
IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 1

Towards High-Throughput, Multi-Criteria

Protein Structure Comparison

Azhar Ali Shah, Gianluigi Folino, and Natalio Krasnogor

Manuscript received XXX, 2009; revised XXX, 2009.

G. Folino is with the CNR-ICAR, Institute of High Performance Computing and Networking, Italy. E-mail: folino@icar.cnr.it

A.A Shah and N. Krasnogor are with the School of Computer Science, University of Nottingham, UK, NG8 1BB. E-mail:

{psxaass,Natalio.Krasnogor}@nottingham.ac.uk

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 2

Abstract

Protein Structure Comparison (PSC) is an essential component of biomedical research as it impacts

on, e.g., drug design, molecular docking, protein folding and structure prediction algorithms as well as

being essential to the assessment of these predictions. Each of these applications, as well as many others

where molecular comparison plays an important role, requires a different notion of similarity that naturally

lead to the Multi-Criteria Protein Structure Comparison (MC-PSC) problem. ProCKSI (www.procksi.org),

provides algorithmic solutions for the MC-PSC problem by means of an enhanced structural comparison

that relies on the principled application of information fusion to similarity assessments derived from

multiple comparison methods. Current MC-PSC works well for moderately sized data sets and it is

time consuming as it provides public service to multiple users. Many of the structural bioinformatics

applications mentioned above would benefit from the ability to perform, for a dedicated user, thousands

or tens of thousands of comparisons through multiple methods in real-time, a capacity beyond our

current techonology. In this paper we take a key step into that direction by means of a high-throughput

distributed re-implementation of ProCKSI for very large data sets. The core of the proposed framework

lies in the design of an innovative distributed algorithm that runs on each compute node in a cluster/grid

environment to perform structure comparison of a given subset of input structures using some of the most

popular PSC methods (e.g. USM, MaxCMO, Fast, DaliLite, CE and TMalign). We follow this with a

procedure of distributed consensus building. Thus the new algorithms proposed here achieve ProCKSI’s

similarity assessment quality but with a fraction of the time required by it. Our results show that the

proposed distributed method can be used efficiently to compare a) a particular protein against a very

large protein structures data set (target-against-all comparison), b) a particular very large scale dataset

against itself or against another very large scale dataset (all-against-all comparison). We conclude the

paper by enumerating some of the outstanding challenges for real-time MC-PSC.

Index Terms

Protein structure, Comparison, Alignment, Multi-Criteria, Real-Time, Very Large Scale Data Sets,

MPI, GRID.

I. INTRODUCTION

The comparison of protein structures is an essential activity of biomedical research as it impacts

on structure-based drug design [1], protein structure prediction/modeling [2]–[4], classification [5], [6],

molecular docking algorithms [7] and other structural bioinformatics applications. The specific ability of

protein 3D structure comparison to reveal more significant evolutionary interrelations between proteins

that share very little common sequence (primary structure) has given rise to various world wide structural

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 3

genomic and proteomics initiatives such as the Structural Genomics Consortium (SGC) [8], the Protein

Structure Initiative (PSI) [9] , and the Human Proteome Organization (HUPO) [10] amongst others. These

initiatives are targeted at lowering the cost and enhancing the efficiency for the experimental determination

or computational prediction of novel protein 3D structures, leading for instance to the identification of new

structure-based medicine or therapeutics for treating genetic and infectious diseases. As a consequence,

there is a vast growing number of protein 3D structures available in the Protein Data Bank (PDB) [11]

demanding more efficient and reliable software analysis tools and services, especially for determining

their structural similarities and classifying them into families according to similarity relationships.

Several methods and tools have been developed to investigate the (dis)similarities among protein

structures [12]. Not surprisingly, there is no agreement on how to optimally define what similarity/distance

means as different definitions focus on different biological criterion such as sequence or structural

relatedness, evolutionary relationships, chemical functions or biological roles etc and these are highly

dependent on the task at hand. This observation calls for an explicit identification and understating of

the various stages involved in the assessment of proteins’ similarities.

As illustrated in Figure 1, the first four stages, which have dominated the research in protein struc-

ture comparison so far, are: similarity conception, model building, mathematical definition and method

implementation. Interestingly, the fifth stage, where one would seek to leverage the strength of a variety

of methods by using appropriate consensus and ensemble mechanisms has barely been investigated. One

such approach has recently been introduced by means of the Protein (Structure) Comparison, Knowledge,

Similarity and Information (ProCKSI) web server [13]. Using a set of modern decision making techniques,

ProCKSI automatically integrates the operation of a number of the most popular comparison methods

(as listed in Table I) and provides an integrated consensus that can be used to obtain more reliable

assessment of similarities for protein datasets. The consensus-based results obtained from ProCKSI take

advantage of the ’collective wisdom’ of all the individual methods (i.e, the biases and variances of a

given method are compensated by the other methods biases and variances) and minimizes the chances of

falsely attributing similarity to (sets of) proteins. That is, false positives are more frequent at individual

method level because usually most of globally different proteins still share some common substructures.

