Knowl-
edge, Similarity and Information,” BMC Bioinformatic, vol. 8, no. 1,
p. 416, 2007. doi:10.1186/1471-2105-8-416.

[26] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Dokl., vol. 10, pp. 707–710,
Feb. 1966.

[27] W. R. Knight, “A Computer Method for Calculating Kendall’s Tau
with Ungrouped Data,” Journal of the American Statistical Associa-
tion, vol. 61, pp. 436–439, June 1966.

[28] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the Web,” in Proceedings of the 10th international
conference on World Wide Web, (Hong Kong), pp. 613–622, ACM,
2001. doi:10.1145/371920.372165.
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