
Automated Tile Design for Self-Assembly Conformations

Germán Terrazas
ASAP Group

School of CS and IT
University of Nottingham

gzt@cs.nott.ac.uk

Natalio Krasnogor
ASAP Group

School of CS and IT
University of Nottingham

nxk@cs.nott.ac.uk

Graham Kendall
ASAP Group

School of CS and IT
University of Nottingham

gxk@cs.nott.ac.uk

Marian Gheorghe
Department of Computer

Science
University of Sheffield

M.Gheorghe@dcs.shef.ac.uk

Abstract-
Self-Assembly is a powerful autopoietic mechanism

ubiquitous throughout the natural world. It may be
found at the molecular scale and also at astronomical
scales. Self-assembly power lays in the fact that it is a
distributed, not-necessarily synchronous, control mech-
anism for the bottom-up manufacture of complex sys-
tems. Control of the assembly process is shared across a
myriad of elemental components, none of which has ei-
ther the storage or the computation capabilities to know
and follow a master planfor the assembly of the intended
system. In this paper we present an evolutionary algo-
rithm which is capable of programming the so called
“Wang Tiles” for the self-assembly of two-dimensional
squares.

1 Introduction

Self-assembly is a process that creates complex hierarchical
structures through the statistical exploration of alternative
configurations. These processes occur without external in-
tervention. The specific system that is self-assembled (from
a given set of components) is determined by the way the sta-
tistical exploration of conformations is performed. In turn,
the exploration mechanisms are constrained by the individ-
ual components that undergo self-assembly and the condi-
tions imposed upon them by their local environment. Usu-
ally these constraints are related to the type of interactions
in which the components engage. In general, components
are autonomous, have no pre-programmedmasterassembly
plan, and can only interact with their local environment and
other components.

Self-Assembly is a powerful autopoietic mechanism
whose power, as a reusable engineering concepts, lays in
the fact that it is a distributed, not-necessarily synchronous,
control mechanism for the bottom-up manufacture of com-
plex systems.

Self-Assembly processes are ubiquitous in nature. Un-
derstanding how nature produces self-assembled systems
will represent an enormous leap forward in our technolog-
ical capabilities. Self-Assembly is an advantageous fabri-
cation process because, with an appropriate set of compo-
nents and associated interactions, these components will au-
tonomously, robustly and efficiently assemble into a desired
system. Robustness and versatility are some of the most im-
portant properties of self-assembling natural systems. The
first of these two properties comes from the fact that usually
these systems are composed of a large number of parts that
can be interchanged and that can replace each other if one

of them fails. On the other hand, versatility is given by the
possibilities of re-configuring the way in which component
parts relate to each other (i.e. there is a large degree of free-
dom in the way they interact). Additionally, the possibility
of bulk manufacturing elemental components is attractive
from a practical viewpoint as it cannot be expected that each
component should be built independently. Bulk fabrication
will ultimately make self-assembly an attractive concept for
industry.

A well-known example of self-assembly in nature is pro-
tein folding: proteins are specified by a linear arrange-
ment of amino acids. The amino acids, which are lin-
early arranged by virtue of their covalent bonds, self-
assemble (i.e. fold) into a three-dimensional structure (also
called the native or tertiary structure). The particular three-
dimensional configuration that a protein adopts is deter-
mined by its amino acids sequence and the interactions be-
tween individual amino acids with their local environment
(e.g. solvent molecules, acidity, temperature, etc) and other
amino acids. Other instances of self-assembly occur in bi-
ology (e.g. embryology and morphogenesis). The purposes
of nanofabrication, building nanostructures and nanoelec-
tronic devices in chemical self-assembly has become an im-
portant avenue for employing and fabricating supramolecu-
lar nanostructures with, for example, useful electrical prop-
erties. Besides the modelling and the simulation of self-
assembly in natural systems, self-assembly can be used in
artificial systems as a powerful engineering principle to
achieve a desired group effect or to form potentially auto-
nomic structures exhibiting a hierarchy of emergent system
properties. For example, a strategic research objective in
robotics is to develop groups of robots (or micro-robots)
which, having limited computation/communicationcapabil-
ities, could self-assemble into a versatile and powerful ro-
botic infrastructure. Another promising application is the
development of autonomic, self-repairing, self-sustaining
and self-healing software systems.

