
Grammatical Rules for the Automated Construction of Heuristics

Germán Terrazas Natalio Krasnogor

Abstract—Developing a problem-domain independent
methodology to automatically generate high performing
solving strategies for specific problems is one of the challenging
trends on hyper-heuristics design. Designing hyper-heuristics
is important because they raise the level of generality on
automated problem solving by attempting to select and/or
generate tailored heuristics for the problem at hand. In this
paper, we present a three-steps methodology that combines
multiple sequence alignment and grammatical induction in
order to automatically generate high performing solving
strategies for a combinatorial optimisation problem. We
present proof-of-concept results of applying this methodology
to instances of the well-known symmetric TSP. The goal here
is to demonstrate feasibility rather than compete with state of
the art TSP solvers. This TSP is chosen only because it is an
easy to state and well known problem.

I. INTRODUCTION

A hyper-heuristic is a search methodology that selects and
combines heuristics to generate good solutions for a given
problem. Studying hyper-heuristics is important because they
provide a problem-independent level of abstraction for the
automatic generation of good performing algorithms. In our
previous work [1], we reported on a methodology for the
automated manufacture of heuristic search strategies that pro-
duces good solutions for a given combinatorial optimisation
problem. Such methodology focused on the identification
and combination of beneficial cooperative structures across
three consecutive stages: pattern-based heuristics generation,
cross validation and template-based heuristics distilling. In
particular, the last stage of that approach involved the manual
specification of a template from where effective and efficient
heuristics are drawn. Here, we present an alternative to
such process where the structure generalisation offered by
grammatical induction algorithms is employed to obtain
a set of rules to, subsequently, derive high performing
heuristics. Therefore, this paper brings an improved method
for the automated construction of heuristic search strategies
combining multiple sequence alignment and grammatical
induction across three main stages: pattern-based heuristics
generation, cross validation and grammar-based heuristics
construction. The following section gives a brief introduction
to hyper-heuristics and the context of our investigation.
Section III reviews some of the applications of grammar
induction algorithms and presents the grammatical induc-
tion algorithm employed here. Section IV expands on the
proposed approach giving details of the model components
and the methodology. After that, experiments and results are

Germán Terrazas, ASAP Group, School of Computer Science, University
of Nottingham, UK, email:gzt@cs.nott.ac.uk
Natalio Krasnogor, ASAP Group, School of Computer Science, Univer-

sity of Nottingham, UK, email:nxk@cs.nott.ac.uk

presented and discussed in Section V. Finally, conclusions
and further work are the subject of Section VI.

II. HEURISTICS DESIGN

Hyper-heuristics are defined as search methodologies that
select and combine low-level heuristics to solve hard com-
putational search problems [2]. The general aim of a hyper-
heuristic is to manufacture unknown heuristics which are
fast, well performing and widely applicable to a range of
problems. During the fabrication process, hyper-heuristics
receive feedback from the problem domain which indicates
how good are the chosen heuristics for solving the prob-
lem at hand, hence driving the search process. Studying
novel approaches for the development of hyper-heuristics
is important since they are domain-independent problem
strategies that operate on a space of heuristics, rather than
on a space of solutions, and rise the level of generality on
automated problem solving. Hyper-heuristics have been em-
ployed for solving search and optimisation problems such as
timetabling [3], scheduling [4][5] and satisfiability [6] among
others. Recent investigations on hyper-heuristics have sprung
up in two main different directions of hyper-heuristics:
1) heuristics that choose heuristics and 2) heuristics that
generate heuristics. In the first case, a learning mechanism
assists the selection of low-level heuristics according to their
historical performance during the search process, e.g. [5].
In the second case, the focus is on searching components
that once combined generate a new heuristic suitable for
the problem at hand. For example, approaches based on
genetic algorithms [4] and genetic programming have been
proposed for the automated generation of heuristics [7].
From an engineering point of view, the already existent
approaches are defined in terms of an architecture established
by the underlying meta-heuristic which sometimes brings
unsuspected difficulties such as the correct modelling of
solutions or parameters tunning. Employing a process that
learns how to build adequate strategies [8][9] is another path
to explore, e.g. fractal instances were used before to learn
TSP rules based on learning classifier systems in [10]. We
consider that employing a method that takes as input high
performing heuristics, learns about its features, and returns
a meaningful description of such to manufacture others with
similar structural features and performance is an alternative
route within the second flavour of hyper-heuristics. Hence,
our interest here lays on whether the use of a grammatical
induction algorithm would be able to infer a grammar for
deriving heuristics that construct high quality solutions when
applied to the problem at hand.



