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Abstract Modeling and simulations feature promi-
nently in “top-down” synthetic biology, particu-
larly in the specification, design and implemen-
tation of logic circuits through bacterial genome
reengineering. In this paper we present a set of
tools for the specification, modelling and analysis
of “bottom-up” liposome logic, also called vesicle
computing.

Liposome logic makes use of supra-molecular
chemistry constructs, e.g. protocells, chells, etc., to
encapsulate logical functionality. In particular we
analyse the scalability of the techniques presented
when the liposome logic complexity increases from
relatively simple NOT gates and NAND gates to
SR-Latches, D Flip-Flops all the way to 3 bit rip-
ple counters. The approach we propose consists of
specifying, by means of P systems, gene regula-
tory network-like systems operating inside proto-
membranes. This P systems specification can be
automatically translated and executed through a
multiscaled pipeline composed of Dissipative Par-
ticle Dynamics (DPD) simulator and Gillespie’s
Stochastic Simulation Algorithm (SSA). Finally,
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model selection and analysis can be performed through
a model checking phase.

This is the first paper we are aware of that
brings to bear formal specifications, DPD, SSA
and model checking into the problem of modeling
target functionality in chells. Potential chemical
routes for the laboratory implementation of these
simulations are also discussed.

1 Introduction

Just as an electrical engineer can construct circuits
from modules with common inputs and outputs
without consideration of internal module construc-
tion, the standardisation of biological components
proposed by T.F. Knight, D. Endy, R. Weiss and
others (Endy 2005; Knight 2003; Heinemann and
Panke 2006; Serrano 2007), and exemplified in the
MIT biobricks project (Shetty et al 2008), may al-
low a bioarchitect to construct biological systems
with pre-specified phenotypes in a more scalable
way. One important application within the field
of Synthetic Biology is Cellular Computing. Cel-
lular Computing (Amos 2004) seeks the construc-
tion of genes, signals and metabolic regulation net-
works within organisms1 which, by implementing
boolean logic gate circuits (Weiss et al 1999), could
accomplish specific computational tasks (Tan et al
2007).

In this computing paradigm, individual cells
perform a small part of a computation in a highly
asynchronous fashion with communication taking
place only between cells which are within a short

1 In what follows we will call these networks Biological
Regulatory Networks (BRN).
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distance from one another (so called amorphous
computation (Abelson et al 2000)). In particular,
cellular logic NOT and AND gates were first char-
acterised in detail by Ron Weiss et al. (Weiss and
Basu 2002) in-vitro and with “bioSPICE”, an ODE
based modelling technique. Since then, several small
scale systems have been constructed, either in the
lab or in simulation (Amos 2004). Other examples
of in-vitro implementations of cellular computing
systems include band detectors, coupled oscilla-
tions (Basu et al 2005, 2004) and, more recently,
a solution to the three vertices Hamiltonian path
problem (Baumgardner et al 2009).

By creating modular logic gates that behave
in well characterised ways, it might be possible to
abstract away some of the biological detail when
designing more complex synthetic biology systems
(Andrianantoandro et al 2006). In doing so, the be-
haviour of a composite system becomes more pre-
dictable and designs can be constructed and pro-
totyped in-silico before attempting to implement
them in the lab.

Thus far cellular computing has only been in-
vestigated from the “top down” perspective, that
is, by modifying existing organisms through the in-
corporation of synthetic biological regulatory ne-
toworks (BRNs). Little, if any, attention has been
paid to how such distributed computation might
be implemented from the “bottom up” perspec-
tive, that is, by using protocells (Rasmussen et al
2008) or “chells” (artificial chemical cells (Cronin
et al 2006)) rather than fully fledged biological
cells. Although highly innovative, trying to use
bacteria to perform amorphous computation is like
trying to build a glider by knocking out parts out
of a jumbo jet. The problem is, both technically
and philosophically, one of managing complexity:
bacterial cells have evolved for millions of years
and they carry too much evolutionary baggage. Be-
fore any useful and general computation –rather
than specific as exemplified by the above men-
tioned references– can be achieved, this unwanted
complexity must be tamed.

In contrast, the approach we suggest in this pa-
per retains all the advantages of amorphous com-
puting at the nanoscale (e.g., redundancy, mas-
sive parallelism, asynchronous local processes, self-
organisation, etc.) but by starting from the bottom-
up with engineered components of pre-specified and
limited complexity, one avoids unnecessary biolog-
ical nuisances from the start. Moreover, by turning
to chemical cellular-like constructs, compartmen-
talisation and orthogonality are maximised while

crosstalk minimised, thus the approach we propose
might provide a route to, e.g., more reliable pro-
grammable drug delivery systems (Pasparakis and
Alexander 2008; Gardner et al 2009).

In this paper we present a set of tools for the
specification, modelling and analysis of “bottom-
up” liposome logic, also called vesicle computing.
As explained above liposome logic makes use of
supramolecular chemistry constructs, e.g. proto-
cells, chells, etc., to encapsulate logical function-
ality. The vesicle computing approach proposed is
related to the effort to build a semi-synthetic pro-
tocell (Luisi et al 2006), however, the goal in this
case is to create a chemical automaton that is a
useful platform for design and implementation of
cellular computing circuits, rather than attempt-
ing to reproduce exactly the properties of living
systems2. Liposome logic could then be used for
designing the next generation of smart drug deliv-
ery systems going beyond of the current state of
the art (MacDiarmid et al 2009).

It is also proposed that vesicles could be used
for encapsulation and implementation hiding, as
hierarchical (i.e. nested) structures of membranes
could be created with clearly defined inputs and
outputs, that create boundaries around function-
ality just as organelles contain specific functions
in eukaryotic cells. This kind of compartmental-
isation will enable interference between BRNs to
be minimized, and the need for multiple promoter
sequences/transcription factors to be reduced. We
analyse the scalability of the techniques presented
when the liposome logic complexity increases from
relatively simple NOT and NAND gates to SR-
Latches, D Flip-Flops all the way to 3 bit ripple
counters.

The approach we propose consists of specifying,
by means of P systems, BRN-like systems operat-
ing inside proto-membranes. This P system spec-
ification can be automatically translated and ex-
ecuted through a multiscaled pipeline composed
of Dissipative Particle Dynamics (DPD) simulator
and Gillespie’s Stochastic Simulation Algorithm
(SSA). Finally, model selection and analysis can be
performed through a model checking phase. This
is the first paper we are aware of that brings to
bear formal specifications, DPD, SSA and model
checking into the problem of modeling target func-
tionality in chells. Potential chemical routes for the
laboratory implementation of these Liposome logic
simulations are also discussed.

2 Although there will, of course, be some synergy between
the two
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2 Methods

In this section we describe the proposed modeling
pipeline as depicted in Figure 1. Liposome logic
modeling starts with the specification of the logic
circuitry using P systems. The P system specifica-
tion is then executed through DPD or an advanced
Gillespie’s Stochastic Algorithm implementation.
The decision of whether to execute the model in
DPD or directly through SSA depends on the time
and lengths scales of interest and also on whether
physical volumes should be modelled explicitly, i.e.
geometrically, or implicitly, i.e. topologically. If the
length/time scales are large and the volume is only
topologically represented then SSA is used. A fur-
ther analytical level is afforded by the use of model
checking techniques. In what follows we describe
the P system specification formalism, DPD, SSA
and model checking.

Fig. 1: Computational pipeline for Liposome logic. Comput-
ing circuitry is specified through P systems that could then
be interpreted and simulated either through a DPD simu-
lator or, if the time and length scales are larger, through
a stochastic simulation algorithm (e.g. Gillespie’s SSA). A
further analysis can be performed using model checking.

2.1 P systems as a Specification Framework

P systems (Paun 2002) constitute a recently de-
veloped specification framework bringing into sys-
tems and synthetic biology methodologies from for-
mal rewriting systems distributed over multicom-
partmentalised regions. Our modelling approach
based on P systems falls within the classification of
computational, rule-based, modular and discrete-
stochastic modelling frameworks. In this work, we
use a variant called stochastic P systems specially
suitable for the scalable and parsimonious speci-
fication of cellular systems exhibiting evident lev-
els of stochasticity (Pérez-Jiménez and Romero-
Campero 2006).

The main components of a stochatic P sys-
tems are objects, representing molecular species;
compartments defined by membranes containing

multisets of objects and rewriting rules specifically
associated with each compartment describing the
molecular interactions taking place in and between
different compartments.