Although major advances in the design of systems that
exhibit self-assembly properties have been reported in the
literature (e.g. [15, 19, 18]), much less has been said about
theautomateddesign of self-assembly. The author of [5, 10]
indeed tackle the problem of automated design of self-
assembly for a very specific class of problems which are
amenable to analytical solution. However, it is unrealistic
to expect that each and every system which self-assembles
through the bottom-up interaction of component parts will
present properties which make them agreeable to a hand-
made design. That is, we anticipate that in the near future,
as the number of applications for self-assembly (and their



complexity) increases, a point will be reached where hu-
mans cannot design the set of components and their inter-
actions. Instead, as in many other industrial settings, we
will need to resort to computer aided automated design of
components, interaction matrices and assembly skeletons.

In [3] the complexity of self-assemble squares under a
generalised model of tile assembly[14] was assessed and
later improved in [2]. Several interesting results on the
intractability of certain self-assembly processes were de-
scribed. Although these papers point to promises and limi-
tations of specific self-assembly processes it is importantto
remark that NP-hardness results have not, in the past, de-
terred the advance of other branches of science and engi-
neering. On the contrary, NP-hardness results abound and
are intrinsic to complex technology. As an example con-
sider theTravelling Salesman Problem (TSP)[6], which is
at the core of many industrial and logistic problems such
as vehicle routing[7], VLSI design[13] or Scheduling[20]
and Timetabling problems[4] which are at the heart of all
problems related to personnel rostering and resources allo-
cations. These problems, in a variety of formulations, have
been shown to be NP-hard and yet large instances of them
can be routinely solved by applying a range of modern al-
gorithmic techniques ranging from integer and linear pro-
gramming, Lagrangian relaxations to sophisticated meta-
heuristics such as tabu search[8], simulated annealing[9,1]
and memetic evolutionary algorithms[17]. In this paper we
will tackle the automated design by means of evolution-
ary algorithms of Wang tiles for the self-assembly of two-
dimensional shapes.

2 Self-Assembly and Wang Tiles

Computation and self-assembly are connected by the theory
of tiling, of which Wang Tiles[16] are a prime example. A
Wang tile system is defined by a family of two dimensional
square tiles embedded in the plane. Each side of a tile might
have a specific glue type attached to it. When tiles move
around in the plane, and two of them collide, they will ei-
ther stay attached or they will separate and continue their
Brownian motion as independent entities. Whether they
self-assemble or stay separated depends on the strength and
compatibility of the glue types in their colliding sides. This
process is initialised with a specific kinetic energy associ-
ated to the tile set (i.e. temperature). When tiles attach to
each other they form complex shapes and the specific shapes
which emerge are said to be self-assembled. This process
can be mathematically described:

Let Σ be the set of symbols used to label the edges asso-
ciated to each tile. This set of symbols encodes the “glue”
types associated to each edge and includes the special case
λ representing and edge with no glue. The set of tiles is
T = {t|t = (x0, x1, x2, x3)} such thatxi specifies a glue
type which we will represent with a colour code. That is, in
what follows we will speak of the “colour” or “glue type”
of a specific edge.