III. APPLICATIONS OF GRAMMATICAL INFERENCE

Grammatical inference can be seen as a reverse engi-
neering process that attempts to construct a grammar by
means of generalisation of the underlying structure of a given
set of words of a certain language. Studies on grammatical
inference methods currently classify the existing approaches
according to the type of input, i.e. tag-based methods and
word-based methods [11]. Despite the open problems and
key issues on grammatical inference [12], many are the algo-
rithms and techniques successfully employed for constructing
grammars across different research fields. For instance, in
[13] the authors present the application of grammar induction
to model job traffic in a grid. In particular, the proposed
approach employs a deterministic finite automata that in-
duces and combines traffic patterns occurring across a grid
infrastructure in order to facilitate its management support.
Another application is reported in [14] where a grammatical
inference method is proposed to derive a grammar from
a surveillance system. In this case, the aim is to infer a
grammar that captures the behaviour of cars when entering
to, parking in and leaving from a parking lot. Grammars
have also been applied to complex sequence analysis such
as in [15] where a context-sensitive deterministic grammar is
employed to parse DNA structures in order to spot antibiotic
resistance genes.
The automatic distillation of structure (ADIOS) [16] is a

word-based and unsupervised learning algorithm that extracts
syntactic rules from a given input set of sentences (sequences
of words) called corpus. The algorithm comprises three main
stages: initialisation, pattern distillation and generalisation.
During the first stage, each sentence is loaded on a graph, the
nodes of which are formed by the words and the path across
the nodes map the sentence. Afterwards, pattern distillation
and generalisation are iteratively applied on each path. In
the former, significant patterns of words are identified whilst
the construction of equivalent classes of words is performed
in the later. This process gives as a result a hierarchical
arrangement of patterns and equivalent classes that is inter-
preted as a grammar. Fig. 1 shows a corpus example, the
hierarchical arrangement of patterns and equivalent classes,
and the induced grammar resulting from ADIOS.

IV. PROPOSED APPROACH

In [1] we reported on a methodology capable of manu-
facturing heuristic search strategies as the result of the con-
secutive application of three steps: pattern-based heuristics
generation, cross validation and template-based heuristics
distilling. In particular, the goal of the last part of such
methodology was to discover efficient building blocks of
low-level heuristics that give rise to a template from where
a family of better than average heuristics could be drawn.
Such process involved the manual construction of templates
in terms of cooperative low-level heuristics resulting from an
multiple sequence alignment process. In order to automatise
this process, we present here a faster, more general and
less human-dependent alternative to generate the family

(a) (c)

(b)

Fig. 1. Input set of sentences (a), patterns and equivalence classes (b) and
induced grammar (c).

of good performing heuristics. As we aim to produce a
complete picture of our research, what follows provides a
full introduction to our methodology including the goals and
descriptions of the first two stages brought from our previous
work.
Given a set of instances of a combinatorial optimisation

problem Π, we propose a methodology composed of pattern-
based heuristics generation, cross validation and grammar-
based heuristics construction. Each stage is associated to
a dataset generated from the optimisation problem at hand
whilst the output of the methodology is a grammar to be
employed for the manufacture of good performing heuristics.
Fig. 2 depicts the methodology and its components.

Fig. 2. Schematic representation of the proposed methodology with its three
stages, their associated datasets and the achieved template for the problem
at hand.

In the pattern-based heuristics generation, an input
dataset is employed to train randomly generated sequences
of low-level heuristics (high-level heuristics). This training
aims at generating proficient high-level heuristics, the
common constituents of which are expected to produce
high quality solutions when applied to a given instance
of the problem at hand. The research question in this stage is:

Given a set of high-level heuristics, is it possible to
generate common combinations of low-level heuristics ?
If yes, how do they look like and how reliable are these
combinations ?



In order to address the first question, a process that spots
common combinations of low-level heuristics (patterns) and
constructs pattern-based heuristic is employed. The goal
of the cross validation is then to assess the performance
of the constructed pattern-based heuristic over a validation
dataset comprising similar instances of the combinatorial
optimisation problem at hand. Thus, the question in this
stage is:

What is the performance of a pattern-based heuristic
when applied to a set of different problem instances ?