Formally, a stochastic P system is a construct

Π = (O,L, µ,Ml1 ,Ml2 , . . . ,Mln , Rl1 , . . . , Rln)

where:

– O is a finite alphabet of objects specifying the
molecular species in the system.

– L = {l1, . . . , ln} is a finite set of labels identi-
fying compartment types.

– µ is a membrane structure containing n ≥ 1
membranes defining compartments arranged in
a hierarchical manner. Each membrane is iden-
tified in a one to one manner with a label in L
which determines its type.

– Mli for each 1 ≤ i ≤ n, is the initial multiset of
objects over O placed inside the compartment
defined by the membrane with label li in the
initial state of the system.

– Rli = {rli
1
, . . . , rli

kli

}, for each 1 ≤ i ≤ n, is

a finite set of rewriting rules associated with
the compartment with label li ∈ L and of the
following general form:

o1[o2]li
c−→ o′1[o

′

2]li (1)

with o1, o2, o′1, o
′

2 multisets (potentially empty)
of objects over O representing the molecular
species and the stochiometries involved in the
molecular interaction represented in the rule.
The label li ∈ L identifies the compartment
where the interaction takes place. These multi-
set rewriting rules can potentially change both
the inside and outside of (proto)membranes.
An application of a rule of this form replaces
simultaneously the multisets o1 outside mem-
brane li and o2 inside membrane li by the mul-
tisets o′1 and o′2, respectively. A stochastic con-
stant c is associated specifically with each rule
in order to compute how often the rules are ap-
plied and the time elapsed between rule appli-
cations according to Gillespie’s theory of stochas-
tic kinetics (Gillespie 2007). More specifically,
rewriting rules are selected according to an ex-
tension of Gillespie’s well known Stochastic Sim-

ulation Algorithm (SSA) (Gillespie 2007) to the
multicompartmental structure of P system mod-
els (Romero-Campero et al 2009; Pérez-Jiménez
and Romero-Campero 2006).
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Cellular phenotypes arise from the orchestra-
tion of the interactions between different molecu-
lar modules acting as discrete entities whose func-
tionalities are up to certain point separable from
one another (Hartwell et al 1999). The interaction
modality in cellular systems is an intensed research
field in systems and synthetic biology which is un-
raveling specific modular patterns in BRNs (Alon
2007). Biological modularity is thus one of the cor-
nerstones of synthetic biology (Andrianantoandro
et al 2006) and its relevance for systems and syn-
thetic biology has been recently emphasized by
Mallavarapu et al. (Mallavarapu et al 2009). In
this work we follow a modular modelling approach
whereby models are incrementally, parsimoniously
and hierarchically built by combining virtual parts
that are available from a library. This library com-
prises a set of elementary modules that specify bio-
logical regulatory-like networks as well as modules
describing the regulation of specific gene promot-
ers widely used in synthetic biology.

A P system module is defined as a set of rewrit-
ing rules, each of the form in (1), for which some
of the objects, stochastic constants or the labels
of the compartments involved might be variables.
This facilitates reusability and parsimony in the
development of models. Large models can be spec-
ified by integrating commonly found modules that
are then further instantiated with specific values
obtained experimentally. Formally, a P system mod-
ule M is represented as M(V,C, L) where V speci-
fies object variables, which can be instantiated us-
ing specific names of molecular species like genes
and proteins, C are variables for the stochastic
constants associated to the rewriting rules, which
can be instantiated using specific affinities between
genes and proteins, half lifes for degradation pro-
cesses, etc. and finally L are variables for the la-
bels of the compartments involved in the rules that
might represent different cell compartments, e.g.,
cytoplasm, lysosome, cellular membrane, etc., or
different (proto-)cells altogether.

In the next section the DPD and SSA simula-
tion techniques are described in detail.

2.2 Dissipative Particle Dynamics

Simulations at small length and timescales were
performed using a self-developed mesoscopic mod-
elling framework based on the Dissipative Particle
Dynamics (DPD) technique. Our framework en-
ables easy specification of large scale models in
DPD, and vesicles and other bilayer structures that

form over the course of the simulation can be ex-
tracted and stored for later recombination into new
initial states for further simulations. This feature
allows for the combinatorial bootstrap of compu-
tationally expensive simulations. For example, it
is possible to (1) simulate the formation of vesi-
cles and (2) save these emergent structures as to
then (3) create a new initial state for a simulation
containing those vesicles with the internal volume,
perhaps modified to contain particles representing
genes, proteins etc.

DPD is a coarse grained particle simulation
technique, in which each particle represents sev-
eral molecules of a given molecular species, rather
than a single atom. By dispensing with the details
of individual atoms, the short length and timescale
processes can be averaged out, allowing simula-
tion for much larger length and time-scales than
is possible with other particle dynamics methods.
Simulations are formed by filling a volume with
particles and integrating the equations of motion
to calculate the particle positions and velocities at
each time step. Three forces act between particles
in a symmetric pairwise fashion, the Dissipative
and Random forces act as the thermostat in DPD,
with the dissipative force removing energy from
the system (whilst conserving momentum) and the
random force introducing energy in the system by
producing a brownian style motion between par-
ticles, equation 2 shows the forces acting between
two particles i and j. The conservation of momen-
tum in the system means that the hydrodynamics
are represented correctly.

Fij = FC
ij + FD

ij + FR
ij (2)

The conservative force FC
ij simply introduces a pa-

rameterisable repulsion between particles types which
decreases linearly with distance reaching zero at
the cut-off distance rc.

FC
ij = α(1 −

|rij |
rc

) (3)

The α parameter sets the maximum repulsion for
a given pair of types so for example the α param-
eter will be set to a high value for the interaction
between an oil and water particle, as these would
be immiscible, but to a smaller value for two water
particles.

The Dissipative force acts as a drag force, slow-
ing down particles that are approaching one an-
other:

FD
ij = −γwD(rij)(r̂ij · vij)r̂ij (4)
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Where γ is the dissipative force parameter which
controls the magnitude of the force, rij is the dis-
tance between particle i and particle j, r̂ij is the
unit vector point from particle j to particle i and
vij is the relative velocity between particle i and j
and wD is a weighting function described below.

The Random force introduces a randomised force
between each particle pair

FR
ij =

σwR(rij)θij

√
3r̂ij√

dt
(5)

Where σ is the random force parameter control-
ling the magnitude of the force, θij is a uniformly
distributed random number with unit variance and
wR is the random weighting function described be-
low. Polymers can also be represented in DPD with
harmonic bonding and angle potentials.

FS
ij = k(rij − r0) (6)

where k is the bond strength parameter, and r0

is the preferred bond length. preferred angles be-
tween two bonds can be included with a harmonic
3-body potential (Kranenburg et al 2003)

Uθ =
1

2
kθ(θ − θ0)

2 (7)

Where kθ is the angle force strength parameter, θ
is the angle between the two bonds and θ0 is the
preferred angle.

Espanol and Warren (Español and Warren 1995)
investigated the statistical mechanics of DPD and
found that in order to maintain a correct and sta-
ble temperature, the σ and γ force parameters
should be set according to the following relation:

σ2 =
√

2γKbT (8)

where kBT is the required particle kinetic energy.
The dissipative and random forces are coupled

with weighting functions wD(rij) and wR(rij). One
of these functions may be chosen arbitrarily, and
we use the weighting proposed by Groot and War-
ren (Groot and Warren 1997) for the random force:

WR(r) =

{

(1 − r) when(r < 1)
0 otherwise

(9)

The dissipative weight function is then derived from
the following relation:

WD(r) = [WR(r)]2 (10)

Our implementation of DPD contains a colli-
sion based artificial chemistry supporting first and
second order reactions. A collision is considered to

have occurred if two particles come within a pa-
rameterisable collision radius of one another. In
the simulations presented here the collision radius
is set to the force interaction radius rc. Each re-
action is assigned a rate cdpd, which is the rate at
which colliding particles will react as a result of
that collision per DPD time unit (the per collision
rate is therefore cdpd ∗dt. If the types of the collid-
ing particles match the reactant types for a reac-
tion, then a pseudo random number is generated,
and if this number of less than the rate then the
reaction occurs and the types of the particles are
changed to represent the products of the reaction.
In the case of first order reactions, for each particle
the reaction is attempted once per timestep, with
a rate cdpd ∗ dt.