We can associatex0, x1, x2 andx3 with the north, west,
south and east edges respectively as shown in figure 1(a).
Let alsoτ be the “temperature” parameter as in [2]. After

North edge

South edge

West edge East edge

a tile

(a)

N

S

W E

N

S

W E

N

S

W E

N

S

W E

N

S

W E t

t_0

t_1

t_2

t_3

(b)

Figure 1: (a) Schematic representation of a four edged tile.
Each edge is distinguished by the labelsNorth, West, South,
East. (b) An example of a five tiles self-assembly.

colliding, two tilesti, tj will self-assemble by their edges
ei, ej if the glue types and strengths in those edges are com-
patible. The compatibility of different glue types is givenby
aninteraction matrixwhich will specify for each pair of glue
types/colours the strength of their bonding. If the bonding
strength is greater than the temperature then the two collid-
ing sides will bind.

In [11] we presented a set of eight problems related to
the automated design of self-assembling systems. Problem
5 in particular stated1:

Problem Π5: The Structure Problem Given a target
graphG and the energy formulation described, design the
set of verticesV ′ and interaction matrixM ′ : V ′×V ′ 7→ R
such that the uniqueunlabelledgraphG′ is formed, with
G′ ∼ G , ∼ is an isomorphism between the two graphs and
V ′ is such that every vertex is constrained to have an in/out
degree of at mostk.

In this paper we instantiated problemΠ5 in the following
way:

• G is a planar graph representing a two-dimensional
square of a fixed size.

• the energy formulation is simply the sum of the inter-
acting energies of colliding tiles in the Wang model.

• the matrixM ′ is simply a random symmetric matrix
with the energetic interactions of up to ten colours
(glue types)

1For details please refer to [11]



Following the recommendations of our previous work
[12] we implemented an evolutionary algorithm capable of
designing the set of verticesV in Π5 as to self-assemblyG.

3 An Evolutionary Algorithm for Wang Tiles
Design

This section describes the genetic algorithm used for au-
tomatic self-assembly design. The main goal of our ap-
proach is to attain the best set of self-assembling compo-
nents that fill a shape. In order to simplify the domain, both
the self-assembly components and the shape were defined
as bi-dimensional objects. The former were set as square
tiles like those defined in [16] while the target shape was a
fixed size square.

Formally speaking, letS be a rectangular self-assembled
structure defined asS = {(t1, P1), (t2, P2), . . . , (tn, Pn)}
where eachtj is an instance of a tile familyT i =
(c1, c2, c3, c4) with cc a colour from a set ofα colours and
Pn = (xi, yi) a position in a lattice whereS is built.

The goal of the evolutionary algorithm is to design the
set of tiles’ families in such a way that they self-assemble
the desired structure.

The following sections describe the genetic algorithm in
detail, the experiments we performed with the results ob-
tained. We also provide an analysis of how the evolved tile
families achieve self-assembly.

3.1 The Genetic Algorithm

The genetic algorithm consists of a population of individu-
als, a self-assembly simulator, a fitness function and genetic
operators.

3.1.1 Representation

Each individual in the population encodes a set of tile
families (up to a maximum ofϕ different families). There
areδ individuals in the population:

Pop = {Ind1, Ind2, . . . , Indk} with k = δ and
Indi = {T 1, T 2, . . . , T n} with n ≤ ϕ

That is, this is a variable-length GA.

3.1.2 Initialisation

Based on our previous findings [12] individuals in the pop-
ulation are initialised with three types of genes: random
genes, genes that promote the self-assembly of columns and
genes for rows. The first type are tile families randomly
generated whilst the remainder genes are selected such that
they self-assemble in columns and rows respectively. In
particular 10% of the population individuals were column
builder genes, 10% of the population individuals were row
builder genes, and 80% randomly generated.

3.1.3 Evaluation

The evaluation (i.e. fitness function) of each individual
requires the following steps: Individuals are placed into
a self-assembly simulator. The simulator contains a two-
dimensionalsquare latticewhere tiles can wander around
and alsoglue functionwhich specifies the interaction matrix
to be used. For each tile familyT i encoded by an individ-
ual an equal number of tile instances drawn from the family
is placed into an empty position on the lattice. Tiles move
around until either they collide and stick to form a macro-
assembly or the simulation timet expires. When two or
more tiles reach adjacent locations, the glue function eval-
uates the interaction between the colours at touching edges.
If the resultant value is greater than the temperatureτ then
both tiles self-assemble and remain in their locations until
the simulation ends. Otherwise they continue moving ran-
domly to the next empty adjacent place. In order to evaluate
the interaction between two colours, the glue function uses
a symmetric matrix ofα × α colours. The matrix is pre-set
throughout all the experiments. Elements of the matrix are
uniformly distributed within the range[0, 9]. Table 1 shows
an example of this table.