The goal of the grammar-based heuristics construction
stage is to obtain a grammar from where better than
average high-level heuristics can be manufactured. Thus,
the constructed pattern-based heuristics form the input to
the ADIOS algorithm, the output set of rules of which is
expected to derive high-performing heuristics. Here, an extra
dataset is employed to test the performance of the derived
heuristics. The question in this stage is:

Can pattern-based heuristics be characterised by a
grammar ? If yes, what is the performance of the heuristics
generated with that grammar when applied to a set of
different problem instances ?

The above methodology is expected to deliver a procedure
for the automated construction of efficient heuristic search
strategies. In order to produce a self-contained report, the
following section revisits the experiments and results of the
pattern-based heuristics generation stage and cross validation
stage of our methodology reported in [1].

V. METHODS AND RESULTS
This section presents the findings obtained by the above

methodology. The chosen combinatorial optimisation prob-
lem is the widely known symmetric Traveling Salesman
Problem (TSP). The TSP instance considered here is
kroA100 which comprises 100 cities distributed in the Eu-
clidean space. The objective value corresponding to the
known optimum solution (shortest tour) for this instance is
21282 (see TSPLIB1). For each stage of our methodology, we
generated five sets in the following systematic way. Each set
is initialised with ten copies of the known optimum solution
for kroA100. Each of this initial solutions is then ‘disturbed’
with n consecutive city swaps. In this way, setting n to 5,
25, 50, 75 and 100, a total of ten independently ‘disturbed’
tours per set are obtained.
We consider a high-level heuristic to consist of a se-

quence of two or more low-level heuristics with or without
repetition. For the chosen problem, a low-level heuristic
is a local search for the TSP that could be deterministic
(e.g. always selecting the best of a set of improving two-
edges interchange) or stochastic (e.g. selecting at random
from a set of improving two-edges interchange, and hence

1http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

potentially giving different results if re-executed). Eight low-
level heuristics were implemented: 2-opt, 3-opt, OR-opt and
node insertion which are deterministic, and 1-city insertion,
2-exchange, arbitrary insertion and inver-over which are
stochastic. These eight low-level heuristics are originally
defined in [17][18][19][20][21].

A. Pattern-based Heuristics Generation
1) Training Datasets: In this stage, each of the perturbed

tours, labeled as tkroA100n
i , i=0 . . . 9, n=5, 25, 50, 75, 100,

is independently considered for training. A sample of the
training data, grouped by set (n), is listed in Table I where
the values indicate the percentage distance to the optimum
from each perturbed tours.

TABLE I
SAMPLE PERTURBED TOURS OF THE TRAINING DATA SET

Set tkroA100n
0

tkroA100n
1

tkroA100n
2

n = 5 1.42669 1.27600 1.79926

n = 25 4.25805 4.60262 4.13631

n = 50 6.39869 6.46067 5.76585

n = 75 7.01362 6.38215 6.75190

n = 100 6.80147 6.59012 6.93252

2) Method: For a given disturbed tour (tkroA100n
i ), a

set containing 500 high-level heuristics generated at random
was created. Then, each of the 500 high-level heuristics was
independently applied to the associated perturbed tour. In this
context, an application is seen as a pipeline process in which
the chain of processing elements is given by the sequence of
low-level heuristics and the information to be processed is
the disturbed tour. Thus, the low-level heuristics are applied
one after another in the order in which they appear in the
sequence and producing better or equal solutions at each step,
i.e. operating in a hill climber style [22]. To illustrate this
process, Fig. 3 depicts how a high-level heuristic comprising
two 2-exchange and a 1-city insertion is applied to a TSP
instance.

Fig. 3. A high-level heuristic in which successive applications of two
2-exchange and a 1-city insertion low-level heuristics find the optimum
solution for the Star of David tour [23][24].

In order to identify common combinations of low-level
heuristics, the 500 high-level heuristics are then sorted
according to the distance between the solution that their



applications produce and the known optimum solution. The
top five high-level heuristics are then selected and encoded
as sequences of characters using ‘A’ to represent 1-city
insertion, ‘C’ to represent 2-opt, ‘D’ to represent 3-opt, ‘E’
to represent OR-opt, ‘T’ to represent 2-exchange, ‘F’ to
represent node insertion, ‘G’ to represent arbitrary insertion
and ‘H’ to represent inver-over. Hence, in order to identify
common combinations of low-level heuristics among the
filtered sequence, we employ a multiple sequence alignment
(MSA) method [25] over the encodings. For instance, Fig. 4
highlights in gray the common combinations found among
the best five high-level heuristics generated for tkroA10075

2 .