Groot and Warren gave a thorough explana-
tion of the correct setting of the DPD parame-
ters (Groot and Warren 1997) and described a
method for parameterising the conservative force
based on the immiscibility of fluids, as well as a
new integration method more suitable to the larger
timesteps taken in DPD. The work by Groot and
Rabone (Groot and Rabone 2001) showed simula-
tions of poration in a phospholipid membrane and
described the coarse graining procedure. These pa-
pers define the de facto standard implementation
of DPD, and our implementation of the algorithm
is based on these works.

Despite the increased simulated length and time
scales that DPD method permits, calculation of ex-
plicit particle forces and velocities is computation-
ally very expensive, and so simulations are typi-
cally limited to milliseconds of simulated time and
volumes in the order of 0.1 cubic micrometres. In
order to simulate the formation of DMPC vesi-
cles, an implementation of DPD was created using
the general purpose GPU CUDA programming en-
vironment from Nvidia, producing a 50x speedup
over the single processor implementation using an
Nvidia Tesla C1060 card.

Vesicles can be formed via a variety of different
methods, including microfluidics (Tan et al 2006),
centrifugation (Noireaux and Libchaber 2004), son-
ication and spontaneous formation. Regardless of
the route to formation, all vesicles are composed
of amphiphiles which have a hydrophobic section
which does not dissolve in water and a hydrophilic
section which is polar. In the presence of a polar
solvent such as water, the hydrophobic sections of
the molecules move together such that the disrup-
tion to the structure of the solvent is minimized.
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This hydrophobic effect is the cause of spontaneous
formation of micelles, vesicles and bilayers.

Clearly there is a large difference in the time
and length scales in which the BRN are normally
simulated and the timescales which can be cap-
tured using the DPD method. However the use of
the DPD method has some clear advantages over
other less detailed techniques. Firstly, the vesicle
container and the emergent dynamics of the sys-
tem are a result of the application of simple rules,
e.g. the vesicle does not form due to any prespec-
ified design, but as a result of minimization of
configurational energy of the lipids, just as real
vesicles do. If the reaction rates of BRN models
can be scaled so that the processes occur within
timescales that can be simulated in DPD, then
this allows an exploration, at least in a qualita-
tive sense, of systems where the BRN may pro-
duce proteins which affect the membrane, either
by production of proteins that have hydrophobic
moeties that could embed within the membrane
(such as α-hemolysin) or by producing enzymes
that catalyse the formation of other lipids (which
may form domains in the vesicle membrane, even-
tually leading to fission). Also, as every particle in
the system has an explicit position, and the system
is not assumed to be mixing, unlike what occurs
with the stochastic simulation algorithm (see next
subsection), concentration gradients can arise and
are captured within the model.

Moreover, as suggested in (Cronin et al 2006),
both the P systems specification of a model and
its execution through DPD adhere to the abstrac-
tion that programmable living matter can be en-
gineered through clearly identifying the compart-
ment (C) that delimits the self from non-self, infor-
mation (I) storage and processing that helps guide
the manufacturing of the compartment’s building
blocks and the orchestration of metabolism (M)
processes as the arbiters of energy and waste man-
agement. That is, neither the P system nor the
DPD simulations require that C, I,M be imple-
mented in the way biology does but can indeed, fol-
low a more chemical (rather than biological) route
for liposome logic (Pasparakisa et al 2009).

Figure 2 shows the formation of a vesicle from
model DMPC amphiphiles in DPD. The dynam-
ics of formation are as follows: the amphiphiles
initially aggregate into small micelles, which then
aggregate into larger micelles. Once the micelles
reach a critical size, they become oblate (flattened)
patches of bilayer membrane. If the bilayer mem-
brane is large enough, then the membrane will be-

Fig. 2: The figure shows the process of vesicle formation
from the initial state of the system were amphiphiles are dis-
tributed randomly in solvent (top left, solvent not shown).
The amphiphiles are pushed together into micelles (top
right) which in turn join together to form large planar bi-
layers (bottom left), these bilayers then begin to curl at the
edges and fold over into a spherical vesicle (bottom right).

gin to fold inwards into a bowl shape, which con-
tinues to curve until fusing at the top to form the
spherical vesicle.

2.3 Stochastic Simulation Algorithm

Simulations of cellular logic systems for longer time-
scales were performed with the MCSS toolkit (Romero-
Campero et al 2008, 2009), a high performance
multicompartment stochastic simulator, support-
ing simulation of stochastic P system models spec-
ified in an XML format. This toolkit has at its
core an optimised implementation of the Gillespie
SSA. Stochastic discrete simulation techniques for
biological systems have a number of advantages
over ODEs at the cellular scale. Firstly, as ODEs
are continuous and the concentrations of chemi-
cal species within cell volumes can be very small,
integration of the ODEs could result in concentra-
tions which represent fractions of a molecule. Sec-
ondly, as ODEs represent the dynamics of concen-
trations of molecules rather than individual mol-
ecules themselves, they do not capture the stochas-
tic nature of the cellular volume (Gillespie 1977)
and thirdly ODE models are typically more diffi-
cult to create and understand in comparison with
executable biology (Fisher and Henzinger 2007),
also called algorithmic systems biology (Priami 2009),
methodologies. Moreover, stochastic models spec-
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ified in, e.g., P systems are more amenable to for-
mal computational analysis such as model check-
ing.

2.4 Model Checking

Model checking is a well-established formal method
for analysing the behaviour of various systems. It
normally requires a computational model of the
system, provided as a high-level formalism (such as
a Petri net, process algebra or P system), and a set
of properties of the same system, expressed usu-
ally in temporal logic (LTL or CTL) (Kwiatkowska
et al 2009). A computational model associated to
a system may consist of distinct parts, modules in
the case of the P system formalism (see Section 3),
each one with a complex behaviour and generat-
ing many states. The model allows to test and ver-
ify certain hypotheses by executing the model and
comparing the outcome with experimental data
(Fisher and Henzinger 2007). Knowing that some
systems are non-deterministic or probabilistic, the
conclusions obtained are just limited to the num-
ber of executions performed. In order to ascer-
tain more general properties, model checking tech-
niques are employed. These properties can be vali-
dated for the entire system or for some components
of it.

In probabilistic model checking, which will be
used in this paper, the models are extended with
quantitative information regarding the likelihood
that some events will occur and the time they do
so (Kwiatkowska et al 2009). The models referred
to in this paper are continuous-time Markov chains

(CTMCs), where rates of negative exponential dis-
tributions are assigned. The properties are still ex-
pressed in temporal logic, but they show now some
quantitative aspects. So, rather than verifying that
for the NOT gate (see Section 4.1.2) “the protein
output always eventually reaches a certain level”
we may check “what is the probability that the
protein output eventually reaches a certain level”.
More than this, using rewards we can ask questions
like “what is the maximum protein output of the
NOT gate”. Such questions will be formulated in a
specific temporal logic called continuous stochastic
logic (CSL) (Kwiatkowska et al 2009).

Model checking is very effective in verifying cer-
tain hypotheses regarding the system when more
than one execution is possible and when only in-
complete data is available and through the new
characteristics revealed, the model checking ap-

proach may suggest new experiment to confirm or
reject hypotheses (Fisher and Henzinger 2007).

3 P System Specification of Liposome

Logic Models

In this section we describe the P sytems specifi-
cations for liposome logic circuits. These specifi-
cations are the first step in the proposed method-
ological pipeline shown in Figure 1.

3.1 A P System Specification for the Repressilator

Logic gates in cellular computing are constructed
from networks of gene regulation in prokaryotic
genomes. In prokaryotes, genes are sometimes ar-
ranged into operons, sequences of DNA contain-
ing a promoter region which is recognised by RNA
polymerase enzymes, an operator region which is
recognised by gene transcription factors, and one
or more gene sequences (see Figure 3).

Fig. 3: The operon in prokaryote genomes, the promoter re-
gion is recognised by RNA polymerase, which binds to the
promoter to initial transcription. The operator is recognised
by transcription factor proteins which alter the rate of gene
expression, the operator may control the expression of mul-
tiple genes.

The liposome logic simulations presented in this
paper are based on the repressilator reported by
Elowitz and Leibler (Elowitz and Leibler 2000).
The repressilator is a ring oscillator built from
three genes. Figure 4 shows a schematic diagram
of the repressilator network. The system includes
three different genes, LacI, λcI and TetR, with the
protein expressed from each gene acting as a re-
pressor which binds to the promoter of the next
gene, and reduces the rate of transcription.