C1 C2 . . . Cα

C1 V11 V12 . . . V1n

C2 V12 V22 . . . V2n

...
...

...
. . .

...
Cα V1n V2n . . . Vnn

Table 1: A symmetric matrix.

The simulation runs fort time steps after which it is nec-
essary to assess how close to the desired structure the self-
assembling process is. To accomplish this, the target struc-
ture, a square in this paper, is sought within the lattice by
scanning all lattice positions. We compute the Hamming
distance between the content of the lattice and the desired
shape. That is, we count for each possible position in the lat-
tice of the target structure how many tiles are present within
it. We keep count of the maximum number of tiles found
following this procedure. Figure 2 shows a scanning exam-
ple. As the self-assembly simulator executes a stochastic
process, an individual must be evaluated several times as to
reduce the noise in the fitness function. Consequently, each
individual is evaluatedZ times and its fitness is the average
of the maximum Hamming distances thus obtained.

3.1.4 Genetic Operators and Selection Procedures

The genetic operators are one-point crossover and bit-
wise mutation. The crossover takes two individuals from
the populationP1 = {T 1

1 , T 2
1 , . . . , T n1

1 } and P2 =
{T 1

2 , T 2
2 , . . . , T n2

2 }, selects the shorter individual and a ran-
dom cutting pointbetweentile families. Without loss of
generality, ifn1 < n2 and the cutting point is 3, then a
possible offspring isO = {T 1

1 , T 2
1 , T 3

1 , T 4
2 , T 5

2 , . . . , T n2

2 }.
Parents are selected for mating using roulette-wheel selec-
tion, and the GA follows a generational scheme with sin-



Figure 2: Scanning a3 × 3 shape in a lattice.

gle individual elitism. After a new generation is built, all
its individuals are mutated with bit-wise mutation. More
specifically, the mutation operator takes an individual and
with a given low probability randomly changes one or more
colours of the tile families in the individual.

3.2 Experiments and Results

We ran eight experiments. For all of them we fixed the
population size, the maximum length of the individuals, the
crossover and mutation probabilities, the generations num-
ber, the size of the interaction matrix for colour/glue types,
the length of the simulationt, the temperatureτ for the glue
function, the range of elements for filling the matrix, the
shape size, the lattice size, and the times each individual is
evaluated. Table 2 shows these parameters and their values
and table 3 shows the matrix used by the glue function.

δ ϕ XProb MProb Gen α

100 10 0.3 0.01 100 10

t τ Range Shape Lattice Z

300 4 [0, 9] 10 × 10 40 × 30 20

Table 2: Experiment parameters.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

C0 7 2 7 7 3 0 0 1 7 1
C1 2 7 1 5 7 3 8 2 1 6
C2 7 1 6 4 8 9 2 2 5 1
C3 7 5 4 8 5 3 3 7 9 6
C4 3 7 8 5 8 7 5 0 3 9
C5 0 3 9 3 7 6 0 3 9 5
C6 0 8 2 3 5 0 1 8 8 5
C7 1 2 2 7 0 3 8 3 9 6
C8 7 1 5 9 3 9 8 9 7 0
C9 1 6 1 6 9 5 5 6 0 0

Table 3: The symmetric matrix randomly initialised.