Fig. 4. Multiple sequence alignment of the top five heuristics. Capitals
highlighted in gray indicate the common sequences of heuristics.

The results obtained by the MSA method reveal that
there are indeed occurrences of common combinations, i.e.
patterns of low-level heuristics, among the best ranked high-
level heuristics. Thus, these findings give a positive answer
to the research question stated for the first part of our
methodology in Section IV.
From the resulting alignment, we construct a consensus

sequence capturing and representing regions of similarity. We
define this consensus sequence as a pattern-based heuristic
(PBHn

i ) associated to a perturbed tour (tkroA100n
i ). The

constructing procedure consists in copying the matching
characters between two or more encodings into a new
sequence from left to right and following the position in
which they appear. For instance, Fig. 4 shows that PBH75

3

is the resulting pattern-based heuristic encoded as GDHGH-
HGDCDD, after combining the common patterns from the
high-level heuristics 1-HLH75

3 to 5-HLH75
3 . Given that this

new heuristic is built in terms of common combinations of
low-level heuristics, its performance is then expected to be
as good as (or better than) any of the top ranked. Notice
that the length of the constructed heuristic varies according
to the number of matches. Since this is related to the way
in which the construction procedure is defined, alternative
methodologies to obtain the optimal common sequence are
open to further investigation.
In order to assess the reliability of the identified patterns,

we then proceed to evaluate the performance of PBHn
i against

a set of high-level heuristics (different than the initial ones)
with the hope that, on average, the best tour improvements
are obtained by the former. In order to do this, 300 copies
of PBHn

i are obtained and for each of them a new high-level
heuristic equal in length is randomly created. Each of these
heuristics is then independently applied to tkroA100n

i a total

tkroA1000
75 tkroA1001

75 tkroA1002
75 tkroA1003

75 tkroA1004
75 tkroA1005

75 tkroA1006
75 tkroA1007

75 tkroA1008
75 tkroA1009

75

1
2

3
4

5
6

Di
st

an
ce

 to
 O

PT
 in

 %

Fig. 5. Assessment of ten pattern-based heuristics resulting from inde-
pendent sequence alignments. Each pair of boxplots summarises a vis-a-
vis comparison between the performance of 300 copies of PBH75

i
and the

performance of other 300 high-level heuristics when applied to tkroA10075
i

for i=0 . . . 9. The horizontal lines in the boxes indicate the median, upper
(lower) end of the whiskers the maximum (minimum) whilst the outside
points are outliers.

of 10 times and the average percentage distance between
the lengths of the resulting tours and the known optimum
is considered as the measure of their performance. As an
example, Fig. 5 shows the assessment of the 10 pattern-based
heuristics obtained from the data set generated with n=75.
According to the results, it is clear that the performance

of pattern-based heuristics (white boxplots) is better in av-
erage than the performance of the non-pattern-based high-
level heuristics (gray boxplots). These findings constitute a
positive answer to the second research question stated in the
first stage of the presented methodology, i.e. the identified
common-sequences of heuristics are indeed reliable.

B. Cross Validation
1) Validation Dataset: The cross validation data are given

in sets of ten perturbed tours vkroA100n
i , i=0 . . . 9. A sample

of the data, grouped by set (n), is listed in Table II where
the values indicate the percentage distance to the optimum
from each perturbed tours.

TABLE II
SAMPLE PERTURBED TOURS OF THE VALIDATION DATA SET

Set vkroA100n
0

vkroA100n
1

vkroA100n
2

n = 5 1.86490 1.72394 1.41001

n = 25 5.38403 5.42246 3.76134

n = 50 6.85800 6.13800 6.66469

n = 75 6.92453 6.57452 6.85969

n = 100 7.58471 6.69500 6.90264

2) Method: The goal of this stage is to perform a cross
validation analysis in order to assess the performance of the
pattern-based heuristics over a set of disturbed tours. Thus,
for each combination of PBHn

j and vkroA100n
i , i, j=0 . . . 9,

a total of 300 copies of PBHn
j are obtained and, for each



of the copies, a new high-level heuristic equal in length
is randomly created. Then, the heuristics are independently
applied to the given vkroA100n

i a total of 10 independent
times and the average percentage distance between the
lengths of the resulting tours and the known optimum is
considered as the measure of their performance. Fig. 6 shows
the resulting assessment of a pattern-based heuristic, encoded
as GDHGHHGDCDD, over the 10 perturbed tours belonging
to the data set generated with n=75.