The authors present a stochastic model of the
repressilator, in which all three genes and promot-
ers have identical properties in terms of the rates
of binding etc. The repression of the gene is rep-
resented by a cooperative binding of the repressor
protein to the gene promoter, (reactions 11 and
12):

G + R
1nm−1s−1

−−−−−−−→ GR (11)

GR + R
1nm−1s−1

−−−−−−−→ GRR (12)
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Fig. 4: The Repressilator, the system is composed of three
different genes, LacI, λcI and TetR. The protein expressed
from each gene inhibits the next, so for example the LacI
proteins inhibit TetR expression, and TetR proteins inhibit
λcI expression.

Where G is the NOT gate promoter and gene, R
is the repressor protein which binds to the gene
operator and represses transcription of the gene,
M is transcribed mRNA from the gene G, and O
is the expressed protein from G, translated from
M.

The repressor proteins also decomplex from the
gene promoter, and these are modelled with reac-
tions 13 and 14. It should be noted that the rate of
decomplexation when both repressor proteins are
bound to the sequence is greatly decreased when
compared with the rate when only a single protein
is bound.

GR
224s−1

−−−−→ G + R (13)

GRR
9s−1

−−−→ GR + R (14)

Reactions 15 to 18 represent transcription and trans-
lation. Transcription when the gene promoter is
unrepressed occurs 1000 times more frequently than
when the gene is repressed.

G
0.5s−1

−−−−→ G + M (15)

M
0.167s−1

−−−−−−→ M + O (16)

GR
5∗10

−4s−1

−−−−−−−→ GR + M (17)

GRR
5∗10

−4s−1

−−−−−−−→ GRR + M (18)

mRNA and protein degradation occurs with a half-
life of 120 seconds and 600 seconds respectively
(reactions 19 and 20).

O
0.0012s−1

−−−−−−→ (19)

M
0.0058s−1

−−−−−−→ (20)

These reactions specify a stochastic model of
the behaviour of one gene in the repressilator model.
If the repressing protein is considered as the input
to the system, and the expressed protein the out-
put, then the behaviour of the model mimics that

of a NOT logic gate, which outputs a high sig-
nal when the input is low, and a low signal when
the input is high. The gene operon has two oper-
ator regions. A repressor protein can then bind to
these regions and repress the gene. When only one
operator is occupied by a repressor protein, the re-
pressor is more likely to decomplex from the gene
than when both promoters are occupied, and it is
this cooperative binding which causes a “switch-
like” transition between the high and low output
states of the logic gate (Amos 2004), as a cer-
tain threshold of repressor concentration must be
reached within the cell volume before both opera-
tors become occupied. The effect can be magnified
by increasing the number of operators which coop-
eratively bind repressors, or by using oligomer pro-
teins which must bind together before being able
to bind to the gene. As we are interested in the
modular assembly of variable depth logic circuits,
we define a P system module (see formal defini-
tion in section 2.1) that, by using the repressilator
circuitry, encodes a NOT gate module:

NOTGate({R,G,M,O},
{c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}) =










































[G + R]
c1−→ [GR], [GR + R]

c2−→ [GRR],

[GR]
c3−→ [G + R], [GRR]

c4−→ [GR + R],

[GR]
c5−→ [GR + M ], [G]

c6−→ [G + M ],

[GRR]
c7−→ [GRR + M ], [M ]

c8−→ [M + O],

[M ]
c9−→ [], [O]

c10−−→ []











































The module’s variables {R,G,M,O}, including
the continuous ones {c1, . . . , c10}, can be instanti-
ated with different promoters, genes, proteins and
kinetic constants as to represent specific systems.
Also note that the square brackets indicate that
the reactions take place inside a specific (proto)
membrane or compartment. Indeed to simplify the
notation we have taken out the compartments’ name
variables as we use only one compartment in this
study.

To construct the P system module represent-
ing the repressilator, we start by deriving from the
NOTGate module a specific instantiation named
NG, as to avoid specifying the stochastic rate con-
stants each time (which are the same unless oth-
erwise specified):
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NG({R,G,M,O}) =










NOTGate({R,G,M,O},
{1, 1, 224, 9, 5 ∗ 10−4, 0.5, 5 ∗ 10−4, 0.167,

0.0058, 0.0012})











Three or more NG modules can be connected
together in sequence, with the output of the last
connected as the input of the first gate, to pro-
duce a ring oscillator. Ring oscillators made from

Fig. 5: Ring oscillator built from three not gates.

N gates can be constructed as follows, for any odd
integer N greater than or equal to three:

RON({G1, · · · , GN ,M1, · · · ,MN ,

O1, · · · , ON}) =


















NG(ON , G1,M1, O1),

NG(O1, G2,M2, O2),

· · ·
NG(ON−1, GN ,MN , ON )



















Therefore when N = 3 the original Repressilator
model, named RO3, is reproduced.

3.2 A NAND Gate

By creating two copies of the same gene, with dif-
ferent promoter regions, a NAND gate can be cre-
ated (Figure 6).

Fig. 6: A Nand Gate built from two NOT gates. The inputs
to the gate are two repressor proteins labelled X and Y, and
the output protein is labelled Z.

The NAND gate is defined by the following
module, note that the gene, mRNA and output
protein are the same for both NG modules, but

the input repressor is different (R1 for one gene
and R2 for the other).

NAND({R1, R2, G1,M1, O1} =
{

NG({R1, G1,M1, O1})
NG({R2, G1,M1, O1})

}

It should be noted that constructing a NAND
gate in this way produces two distinct output levels
when the gate output is high, in the first case when
neither input to the gate is present, both genes are
transcribed. However when the gate is presented
with a single input one gene is repressed and the
gate output, whilst still representing a logic value
of True or high, produces roughly half the amount
of protein than it does when no input is present.

3.3 A Set-Reset Latch

Fig. 7: Set Reset Latch constructed from two NAND gates.

Two NAND gates can then be connected to
create a Set-Reset Latch (Figure 7), the output of
each gate is connected to the input of the other,
and the state of the latch can be switched by hold-
ing the remaining set or reset inputs high for a
short period. The Latch acts as a simple one bit
memory which can be set or reset by expressing the
appropriate protein that represses the gene of the
relevant NAND gate. The Latch module is built
from two NAND gates

SR − Latch({R1, R2, G1, G2, O1, O2}) =
{

NAND({R1, O2, G1,M1, O1})
NAND({R2, O1, G2,M2, O2})

}

3.4 A D type Flip-Flop

Latches can then be connected to NAND and NOT
gates to construct a D type flip-flop, as shown in
Figure 8.

A D Flip-Flop takes a data input, indicating
whether the flip-flop should be set or reset, and
a clock input. The output of the flip-flop will be
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Fig. 8: The D Flip-Flop built from two latches, four NAND
gates and a NOT gate.

Fig. 9: A 3 bit counter connected to a 5 gate ring oscillator.

the last active input when the clock was still high,
and so the output is fixed when the clock input
goes from high to low. Each flip-flop stores a single
bit, and can be coupled in sequence to make larger
memories. The D-Flip Flop can also be converted
to a toggle flip-flop by connecting the Q̄ output
to the D input. Therefore each time a clock pulse
occurs, the gate will toggle between the Set and
Reset states. The module configuration for the D
flip flop is shown below:

DFlipF lop({G1, · · · , G9,

DInput, ClockInput,M1, · · · ,M8, O1, O2}) =






























































































NG({ClockInput,G9,M9, O9})
NAND({Dinput, ClockInput,

G5,M5, O5})
NAND({O5, ClockInput,

G6,M6, O6})
SR − Latch({O5, O6, G1, G2,

O1, O2})
NAND({O1, O9, G7,M7, O7})
NAND({O9, O2, G8,M8, O8})
SR − Latch({O7, O8, G3, G4,

O3, O4})































































































3.5 A 3 bit Ripple Counter

A toggle flip-flop can in turn be used to build ripple
counters, simple counters in which the the Q out-
put of one flip flop is connected to the clock input
of the next flip flop. Figure 9 shows a diagram of

three flip flops connected together to form a 3 bit
ripple counter, with a 5 NOT gate ring oscillator
acting as the system clock, when the clock is high,
the state of the first flip-flop is toggled to produce
a high output, connected to the clock input of the
next flip-flop, which is then also toggled. The first
flip-flop remains in the logic high state until the
next clock pulse, upon which it toggles to the low
state, causing the state of the second flip-flop to be
fixed high. As the output of each flip flop toggles
at half the rate of it’s clock input, the output of
the first flip flop is high for one clock cycle, and
then low for one clock cycle. the second bit high
for two cycles and low for two cycles, and the third
bit high for four cycles and low for four cycles.