In Fig. 3 we show the progress towards the self-assembly
of a square of a representative individual of one of the

runs. It is possible to see that as the evolution proceeds the
amount of noise in the simulated conformations decreases
and small squares are being self-assembled. In the first gen-
erations the families’ instances encoded by individuals of
the population allow for almost any pairing of tiles to self-
assemble. Easy self-assembly produces conformations far
away from the target shape. Due to the introduction of tiles
that can build strips the resulting conformations convergeto
shapes that are closer to the target one.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Evolution stages of experiment 1. (a) Generation
0, (b) generation 15, (c) generation 30, (d) generation 45,
(e) generation 60, (f) generation 75 (g) generation 90 and
(h) generation 99.

We plot in Fig. 4 the evolution of fitness versus genera-
tion number for various runs. The initial fitness values are
always around 30 and 33, and as evolution progresses fitness
rises up to 40 or more. It is interesting to note that once fit-
ness reached around 40 it is very difficult to progress. This
fitness plateau is sometimes reached at early generations
(as shown in Figures 4 (c), (e) and (b)), but usually takes
slightly longer. The slope in Fig. 4 (a) suggests that there
was enough diversity throughout the evolutionary process
to steadily improve. On the other hand, figures 4 (c) and
(e) would suggest that considerable modifications were per-



formed in the genomes present in the population in very
short periods of time pointing to a “punctuated-equilibrium”
type of dynamics.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Evolution fitness versus generation number of the
eight experiments.

3.3 Further Analysis

The aim of this section is to focus onhowself-assembly was
achieved by one of the evolved individuals. We focus on the
individual represented in Fig. 5. This individual uses seven
colours for encoding tile families. Starting from the top and
going clockwise we will use the notationnorth, west, south
and east for the top, right, bottom and east side of a tile
respectively. For the purpose of our analysis each tile is
labelled also with a colour number used by the glue function
to index the matrix shown in Table 3.

Figure 5: Tile families, colours and colour numbers for the
analysed individual.

As the first step of our analysis we consider how many
tiles are necessary for this particular individual, under the

energy table shown above and with the specified tempera-
ture to aggregate tiles into supra-structures. We first con-
sider two-tiles assembly. By inspecting Table 3, the speci-
fication of tile families of the individual in Fig. 5 and the
value of temperature in Table 2 there are no two-tile combi-
nations which can self-assembly. That is, there are not two
combinations of glue types/colours with a strength greater
than the temperature in the system. Cooperation, thus, is
an emergentfeature of our system where more than two
tiles are required to initiate self-assembly. Cooperationwas
recognised by Winfree and Rothemund in [14] asneces-
saryfor programmable self-assembly and it is a remarkable
result that the evolutionary design of tiles presented here
achieved precisely that.

We consider next the possible combinations of three
tiles which are shown in figure 6. The ?-tile interacts
with the other two tiles attempting to attach to them. The
site where tiles attach are called abinding site. To make
the analysis and characterisation of possible binding sites
more tractable, we have divided the analysis into sixbind-
ing site conformationsaccordingly to where the ?-tile could
attach: the north-east, south-east, north-west, south-west,
north (south) and east (west).

Figure 6: Binding sites.

Since more than one tile could potentially bind to a bind-
ing site, for each conformation of the binding sites we cal-
culated its normalised average free energy (free energy for
short). The free energy of each binding site conformation is
calculated accordingly to the equations in Table 4. Thus, the
first four formulae belong to the first four binding site con-
formations and the other two to the rest. In the equations,G

is the glue function where its arguments are tile edges, i.e.
the north edge of thei-tile is tni , and|T | is the cardinality of
the family.

� |T |
1

(G(te
i ,tw

?
)+G(tn

j ,ts
?
))

|T |

� |T |
1

(G(te
i ,tw

?
)+G(ts

j ,tn
?
))

|T |

(a) (b)

� |T |
1

(G(tw
i ,te

?
)+G(tn

j ,ts
?
))

|T |

� |T |
1

(G(tw
i ,te

?
)+G(ts

j ,tn
?
))

|T |

(c) (d)

� |T |
1

(G(ts
i ,tn

?
)+G(tn

j ,ts
?
))

|T |

� |T |
1

(G(te
i ,tw

?
)+G(tw

j ,te
?
))

|T |

(e) (f)

Table 4: Normalised average free energy (NAFE) formulae
for the six binding site conformations.