vkroA1000
75 vkroA1001

75 vkroA1002
75 vkroA1003

75 vkroA1004
75 vkroA1005

75 vkroA1006
75 vkroA1007

75 vkroA1008
75 vkroA1009

75

1
2

3
4

5
6

Di
st

an
ce

 to
 O

PT
 in

 %

Fig. 6. Performance evaluation of a pattern-based heuristic across the
perturbed tours belonging to the data set generated with n=75. Each pair
of boxplots summarises a vis-a-vis comparison between the performance of
300 copies of GDHGHHGDCDD and the performance of other 300 high-
level heuristics when applied to vkroA10075

i
. The horizontal lines in the

boxes indicate the median, upper (lower) end of the whiskers the maximum
(minimum) whilst the outside points are outliers.

Clearly, the performances of pattern-based heuristics
(white boxplots) are better in average than the performance
of the ones generated for assessment (gray boxplots). These
findings answer the research question estated in the second
part of Section IV, revealing that a pattern-based heuristic
is in general well performing when applied to a set of
different problem instances. In addition, the similar level of
performance observed among the white boxplots gives an
indication that common low-level heuristics could be acting
as building blocks among the PBHn

j , j=1 . . . 10.
C. Grammar-based Heuristics Construction
1) Test Dataset: The data used in this last stage comprise

five sets listed in Table III. Thus, for a given experiment,
each of the ten perturbed tours gkroA100n

i , i=0 . . . 9, is
independently employed for testing.

TABLE III
SAMPLE PERTURBED TOURS OF THE TEST DATA SET

Set vkroA100n
0

vkroA100n
1

vkroA100n
2

n = 5 1.43750 1.12729 0.80584

n = 25 4.00032 4.70731 4.01320

n = 50 5.61831 6.44469 5.96786

n = 75 6.34000 6.28794 6.57973

n = 100 6.86100 6.69199 7.10008

2) Method: The goal of this stage is to obtain a grammar
capable of generating encodings of new high-level heuristics,
the performances of which are expected to be in average
similar or better than the pattern-based heuristics. It is here
where we employ the ADIOS algorithm which through the
application of its three-steps procedure, i.e. initialisation, pat-
tern distillation and generalisation, is expected to generalise
the underlying structures of the pattern-based heuristics and,
hopefully, induce the most appropriate grammar. Thus, for
a given n, we consider all the PBHn

i , i=0 . . . 9, as input
corpus to the ADIOS algorithm. In order to comply to the
input format of ADIOS, i.e. sequence of words, each PBHn

i

is converted into a sequence of blank separated characters
followed by underscores, e.g. PBH75

3 =CDHGHHGDCDD
becomes C D H G H H G D C D D . Considering
n=75, Fig. 7 presents a sample corpus for the ADIOS
algorithm, Fig 8 depicts the resulting hierarchical aggregation
of patterns and equivalence classes, and Fig. 9 shows the
induced grammar for that corpus.

Fig. 7. A corpus for the ADIOS algorithm comprising the converted
PBH75

i
, i=0 . . . 9. Each of the sequences encodes a pattern-based heuristic

obtained from the first stage of our methodology.

Fig. 9. The grammar Gen75 inferred from the input set PBH75
i
, i=0 . . . 9,

where S is the start symbol and non-terminals starting with P and E denote
patterns and equivalence classes respectively.

After the ADIOS algorithm is ran, the inferred grammar
GGenn is employed to derive 5000 unique encodings of
new high-level heuristics, i.e. grammar generated heuristics.
In order to assess the reliability of these new high-level
heuristics, we compared their performance against randomly
generated high-level heuristics expecting that, on average,



Fig. 8. Hierarchy of patterns (red labels) and equivalence classes (blue labels) resulting from the corpus shown in Fig. 7.