The counter module is constructed from the
following modules:

Counter − 3bit({G1, · · · , G28,

M1, · · · ,M35, O1, · · · , O8}) =






























































DFlipF lop({G1, · · · , G9,

ClockInput,O2,M1, · · · ,M9, O1, O2})
DFlipF lop({G10, · · · , G18,

O1, O4,M10, · · · ,M18, O3, O4})
DFlipF lop({G19, · · · , G27,

O3, O6,M19, · · · ,M27, O5, O6})
5GateClock({G28, · · · , G35,

O5, O8,M28, · · · ,M35, O7, O8})































































4 Experimental Results

The liposome logic circuits specified in the pre-
vious section were simulated under various differ-
ent conditions using DPD, SSA or both (see Fig.
10) which shows a diagram of the relationship be-
tween the different modules and indicates which
were simulated with DPD and which were simu-
lated using SSA. The results of these simulations
are presented below.

4.1 Dissipative Particles Dynamic Results

4.1.1 Forming the Vesicles

Our model amphiphiles in DPD are based on pa-
rameters from Kranenberg et al (Kranenburg et al
2004) in which the authors investigate a number
of different coarse grainings of DMPC like am-
phiphiles. Figure 11 shows the structure of the
model amphiphiles. Each amphiphile has two hy-
drophobic tails and a hydrophilic headgroup of
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Fig. 10: The diagram indicates which modules were simu-
lated using which simulation technique (e.g. DPD or SSA),
and the relationship between the different models simulated
using the pipeline, an arrow pointing from one module to
another indicates that the module at the arrow’s source is
used by the other module.

three particles. Angle forces maintain a rigidity in
the tail chains with a preferred angle of 180 de-
grees and a force strength of 6KbT , and hold the
tail particles apart with a preferred angle of 90
degrees and force strength of 3KbT .

Fig. 11: Schematic diagram of the DMPC amphiphile. The
green particles make up the hydrophobic tail chains of the
amphiphile, and are held together by Hookean spring forces
with a preferred distance of 0.7 units, and a bond angle force
maintaining the angle between bonds are 180 deg . The two
tail chains are held together by a bond angle force with a
preferred angle of 90 deg

The alpha parameter matrix for the hydropho-
bic, hydrophilic and water particles is shown in
Table 1.

Water Head Tail

Water 78 75.8 110
Head 75.8 78 110
Tail 110 110 78

Table 1: The alpha parameters type matrix for the DMPC
polymer. A value of 78 produces the correct compressibil-
ity for water at room temperature, larger values indicate a
repulsion between particle types.

The physical length and timescales in the DPD
simulation can be ascertained by performing the
mapping described by Groot and Rabone. The unit
length in the simulation is set to the force interac-
tion radius, and all beads have the same mass in

the simulation and occupy the same volume, equiv-
alent to three water molecules (∼ 90Å3). Since the
unit cube density parameter ρ is set to 3, mean-
ing on average there will be three particles in each
unit cube, the side length of each cube, and there-
fore the physical interpretation of the unit length
is

3
√

270Å3 = 6.4633Å. The physical interpreta-
tion of the time step is based on calculation of the
self-diffusion constant of the simulated DPD fluid,
which is then mapped to the same value for wa-
ter at room temperature resulting in a time unit
length τ of ∼ 88ps. Typical simulated times are
2500τ (220ns) to 100000τ (8.8µs) in volumes of
∼ 34nm3.

All DPD simulations in this work were per-
formed with σ = 3,γ = 4.5 and ρ = 3 and the
Groot Warren intergrator was used with λ = 0.65
and the timestep length dt = 0.05

For the vesicle computation simulations in this
work a vesicle was formed which was composed
of 5825 DMPC molecules, encapsulating a core
of 58550 solvent particles. The vesicle was then
placed within a simulation space of 50r3

c , and the
volume which was external to the vesicle mem-
brane was filled with solvent particles such that the
correct density (3 particles per r3

c ) was achieved.
For each NOT gate in the module a solvent par-
ticle within the vesicle core was chosen at random
and replaced with a particle representing the gene.

4.1.2 Liposome logic in DPD

The NOT gate model can be implemented in DPD
as a set of first and second order reactions. How-
ever, the rates in the original model are specified
over timescales of the order of seconds, with the
dynamics of the system only observable over min-
utes/hours. In order to observe the model dynam-
ics within DPD timescales, the reaction rates are
rescaled to occur within the DPD timescale. For
the first order reactions this is a straightforward
process, as long as all the first order reaction rates
are scaled equivalently. However, for the second
order reactions, the situation is more complex, as
the stochastic rate constant is the rate at which
a reactant pair will collide and react. This rate
is determined by the physical properties of the
system (e.g. temperature, reactant mass etc.) and
the probability that the colliding particles will be
in the correct orientation for the reaction to oc-
cur. Therefore to scale the second order reactions
correctly, it is necessary to determine the rate at
which particle pairs collide within the vesicle. The
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collision rate was determined directly from simula-
tion (data not shown) and was found to be 0.0002
collisions per DPD time unit. Thus the NOT gate
model is instantiated as

NOTGate({P,R,G,M,O},
{1τ−1, 1τ−1, 1τ−1, 0.0402τ−1, 5 ∗ 10−4τ−1,

0.5τ−1, 5 ∗ 10−4τ−1, 0.167τ−1, 0.0012τ−1,

0.0058τ−1})

For the other reactions, the rate constants were
rescaled by changing the unit of time from seconds
to DPD time units (τ). The consequence of this for
the second order reactions representing binding of
repressor to gene, is that the rate of collisions is
reduced as the number of collisions per time unit
is much smaller in DPD. Therefore the actual re-
action rate in DPD is shown below.

[R][G] ∗ 0.0002 (21)

Where [R] and [G] indicates the number of repres-
sors and genes in the simulation respectively. The
consequence of this is that the rate at which repres-
sors bind to the gene is reduced by a factor of 5000
in comparison with the other scaled rates. Note
that the rates of the decomplexation rules which
represent the repressor protein unbinding from the
gene have been rescaled to 1τ−1 and 0.0402τ−1

(the rates in the original model were 224s−1 and
9s−1 respectively), as the original rates were too
fast to be represented in the rescaling, and so were
reduced by a factor of 224.

The effect of this alteration somewhat miti-
gates the reduction of the complexation rate, and
the reduction of the binding rate relative to the
adjusted decomplexation rate is reduced by a fac-
tor of 22.3. The effect of these changes will be that
the repression of the gene occurs more slowly, and
both the decomplexation and complexation reac-
tions occur more slowly in comparison to the first
order reactions, but the qualitative structure of the
model should be maintained.

4.1.3 The effect of Encapsulation on logic gate

dynamics

The first experiment involved placing the NOT
gate inside the vesicle membrane, and comparing
the results of simulation in which the NOT gate
was not encapsulated within the membrane (e.g.
allowed to diffuse freely within the full 50rc vol-
ume.) to show the effect that the encapsulation
has on the second order reaction rates.

The result of simulating the NOT gate within a
vesicle with no input signal connected to the gate,
for 5000τ is shown in Figure 12. The NOT gate
gene is expressed when the gate has no input and
the amount of protein rises until an equilibrium
between expression and degradation is reached, at
an output level of ∼ 10000 proteins.

Fig. 12: Time series of the protein output from a gene repre-
senting a NOT gate, encapsulated within a vesicle showing
the mean number of proteins present in the volume over
the course of the simulation, with the error bars showing
the estimated standard error.

Figure 13 shows the results of simulating the
NOT gate with a high input signal (i.e. a gene pro-
ducing the NOT gate input repressor protein was
added to the system) the gate and input gene par-
ticles were encapsulated within a vesicle and the
number of expressed proteins recorded each time
unit to produce a time series (continuous black
line). Simulations were also performed in which
the NOT gate and input gene particles were not
placed within the vesicle, but instead were able to
diffuse freely within the entire simulated volume
(dotted black line).