In this way, it is possible to see which binding site con-
formation is in average more likely to participate in a three
tiles assembly. We further partitioned the binding confor-
mations in equivalence classes. Two binding conformations



were deemed equivalent if their free energy were equal. The
resulting partitions and free energies are shown in Fig. 7 and
Table 5 respectively.

A quick inspection of Table 5 reveals that the binding
site conformations in class iv have a free energy lower than
τ which indicates that they are (in average) unlikely to par-
ticipate in a three-way self-assembly, requiring perhaps a
fourth tile for stable assembly. More specifically, it is im-
possible to achieve self-assembly starting with a binding site
conformation in class iv unless a third tile of any family
reaches a position at the west (or north) of the ?-tile.

In contrast, the most populated classes (i.e. class iii and
class vi) allow self-assembly to proceed steadily. In this
sense, the north-east, south-east, vertical, and horizontal di-
rections seems to be the most feasible ways in which self-
assembly could propagate.

EqC NAFE Qty Het EqC NAFE Qty Het
i 5.00 7 Y vi 4.66 10 Y
ii 5.33 8 Y vii 6.66 5 Y
iii 5.66 11 Y viii 4.33 8 Y
iv 3.66 2 N ix 6.33 1 N
v 7.00 2 N

Table 5: Equivalence class id (EqC), free energy (NAFE),
number of elements in the class (Qty), and heterogeneity
(Het) for the nine equivalence classes.

We found that some of the equivalence classes were het-
erogeneous while others homogeneous. For instance, class
v,vi and ix are homogeneous classes containing binding site
conformations of different types. The remaining classes
are all heterogeneous. Homogeneous classes are the lowest
populated and, as it is argued above, their free energy is gen-
erally small which makes self-assembly unlikely. It is also
important to note that some of the heterogeneous classes,
even when their free energy is aboveτ , still include certain
cases where depending from what family the ?-tile comes
from its binding energy could be smaller thanτ . This het-
erogeneous classes are calleddegenerate.

Our analysis shows that the greater (or lower) the free
energy of a binding site conformation is, the less populated
its associated class results. Although having a high free en-
ergy binding site conformation promotes self-assembly as
these classes are less populated, fewer likely occurrencesof
tile self-assembly occurs. Hence the overall self-assembling
process is a fine balance between binding strength and tile
concentration.

4 Conclusions

In this paper we presented a genetic algorithm for the au-
tomated design of self-assembling systems. The particular
assembly model we used is that of Wang tiles and our evo-
lutionary algorithm seems able to design the family of tiles
necessary for self-assembling squares. We showed a princi-
pled analysis of the evolved tiles which explains how self-
assembly is achieved. In future work we will aim at further
enhancing the GA as to allow a more accurate self-assembly

process. We will also look at the problem of simultaneously
designing, on the one hand, the tile families as we did here,
and on the other hand, optimising the tile concentrations.
We will also look at self-assembling other shapes.

4.1 Acknowledgments

N. Krasnogor acknowledges EPSRC for funding project
EP/D021847/1.

Bibliography

[1] E.H.L Aarts, J.H.M. Korst, and P.J.M. van Laarhoven.
Simulated annealing. In E. Aarts and J.K. Lenstra,
editors,Local Search in Combinatorial Optimization,
pages 91–120. John Wiley & Sons Ltd., 1997.

[2] L. Adleman, Q. Cheng, A. Goel, M. Huang,
D. Kempe, P. Moisset de Espanes, and P.W.K. Rothe-
mund. Combinatorial optimization problems in self-
assembly. InProceedings of the Annual ACM Sym-
posium on Theory of Computing(STOC). ACM Press,
2002.