the best tour improvements are obtained by the former.
Thus, for each gkroA100n

i , a total of 300 different grammar
generated heuristics are randomly chosen and, for each of
these, an associated high-level heuristic is randomly created
for assessment. In particular, these two heuristics are equal in
length and with at least 70 per cent of dissimilarity in struc-
ture. Each grammar generated heuristic and its corresponding
randomly created one are then independently applied to
copies of the given gkroA100n

i a total of 10 independent
times. At the end of the evaluations, the average distance
between the lengths of the resulting tours and the known
optimum is considered as the measure of performance. The
resulting assessments for n=5, 25, 50, 75, 100 is presented in
Fig. 10 where, for each of the gkroA100n

i , the boxplots
show grammar generated heuristics assessed against their
associated randomly generated ones.
On the one hand, the results of this stage demonstrate

that it is possible to characterise the pattern-based heuristics
with a grammar which is capable of deriving encodings of
well performing high-level heuristics. This fact constitutes a
positive answer for the first question established in the third
part of our methodology. Overall, the resulting assessments
in Fig. 10 show that the performances of the grammar-based
heuristics (white boxplots) are on average better than the
performances of the randomly generated high-level heuristics
(gray boxplots). In addition, considering the boxplots of the
pattern-based heuristics (Fig. 6) and the boxplots of the
grammar-based heuristics (Fig. 10), it is also shown that both
performances are in general similar. This last fact comes
as a consequence that their encodings are expected to be
part of the same language and, hence, display an operative
resemblance when applied to the problem at hand.
On the other hand, considering the standard deviations and

maximum values of Fig. 10 (d), it is evident that some of
the randomly generated heuristics have bigger opportunity
to outperform the ones derived from the grammar. Natu-
rally, one of the reasons for this is that during the random
generation, appropriate combinations of low-level heuristics
with more efficient local interactions could be generated
(by chance). Also, there is a possibility that some of the
encodings of the randomly generated heuristics are actually
part of the language generated by the induced grammar.
Hence, it is open to further investigation to know whether

the ADIOS algorithm has been able to properly generalise
the given corpus in order to identify the most appropriate
grammar from the given set of encodings. For instance, the
performance of the outliers shown in Fig. 10 (c) and Fig.
10 (e) may indicate that some of the grammar-generated
heuristics are structurally equivalent to randomly generated
encodings. This conjecture is also supported by analyz-
ing the bias on the performance between randomly gener-
ated heuristics and grammar-generated heuristics for some
gkroA100n

i . Therefore, it could be the case that different
combinations of input parameter values of the grammatical
induction algorithm may be needed to fine tune the level
of abstraction and, hence, give as a result a more reliable
set of rules that generates less biased and more proficient
high-level heuristics. Additionally, the number and length of
the sequences of the corpus also play a very important role
during the pattern distillation and generalisation phase of the
ADIOS algorithm. In other words, the richer the corpus is
initially set to the method, the more information is available
for generalisation, hence, influencing on the quality of the
acquired patterns and equivalence classes.
All in all, the results achieved in this part of the method-

ology show that the grammar-based heuristics construction
brings indeed a more general, faster, and less human-
dependent way to automatically manufacture high perform-
ing heuristic strategies to solve the problem at hand. Overall,
the outcome of the assessments answers the last question of
the proposed methodology. That is, the high-level heuristics
derived from grammars are, in general, well performing when
applied to any disturbed tour of a given data set.

VI. CONCLUSIONS
In this paper, we proposed an approach for the auto-

mated design of heuristics following the rationale of hyper-
heuristics as methods to generate tailored heuristics for a
given combinatorial optimisation problem. Our methodology
unfolds across three stages: pattern-based heuristics construc-
tion, cross validation and grammar-based heuristics construc-
tion. As a proof of concept, we have applied our approach
to instances of the symmetric TSP. As a result, the findings
of the pattern-based heuristics construction stage confirmed
that there are indeed common patterns of low-level heuristics
among the top ranked high-level heuristics. In order to assess



the reliability of these recurrent structures, pattern-based
heuristics were afterwards constructed and cross validated
against randomly generated heuristics. The results achieved
during the second stage proved that the spotted patterns are
local search strategies beneficial to achieve good solutions
when solving a symmetric TSP instance. These constructed
pattern-based heuristics served as input to the grammar-based
heuristics construction stage. The results of this revealed that
it is possible to induce a grammar from a set of pattern-
based heuristics and that the derived high-level heuristics
of such grammar give, in general, high quality solutions
when applied to the perturbed tours. In other words, the last
part of our approach has resulted in a formal specification
to automatically create heuristics that produce high quality
solutions when applied to the problem at hand.
From a functional point of view, the patterns-based heuris-