At the start of the simulation the NOT gate
gene is initially expressed, until the amount of re-
pressor (which is being concurrently expressed from
the input gene) reaches the threshold required to
fully repress the NOT gate gene, causing the amount
of output protein to drop as the protein and mRNA
degrade and are not replenished, so that typically
less than 50 proteins remained by the end of the
simulation.

The dotted line in Figure 13 shows the result
of simulating the high input model for the case
were the input and NOT gate genes were not en-
capsulated within the vesicle. The mean number
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Fig. 13: Output protein levels for simulation of NOT gate
placed within a vesicle and diffusing freely in the simu-
lated volume, averaged over 10 runs (error bars indicate
estimated standard error). The continuous grey and black
lines show the time series for the input and output pro-
teins for the NOT gate placed within a vesicle. The dotted
grey and black lines show the input and output proteins of
the NOT gate with an input present when system is not
encapsulated within a vesicle.

of proteins expressed at the peak of expression
was greater by ∼ 1000 particles when compared to
the output time series for the encapsulated gate,
and the peak was reached later in the simulation,
indicating the transition of the NOT gate (mod-
ule NG) from the high to low output state oc-
curred more slowly. The mean time series for the
input repressor protein in the encapsulated and
non-encapsulated NOT gate simulations are shown
by the grey continuous and grey dotted lines re-
spectively. Once the repressor protein levels have
reached an equilibrium, there is a difference of over
∼ 1000 proteins between the encapsulated and non-
encapsulated equilibrium value. Correspondingly
there is a difference between the levels of outputted
mRNA when the NOT gate was and was not en-
capsulated, Figure 14 shows that the mean mRNA
output when the gate was not encapsulated peaked
at slightly less than 60 molecules, whereas the mRNA
output for the encapsulated gate peaked at around
43 molecules. As the collisions occur more frequently
in the vesicle volume, the gene becomes fully re-
pressed more quickly, and so the peak level of mRNA
output is reduced.

Figure 15 shows the output protein levels from
the NAND gate model built from two NOT gates
(model NAND in section 3.2). Four time series are
shown, one for each possible combination of sig-
nal inputs to the gate. The continuous line shows
the output for the gate when both of the genes for

Fig. 14: The time series for the transcribed mRNA from
the NOT gate gene, averaged over 10 runs. The continu-
ous black line shows the output level of transcribed mRNA
when the NOT gate was encapsulated within the vesicle,
whereas the dashed line shows the mRNA time series when
the NOT gate was diffusing freely throughout the entire
volume.

the input signals (labelled X and Y in the figure)
were present, the output level rises initially un-
til enough of the input proteins is present to fully
repress both genes in the NAND gate, at which
point the output signal drops to zero. The dotted
line shows the case where there was no input sig-
nal to the NAND gate, the level of output protein
reaches an equilibrium value of around 17500 pro-
teins. The dashed and dot-dashed lines show the
case were one of the input signal genes was present,
in both of these cases, one of two NOT gates which
make up the NAND is repressed, and so the out-
put protein levels reaches an equilibrium value of
around 8000 proteins, which is roughly half the
output level when neither input was present.

4.1.4 The encapsulated repressilator

The second vesicle computing experiment involved
the encapsulation of the repressilator within the
core of a self assembled vesicle (module RO3). Time
series from simulations of the increased decomplex-
ation rate repressilator model, encapsulated within
a vesicle are shown in Figure 16, the expressed pro-
tein levels for each of the three NOT gates in the
repressilator (shown for for three runs of the simu-
lation) can be seen to oscillate. The increased de-
complexation rate of the repressors from the gene
when compared to the original repressilator model
means that the period of oscillation is not quite
long enough to allow all of the transcription factor
to degrade, and so the amount of each transcrip-
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Fig. 19: Snapshots from a simulation of the repressilator within a vesicle were taken every 2500τ , the vesicle membrane
is composed of hydrophobic tail chains (green) and hydrophilic head groups (red), a small micelle was trapped within the
vesicle when it formed and is visible in each image. The vesicle was sliced so that the inner volume is visible (note that
solvent particles are not shown). The images show (from left to right) the initial vesicle condition, high concentrations of the
output protein expressed from the first NOT gate, the second NOT gate, and the third NOT gate (note the concentration
gradient visible in the last image).

Fig. 15: The time series of protein output levels from the
simulation of the NAND gate, the output of the gate is
shown in response to 4 different combinations of inputs la-
belled X and Y

tion factor drops to around 1000 proteins. Figure
17 shows the results of simulating the model where
the decomplexation rates were only scaled, and not
increased. The decomplexation of repressor from
gene occurs less frequently in this model and so
the oscillations have a longer period, allowing the
transcription factors to degrade completely before
the next cycle of the oscillation and the period of
the oscillation is increased. Figure 19 shows the
images from the inner volume of vesicle, with the
particles representing the different output proteins
from each of the three NOT gates given different
colours, each of the images are captured at the
point in the simulation were the respective protein
is being expressed.

Fig. 16: Simulations of the repressilator model with in-
creased rate constants for the decomplexation of repressors
from the promoter.

4.1.5 Immiscible Repressors

The third vesicle computing experiment involved
the same initial configuration as the previous re-
pressilator experiment (module RO3), but the al-
pha parameters for the proteins were modified slightly
to examine the case where the output protein is
slightly hydrophobic, and also less miscible with
other proteins. The effect of this should be to cre-
ate three distinct protein phases, which may mean
the dynamics of the repressilator will be altered
due to the non-uniform concentrations of repres-
sors. Table 2 shows the alpha parameter vector for
each repressor protein in the system.

The results from simulations of the repressila-
tor with increased α parameters between the re-
pressor proteins expressed from each NOT gate
gene are shown in Figure 18. Because the tran-
scription factors are now hydrophobic and do not
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Fig. 17: Simulations of the repressilator model within a vesi-
cle in DPD, the parameters are rescaled versions of those
from the elowitz model such that the dynamics can be ex-
amined within DPD timescales.

Fig. 18: Simulations of the repressilator model with hy-
drophobic repressor proteins.

Solvent Gene R1 R2 R3

Solvent 78 78 85 85 85
Gene 78 78 78 78 78

mRNA 78 78 78 78 78
R1 85 78 78 85 85
R2 85 78 85 78 85
R3 85 78 85 85 78

Table 2: α parameters for immiscible repressors.

mix with the solvent, the volume is no longer ho-
mogeneous, causing the dynamics of the repressi-
lator to be altered. The period of the oscillations
is no longer steady as the gene might not diffuse
into an area that contains a high concentration
of proteins that repress it. The repressor proteins
also form distinct phases which tend to move to-
wards the boundary between the vesicle membrane
and the solvent, so that contact between hydropho-

bic repressor and solvent is minimised. The result
of this movement was a bulging deformation of
the normally spherical vesicle shape, this effect is
shown in Figure 20. Deformation of the membrane
may be interesting to those working on the prob-
lem of causing vesicle fusion, as the deformation of
the membrane will create areas of increased ten-
sion due to the elasticity of the membrane, which
may increase the likelihood of fusion if two such
vesicles were to come into close contact (Shillcock
and Lipowsky 2005). This result also illustrates the
sort of system dynamics that can be observed in
DPD rather than in other less detailed simulation
techniques.

Fig. 20: Hydrophobic repressor domains form within the
vesicle, and deform the membrane: The image on the left
shows the surface of a vesicle which has been deformed by
the formation of phases within it. The image on the right
shows a slice through the same vesicle, the output proteins
(coloured orange, blue and purple) have formed phases in
the vesicle core and are pressing against the membrane.

4.2 Stochastic Simulation Algorithm Results

If more complex logical circuits need to be simu-
lated, or simulations for long length/timescales are
required, we can abstract away the molecular and
three dimensional detail of DPD and use instead a
stochastic simulation algorithm to simulate deeper
logic circuits that capture compartments’ topolo-
gies but ignores their detailed geometries. The re-
sults of the SSA experiments are now described.

4.2.1 Oscillator Frequency

We extended the Elowitz models with increasing
numbers of NOT gates, to investigate whether in-
creasing clock periods would match the theoretical
estimates for silicon gates, and if there are limits
to the number of gates which can be connected to-
gether in this way. The oscillator models were con-
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structed from 5,7,9,11,21,31,41 and 51 gates mod-
ules (RO3,RO5,etc.) and simulation of each oscil-
lator was performed for 2 days of simulated time.