[3] L. Adleman, A. Goel, M. Huang, and P. Moisset
de Espanes. Running time and program size for self-
assembled squares. InProceedings of the Annual ACM
Symposium on Theory of Computing(STOC). ACM
Press, 2001.

[4] E.K. Burke, A. Meisels, S. Petrovic, and R. Qu. A
graph-based hyperheuristic for timetabling problems.
European Journal of Operational Research - to ap-
pear, 2005.

[5] E.Klavins. Automatically synthesized controllers
for distributed assembly: Partial correctness. In
S.Butenko, R.Murphey, and P.M.Pardalos, editors,
Cooperative Control: Models, Applications and Algo-
rithms. Kluwer, 2002.

[6] M.M Flood. The traveling salesman problem.Opera-
tional Research, pages 61–75, 1956.

[7] M.P. Gendreau, A. Hertz, and G. Laporte. A tabu
search heuristic for the vehicle routing problem.Man-
agement Science, 40(10):1276–1290, 1994.

[8] F. Glover, E. Taillard, and D. de Werra. A user’s guide
to tabu search.Annals of Operations Research, 41:3–
28, 1993.

[9] S. Kirkpatrick, C.D. Gelatt, and M. P. Vecchi. Op-
timization by simulated annealing.Science, 220 no
4598:671–680, 1983.

[10] E. Klavins. Automatic synthesis of controllers for dis-
tributed assembly and formation forming. InProceed-
ings of the IEEE Conference on Robotics and Automa-
tion, 2002.



[11] N. Krasnogor and S. Gustafson. A family of con-
ceptual problems in the automated design of self-
assembly. InProceedings of the 2nd International
Conference on the Fundations of Nanoscience: Self-
Assembled Architecture and Devices, Utah, Snowbird
resort, April 24-29, 2005.

[12] N. Krasnogor, G. Terrazas, D.A. Pelta, and G. Ochoa.
A criticial view of the evolutionary design of self-
assembling systems. InProceedings of the 7th Inter-
national Conference on Artificial Evolution, Special
track on Self-Assembly, October 2005, Lille, France
(to appear), 2005.

[13] B.R. Moon, Y.S. Lee, and C.Y Kim. Genetic VLSI
circuit partitioning with two-dimensional geographic
crossover and zigzag mapping. InProceedings of the
1997 ACM symposium on Applied computing, pages
274–278. ACM Press, 2001.

[14] P. Rothemund and E. Winfree. The program-size com-
plexity of self-assembled squares. InProceedings of
STOC, 2000.

[15] W.K. Rothemund. Using lateral capillary forces
to compute by self-assembly.Proceedings of the
National Academy of Science, USA, 97(3):984–989,
2000.

[16] H. Wang. Proving theorems by pattern recognition.
Bell Systems Technical Journal, 40:1–42, 1961.

[17] N. Krasnogor W.E. Hart and J.E. Smith.Recent Ad-
vances in Memetic Algorithms. Studies in Fuzziness
and Soft Computing Series - Springer, 2004.

[18] G.M. Whiteside and M. Boncheva. Beyond molecules:
Self-assembly of mesoscopic and macroscopic com-
ponents.Proceedings of the National Academy of Sci-
ence (PNAS), 99(8):4769–4774, 2002.

[19] G.M. Whitesides and B. Grzybowski. Self-assembly
at all scales.Science, 295:2418–2421, 2002.

[20] A.P.M. Wagelmans Y.N. Sotskov and F. Werner. On
the calculation of the stability radius of an optimal or
an approximate schedule.Annals of Operations Re-
search 83: Models and Algorithms for Planning and
Scheduling Problems, 83:213–252, 1998.

(Eq. Class i)

(Eq. Class ii)

(Eq. Class iii)

(Eq. Class iv) (Eq. Class v)

(Eq. Class vi)

(Eq. Class viii)

(Eq. Class vii) (Eq. Class ix)

Figure 7: The nine equivalence classes.