tics achieved in the methodology can be seen as combinations
of beneficial structures needed for the manufacturing of high
quality solutions. These combinations seemed to shared a
common underlying structure that the employed grammati-
cal induction algorithm was able to capture and generalise
giving as a result hierarchical aggregations of patterns and
equivalence classes. The transcription of these hierarchy of
aggregates resulted in a grammar, the rules of which allow
us to derive encodings of new well performing high-level
heuristics. The benefits of applying our methodology lays on
the use of a powerful generalisation mechanism brought in
by the grammatical induction algorithm. This key component
focuses on the structure of the constructed pattern-based
heuristics (syntax) without having any knowledge of their
performance for solving problems (semantics) during the
grammar induction process.
To continue with our methodology, future work involves

the extension of our approach to other instances of TSP
as well as to different combinatorial optimisation problems.
In addition, we consider to explore different settings of the
employed grammar induction algorithm since, as discussed
before, there are few cases in which the derived grammar-
based heuristics are outperformed by the randomly generated
ones. Moreover, besides the ADIOS algorithm is successfully
deriving new encodings from the generated grammar, there
are exceptional cases where unspecified terminals are em-
ployed. Evidence of this is given by the induced grammar
shown in Fig. 7 where the ‘F’ character appearing in four of
the sequences of Fig. 9 has been missed, but employed in
the production of grammar-based heuristics.

ACKNOWLEDGMENT
We would like to thanks Dr Dario Landa-Silva for nu-

merous suggestions and corrections that have helped us
improve this paper. The research reported here is funded
by EPSRC grant EP/D061571/1 Next Generation Decision
Support: Automating the Heuristic Design Process.

REFERENCES
[1] G. Terrazas, D. Landa-Silva, and N. Krasnogor, “Discovering benefi-

cial cooperative structures for the automated construction of heuris-
tics,” in Stud. in Comp. Intel. Springer-Verlag, 2010, pp. 89–100.

[2] P. Ross, Search Methodologies: Introductory Tutorials in Optimization
and Decision Support. Springer, 2005, ch. Hyper-heuristics, pp. 529–
556.

[3] N. Pillay and W. Banzhaf, “A study of heuristic combinations for
hyper-heuristic systems for the uncapacitated examination timetabling
problem,” European Journal of Operational Research, vol. 197, no. 2,
pp. 482–491, 2009.

[4] P. Cowling, G. Kendall, and L. Han, “An investigation of a hyper-
heuristic genetic algorithm applied to a trainer scheduling problem,”
in IEEE Congress on Evolutionary Computation. IEEE Computer
Society, 2002, pp. 1185–1190.

[5] P. Cowling and K. Chakhlevitch, “Hyperheuristics for managing a
large collection of low level heuristics to schedule personnel,” in IEEE
Congress on Evolutionary Computation. IEEE Computer Society,
2003, pp. 1214–1221.

[6] M. Bader-El-Den and R. Poli, “A gp-based hyper-heuristic framework
for evolving 3-sat heuristics,” in Genetic and Evolutionary Computa-
tion Conference. ACM, 2007, pp. 1749–1749.

[7] E. Burke, M. Hyde, G. Kendall, and J. Woodward, “Automatic
heuristic generation with genetic programming: evolving a jack-of-all-
trades or a master of one,” in Genetic and Evolutionary Computation
Conference. ACM, 2007, pp. 1559–1565.

[8] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: model, taxonomy and design issues,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 5, pp. 474–488, 2005.

[9] N. Krasnogor, Handbook of Natural Computation. Springer Berlin /
Heidelberg, 2009, ch. Memetic Algorithms, p. (to appear).

[10] M. Tabacman, N. Krasnogor, J. Bacardit, and I. Loiseau, “Learning
classifier systems for optimisation problems: a case study on fractal
travelling salesman problem,” in Genetic and Evolutionary Computa-
tion. ACM, 2008, pp. 2039–2046.

[11] B. Cramer, “Limitations of current grammar induction algorithms,” in
45th Annual Meeting of the ACL. Morristown, NJ, USA: Association
for Computational Linguistics, 2007, pp. 43–48.

[12] C. D. L. Higuera, “Current trends in grammatical inference,” in Joint
IAPR International Workshops on Advances in Pattern Recognition.
Springer-Verlag, 2000, pp. 28–31.

[13] W. Mulder and C. Jacobs, “Grid management support by means
of collaborative learning agents,” in 6th Grids Meets Autonomic
Computing. ACM, 2009, pp. 43–50.