The formula for calculating the frequency of a
electronic ring oscillators built from any odd num-
ber of NOT gates is shown in Eq. 22:

1

2nTp
(22)

Where n is the number of logic gates, and Tp is
the propagation delay of each gate. We determine
if this formula accurately calculates the frequency
of the oscillators built from logic gates by calculat-
ing the propagation delay for the gates, and cal-
culating the oscillator frequency from the output
data, and then compare with the value from the
formula.

The propogation delay of the NOT gate was de-
termined to be 766.46+-1.95 seconds, by simulat-
ing an NOT gate with the initial number of input
repressor proteins set to the mean equilibrium out-
put for the gate (11983+-47.29), with a constant
input of repressor protein also present. The pro-
pogation delay was determined as the mean num-
ber of seconds for the NOT gate output to fall to
half of it’s original level. The results from simu-
lation of oscillators with 1,3,5,7,9,11,21,31,41 and
51 NOT gates are shown in Figure 21, the figure
shows that the relationship between the number
of NOT gates and oscillator frequency is similar to
equation 22 until the number of NOT gates is 11
although the frequency is reduced by between 0.3
and 1 microhertz. For oscillators with more than 11
NOT gates the standard deviation of the frequency
is increased, and the shape of the curve no longer
follows the predictions from equation 22. Looking
at the data for each individual run showed that
for 21 NOT gates and above, the oscillator was
decreasingly likely to settle into a stable oscilla-
tion. Table 3 shows the number of oscillators in
the 10 runs which were unstable for the different
numbers of NOT gates.

4.2.2 The effect of RNAP and Ribosomes

The behaviour of the RO51 oscillator was also ex-
amined in a more detailed model where the tran-
scription and translation explicitly included poly-
merase and ribosomes, The number of polymer-
somes and ribosomes were at realistic levels for a
bacterial or large vesicle volume.

When RNAP and ribosome interactions are in-
cluded explicitly in the model, the effect is that

Fig. 21: The figure shows the frequency of oscillation in
µhz for oscillators constructed from 1,3,5,7,9,11,21,31,41
and 51 NOT gates. The blue line shows the the oscilla-
tor frequencies observed in simulation, each point is the
mean frequency of 10 simulations of the oscillator, the er-
ror bars show the standard deviation. The red line shows
the frequency calculated from equation 22 for the different
numbers of gates.

Number of NOT Gates Unstable Count

3 0
5 0
7 0
9 0
11 0
21 1
31 5
41 7
51 9

Table 3: The number of unstable oscillations observed dur-
ing 10 runs of oscillators composed of different numbers of
NOT gates.

there is a global constraint on the rate of transcrip-
tion and translation. Figure 22 shows the levels of
free RNAP and ribosomes for a simulation of the
51 gate oscillator model modified to include RNAP
and ribosome interactions explicitly, the model was
initialised with 35 RNAP and 350 ribosomes. The
result shows that when the oscillator is functioning
the average number of RNAP in use is slightly less
than one, and the average number of ribosomes
in use is around 25. However the inclusion of the
RNAP and Ribosomes did not alter the transcrip-
tion rate significantly.

4.2.3 The 3-bit Ripple Counter

The counter models were simulated in MCSS for
simulated time periods of either 2 or 3 days, with
the number of molecules of each chemical species
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Fig. 22: Time series for free RNA polymerase (RNAP) and
Ribosome (Rib) proteins in a simulation of the 51 gate os-
cillator model.

recorded at every 3 minutes of simulated time to
produce a time series for each chemical species in
the simulation.

Figure 23 shows the time series for the simula-
tion of the 3-bit counter with a 3 gate ring oscil-
lator as the clock, and Figure 24 shows the results
of simulating the same counter with a 5 gate ring
oscillator.

Fig. 23: Time series for 3-bit counter model with 3-gate
clock as input, proteinout2 is the clock signal, proteinG8

is the output of the first bit of the counter, proteinG18 the
output of the second bit of the counter and proteinG26 is
the output of the third bit.

The time series show the output protein levels
for each bit of the 3-bit counter. In the case of the
counter connected to a 3-gate clock, it is likely that
the propagation delay of the flip flops is greater
than the time between clock pulses, and so the
output of the first counter bit (proteinG18) does

Fig. 24: Time series for 3-bit counter model with 5-gate
clock as input, proteinout4 is the clock signal, proteinG8

is the output of the first counter bit, proteinG18 the out-
put of the second bit of the counter and proteinG26 the
output of the third bit.

not always indicate that the flip flop was correctly
toggled by the clock input. When the counter is
connected to a lower frequency clock (constructed
from 5 NOT gates), the dynamics of the output
of the first counter bit have a much more consis-
tent period and number of period of high output
is roughly 1/2 the number of input clocks as ex-
pected. Figure 25 shows the clock input and first
bit output overlayed for the 5 gate clock model.
The figures shows that there is a clear correspon-
dence in each case between the high level of each
bit and the triggering of the output of the next bit,
the counter is therefore functioning as intended.
Note that when the counter reaches its limit (7
in this case) it simply overflows and the counter
starts from zero again.

5 Model Checking

We focus our analysis on two of the simplest parts
in our study, namely the NOT gate and the NAND
gate, that are subsequently used to construct the
rest of the models. In order to asses their perfo-
mances we applied formal analysis on their dy-
namics using simulative probabilistic model check-

ing. More specifically, the behaviour of our P sys-
tem models were translated into CTMCs and then
analysed using the probabilistic model checker PRISM
(Kwiatkowska et al 2002). Due to the complex-
ity of the models under study the complete state
space was not constructed, but, instead, ensem-
bles of multiple simulations or trajectories in the
state space were generated and the corresponding
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Fig. 25: Overlayed time series for protein output levels, the
top figure shows the clock input level overlayed with the
bit-0 output for the counter, the middle figure shows the
bit-0 output overlayed with the bit-1 output, and the bot-
tom figure shows the bit-1 output overlayed with the bit-2
output.

properties, expressed in the temporal logic CSL
(Kwiatkowska et al 2002), were checked against
them.

In the analysis that follows 1000 simulations
were used to produce an estimate p̂ of the answer
p to a query. This resulted in a precision of 0.1 with

a confidence of 0.01 which determines the accuracy
of the estimate according to the following formula.

P [ |p − p̂| > precision ] < confidence

5.1 NOT Gate

In the case of our molecular NOT gate we studied
the accuracy of its behaviour with respect to the
general specification of a NOT gate and the speed
of its reponse when provided with some input mol-
ecules.

5.1.1 Expected number of output proteins in the

long run for different values of input proteins.

We examine whether or not this basic building
block behaves as expected. That is, in the pres-
ence of low values of input proteins, high levels of
output proteins should be produced and viceversa,
when high amounts of input proteins are provided,
no output protein should be synthesized.

In order to investigate this, the following in-

stantaneous reward formula was formulated and
a reward corresponding to the number of output
proteins was associated to each state in the corre-
sponding continuous time Markov chain.

R = ? [ I = 6000 ]

The property was analysed at the time instant
I = 6000 seconds. Figures 26 and 27 show using
linear and logarithmic scale, respectively, how for
low number of CI proteins the number of output
proteins in the long run is high. Whereas an in-
crease in the number of input proteins produces
a sharp decrease to zero in the number of output
proteins. The transition from high to low output
occurs at around 150 input proteins. These results
are in agreement with the general specification of
a NOT gate.

]

Fig. 26: Expected number of output proteins for different
number of initial input proteins (linear scale)
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Fig. 27: Expected number of output proteins for different
number of initial input proteins (logarithmic scale)

5.1.2 Expected propagation time or response time.

We analyse how fast our molecular device responds
to its input by determining the time expected to
reach half way between the initial and the final
state once input proteins are introduced in the sys-
tem. This property is normally termed propagation

time or response time.

The following reachability reward formula was
considered in order to investigate the propagation
time of the NOT gate.

R = ? [ F proteinOut < 5000 ]

This type of query accumulates, over a trajec-
tory, the rewards associated with each state times
the time spent in that state until a state fulfill-
ing the corresponding formula is reached. Since we
want to accumulate the time spent in each state
over a given trajectory a reward equal to one is as-
sociated to each state in the corresponding CTMC.

The property whose reachability needs to be
analysed is the output protein descending below
the threshold of 5000 molecules, which is half of
the the initial number of output proteins, which
was of the order of 104. In Figure 28 we can observe
that a low number of input proteins leads to a very
slow response, whereas an increase in the number
of input molecules produces a fast decay in the
propagation time. Interestingly, our study shows
the existence of a threshold for the input proteins
around 150 for which any further increase does not
produce an acceleration in the response.