[14] S. Geyik and B. Szymanski, “Event recognition in sensor networks
by means of grammatical inference,” in INFOCOM 2009, IEEE, April
2009, pp. 900–908.

[15] G. Tsafnat, E. Coiera, S. Partridge, J. Schaeffer, and J. Iredell,
“Context-driven discovery of gene cassettes in mobile integrons using
a computational grammar,” BMC Bioinformatics, vol. 10, no. 1, p. 281,
2009.

[16] Z. Solan, D. Horn, E. Ruppin, and S. Edelman, “Unsupervised context
sensitive language acquisition from a large corpus,” in NIPS, 2003.

[17] G. Babin, S. Deneault, and G. Laporte, “Improvements to the or-opt
heuristic for the symmetric traveling salesman problem,” Journal of
the Operational Research Society, no. 58, pp. 402–407, 2007.

[18] J. Brest and J. Zerovnik, “A heuristic for the asymmetric traveling
salesman problem,” in 6th Metaheuristics International Conference,
2005, pp. 145–150.

[19] N. Krasnogor and J. Smith, “Memetic algorithms: The polynomial
local search complexity theory perspective,” Journal of Mathematical
Modelling and Algorithms, vol. 7, pp. 3–24, 2008.

[20] G. Reinelt, The traveling salesman: Computational solutions for TSP
applications. Springer-Verlag, 1994.

[21] G. Tao and Z. Michalewicz, “Inver-over operator for the tsp,” in 5th
International Conference on PPSN. Springer-Verlag, 1998, pp. 803–
812.

[22] E. Özcan, B. Bilgin, and E. Korkmaz, “Hill climbers and mutational
heuristics in hyperheuristics,” in 9th International Conference on
PPSN, 2006, pp. 202–211.

[23] A. Mariano, P. Moscato, and M. Norman, “Arbitrarily large planar etsp
instances with known optimal tours,” Pesquisa Operacional, vol. 15,
pp. 89–96, 1995.

[24] P. Moscato and M. Norman, “An analysis of the performance of
traveling salesman heuristics on infinite-size fractal instances in the
euclidean plane,” ORSA Journal on Computing, 1994.

[25] J. Setubal and J. Meidanis, Introduction to Computational Molecular
Biology. PWS Publishing, 1997.



gkroA1000
5 gkroA1001

5 gkroA1002
5 gkroA1003

5 gkroA1004
5 gkroA1005

5 gkroA1006
5 gkroA1007

5 gkroA1008
5 gkroA1009

5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Di
st

an
ce

 to
 O

PT
 in

 %

gkroA1000
25 gkroA1001

25 gkroA1002
25 gkroA1003

25 gkroA1004
25 gkroA1005

25 gkroA1006
25 gkroA1007

25 gkroA1008
25 gkroA1009

25

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Di
st

an
ce

 to
 O

PT
 in

 %

(a) (b)

gkroA1000
50 gkroA1001

50 gkroA1002
50 gkroA1003

50 gkroA1004
50 gkroA1005

50 gkroA1006
50 gkroA1007

50 gkroA1008
50 gkroA1009

50

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Di
st

an
ce

 to
 O

PT
 in

 %

gkroA1000
75 gkroA1001

75 gkroA1002
75 gkroA1003

75 gkroA1004
75 gkroA1005

75 gkroA1006
75 gkroA1007

75 gkroA1008
75 gkroA1009

75

0
1

2
3

4
5

Di
st

an
ce

 to
 O

PT
 in

 %

(c) (d)

gkroA1000
100 gkroA1001

100 gkroA1002
100 gkroA1003

100 gkroA1004
100 gkroA1005

100 gkroA1006
100 gkroA1007

100 gkroA1008
100 gkroA1009

100

0
1

2
3

4
5

Di
st

an
ce

 to
 O

PT
 in

 %

(e)
Fig. 10. Performance evaluation of grammar generated heuristics applied to perturbed tours generated with n=5, 25, 50, 75, 100. Each pair of boxplots
summarises a vis-a-vis comparison between the performance of 300 heuristic generated from GGenn and the performance of other 300 randomly generated
high-level heuristics when applied to gkroA100n

i
for i=0 . . . 9. The horizontal lines in the boxes indicate the median, upper (lower) end of the whiskers

the maximum (minimum) whilst the outside points are outliers.