From these two properties we can conclude that
for our NOT gate there exists a threshold of around
150 input proteins. Below this number our molec-
ular device produces a high number of output pro-
teins. By contrast, if a number of input proteins
above this threshold is provided to the system,
then no output proteins are synthesised. Moreover,
this threshold of 150 proteins provides the optimal
input value with respect to the propagation time,

Fig. 28: Expected propagation time for different number of
initial input proteins

as an increase in the input beyond this level does
not produce a faster response.

5.2 NAND gate

Similar to the previous case for the NAND gate we
study properties that determine the accuracy of
the behaviour of our genetic design when compare
to the general specification of a NAND gate.

5.2.1 Expected behaviour of the NAND gate.

In the presence of both inputs our molecular device
should synthesise no output proteins whereas in
any other case, that is, presence of only one input
or absence of both inputs, output proteins should
be detectable.

The following instantaneous reward property is
used to determine the number of output proteins
in the long run, time instant I = 6000, for different
values of the two input proteins.

R = ? [ I = 6000 ]
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Fig. 29: Expected number of output proteins in the long
run for different number of input proteins

Note that since the NAND gate is a compo-
sition of two identical NOT gates with the same
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parameters as the one analysed above the thresh-
old of 150 input molecules is also evident in the
behaviour of this gate, Figure 29. This determines
four different regimes in the behaviour of the gate.
When INPUT1 < 150 and INPUT2 < 150 the
output is maximal. For INPUT1 < 150 and INPUT2 >
150 (similarly for INPUT2 < 150 and INPUT1 >
150) the output is produced at a half maximal
level. Finally, no output proteins are sinthesised
when INPUT1 > 150 and INPUT2 > 150.

5.2.2 Probability of the absence of a detectable

level of output proteins.

In order to get a more detailed intuition of the be-
haviour of the NAND gate we estimated the prob-
ability of a non-detectable level of output proteins
in the long run for different values of the two input
proteins. The detectable level was fixed to 500 out-
put proteins. For this we used the following tran-

sient probability formula.

P = ? [ true U[6000,6000] proteinOut < 500 ]
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Fig. 30: Probability of the absence of a detectable level of
output proteins for different levels of both inputs

Figure 30 shows the sharp transition around
the threshold of 150 input proteins from a de-
tectable level of output proteins to an undetectable
one.

6 Potential Routes to a Chemical

Implementation

The potential power of the vesicle computation
method and the use of compartmentalisation in
the DPD simulations offer intriguing possibilities
within a chemical context. The “bottom-up” ap-
proach allows for many further molecular systems
to be invoked than those currently used in biol-
ogy, sophisticated though these already are. For

example, logic gates have been constructed from a
variety of non-biological systems and have used in-
puts/processes ranging from photoelectron trans-
fer and fluorescence through to gel swelling and
electrical signals (Asoh and Akashi 2009; de Silva
and Uchiyama 2007; Gunnlaugsson et al 2000; James
and Shinkai 2002; Yoshida and Yokobayashi 2007;
Magri 2009; Pischel 2007). Abiotic small molecule
systems generally rely for their logic processing
on binding events such as host-guest interactions,
which lead to a perturbation in the electronic or
conformational state of the molecule, which in turn
are converted to signals. Combinations of different
inputs (e.g. pH, ion binding) on to molecules with
more than one potential host-guest interaction or
conformational change lead to multiple logic oper-
ations and functions such as Adders and Subtrac-
tors built from AND, XOR, INH and OR gates.
Small molecule logic systems of this type can also
be coupled to non-chemical inputs, such as light,
enabling their use in energy interconversion and
signal transduction. In this way, a number of pro-
cessor elements in the size range of a few nm have
been developed, with obvious advantages in minia-
turisation compared to top-down machining or litho-
graphic fabrication methods.

However, potentially much more powerful op-
erations are possible when multicomponent coop-
erative or interfering interactions are used. Intro-
duction of multiple binding or reporter elements
onto polymer chains enables a further level of so-
phistication in processing information. This is be-
cause each interaction, for example at a receptor
site, on a polymer chain is inherently coupled to its
nearest neighbour on the chain. This can be pos-
itive or negative in terms of the next interaction,
and thus enhancement or thresholding effects can
become apparent. Natural logic systems such as
DNA, RNA already exploit these effects in bind-
ing or repression of binding as described above,
but recent studies have also shown simple logic cir-
cuits can be derived from host-guest interactions in
synthetic polymers (Pasparakis et al 2009). Con-
formational changes in these polymers resulting
from temperature-driven phase transitions cause
changes in functional group accessibility which re-
sult in “switching” of signalling. The system can
be reset with pH or temperature, leading to AND
and INH functions. The cooperativity of hydrogen-
bonding solvent interactions drives the phase tran-
sition, and this is a property related to the balance
of entropic and enthalpic factors governing poly-
mer solubility and is fundamentally “polymeric” in
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origin. These factors combine to produce the over-
all effect, i.e. switching of binding “on” or “off”,
but because the phase transition is tuneable through
the choice of chemistries in the polymer, other
“states” of switching are possible. For example,
by connecting polymer chains together in such a
way that one component undergoes a phase tran-
sition while another does not, a simple “on-off”
solubility change can become a unimer-to micelle
or unimer-to vesicle switch (Sundararaman et al
2008). This can be considered as an alteration in
the symmetry of the system, as chemical species
able to interact with the unimers in isotropic so-
lution become distinct from each other dependent
on whether they are inside or outside the micellar
or vesicular compartments which form during the
polymer phase transition. Functionality that be-
fore the transition was identical becomes strongly
directional on the inner and outer surfaces of the
vesicle, while concentration and diffusion gradients
are generated.

Ultimately then, it is possible to envisage so-
phisticated information processing circuits that could
be formed using synthetic polymer vesicles in ex-
actly analogous ways to the repressilators described
in Section 4.1.4 for proteins and gene circuits inside
liposomes. Interactions of a synthetic polymer with
a ligand (a “repressor”) in the aqueous interior of
a vesicle could lead to a change in solubility of the
polymer which drives it towards the hydrophobic
interior of the vesicular membrane. Incorporation
in the membrane of a reagent capable of, for ex-
ample, reacting with or sequestering the ligand,
will return the polymer back into the vesicle inte-
rior, but only in the case where the ligand remains
accessible. This can be a function of the degree
of binding as the interaction of multiple weakly
hydrophobic ligands will, eventually, lead to an
overall change in solubility of the polymer-ligand
complexes. If the synthetic polymer solubility is
tuned such that at a certain binding threshold it
then becomes membrane-inserting or membrane-
traversing, a “flip-flop” operation becomes possi-
ble, dependent on starting concentrations. These
in turn will be set by the conversion of unimers to
vesicles, generating multiple feedback loops. Thus
even for quite simple synthetic polymer constructs,
it is theoretically feasible, if not yet fully experi-
mentally tractable, to put in place chemical imple-
mentations of the computational simulations and
molecular logic operations described earlier.

In the above discussions, we have focussed on
water as the solvent in which the chemistries take

place. It is also possible to consider other solvents
in which micelle, vesicles and other containers form,
thus the metabolism and information processing
could be far removed from existing biological en-
tities. If the rules of macromolecular phase tran-
sitions, vesicle formation and molecular associa-
tion/dissociation can be derived for other solvent
systems, there is no reason why sophisticated log-
ics and synthetic biologies should not emerge in
non-aqueous environments.

7 Conclusions

In this paper we have presented our investigations
of vesicle and cellular computing. These simula-
tions were performed through a novel use of the
Dissipative Particle dynamics technique, and through
the use of Gillespie’s SSA to perform large scale
simulations of the the digital logic gate abstrac-
tion for GRN design. In the first case, vesicles were
self-assembled in DPD and used as containers for
the repressilator. We showed the possibility of us-
ing vesicles to encapsulate functionality by plac-
ing one vesicle containing a GRN within another,
with the same/genes promoters used in each vesi-
cle. Some important issues were not dealt with in
this work however. One of which is how might such
a system be formed in vitro? Although multilam-
melar vesicles form in the lab for certain vesicle
formation techniques, forming unilammelar vesi-
cles which contain GRNs is currently an area of
active research in the field of protocells, and it is
not clear how GRNs could be reliably encapsulated
in more complex structures.
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