In this paper we describe a high-throughput implementation of the entire protocol shown in Figure

1 whereby very large protein structure dataset comparisons are done in parallel using several methods

and exploiting the intrinsic MIMD (Multiple Instructions Multiple Data) structure of the problem. Thus

this work takes a step forward towards the ultimate goal of real-time multi-criteria similarity assessment

of very large protein datasets. Section II presents the review of the related literature, specially focusing

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 4

Fig. 1

STAGES IN THE DERIVATION OF A PROTEIN’S CLASSIFICATION: (1) DECIDE WHAT “SIMILARITY” MEANS, WHICH IS A

DECLARATIVE AND PROBLEM-DEPENDENT STEP. (2) HEURISTICALLY BUILD A MODEL OF SIMILARITY BASED ON 1. THIS

NEW SIMILARITY/DISTANCE CONCEPTION WILL HAVE ITS OWN BIAS, VARIANCE AND OUTLIERS. (3) DECIDE WHETHER

THIS IDEALIZED MODEL WILL BE INSTANTIATED AS A DISTANCE/SIMILARITY MEASURE OR METRIC. (4) ONE OR MORE

ALGORITHMS ARE IMPLEMENTED IN ORDER TO CALCULATE 3, WHICH CAN BE SOLVED EXACTLY AND IN POLYNOMIAL

TIME ONLY IN THE SIMPLEST OF CASES. THE MORE INTERESTING SIMILARITY DEFINITIONS, HOWEVER, GIVE RISE TO

COMPLEX PROBLEMS REQUIRING HEURISTICS/APPROXIMATE ALGORITHMS FOR THEIR SOLUTION. (5) COMBINING MANY

DIFFERENT METHODS WITH DIFFERENT VIEWS OF SIMILARITY PRODUCES A MULTI-COMPETENCE PARETO-FRONT, FROM

WHICH A CONSENSUS PICTURE MIGHT BE DERIVED. IN TURN, THIS ALLOWS THE STRUCTURAL BIOLOGIST TO (6) CLUSTER

AND CLASSIFY PROTEINS RELIABLY. FURTHERMORE, IN ORDER TO PROVIDE MOST EFFICIENT (REAL-TIME) RESULTS

BASED ON THE PHILOSOPHY OF (5), THE NEED FOR THE DATA AND COMPUTATION TO BE DISTRIBUTED AND EXECUTED IN

A HIGH-THROUGHPUT ENVIRONMENT BECOMES INDISPENSABLE.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 5

on the use of parallel and distributed computing for protein sequence/structure alignment. A succinct

description of multi-criteria protein structure comparison is provided through an overview of ProCKSI

in section III. Also in this section we provide an in-depth description of the computational challenge at

the core of real-time MC-PSC. Section IV provides the architectural design and analysis of our newly

proposed framework. Experimental results and their analysis are presented and discussed in section V.

TABLE I

BUILDING BLOCKS FOR MULTI-CRITERIA PROTEIN STRUCTURE COMPARISON. THE NAME AND REFERENCES FOR EACH

OF THE METHOD IS SHOWN IN COLUMN “METHOD”, FOLLOWED BY THE COLUMN “FEATURES” WHERE THE SPECIFIC

FEATURE(S) THAT EACH METHOD USES TO DETERMINE (DI)SIMILARITY ARE MENTIONED. COLUMNS “ALGORITHMS” AND

“MEASURES” SUMMARIZE HOW EACH SIMILARITY FEATURE IS COMPUTED AND IN WHAT FORM IT IS RETURNED. THE

LAST COLUMN GIVES AN INDICATION OF RELATIVE COMPUTATIONAL REQUIREMENTS (TIME) FOR THE DIFFERENT

METHODS. Key: AL = NUMBER OF ALIGNMENTS;OL = NUMBER OF OVERLAPS;Z = Z-SCORE; TMS = TM-ALIGN SCORE;

SN = NORMALIZED SCORE. ∗ CPU TIME FOR A SINGLE PAIR OF PROTEIN STRUCTURES (389 RESIDUES PER STRUCTURE)

ON A STANDARD P4 (1.86 GHZ, 2GB RAM) DUAL-CORE MACHINE. THUS THE TOTAL EXECUTION TIME TAKEN BY ALL

SIX METHODS (WITH A TOTAL OF 15 DIFFERENT SIMILARITY MEASURES/METRICS) FOR THE COMPARISON OF A SINGLE

PAIR OF PROTEIN STRUCTURES IS 31.79 SECS PLUS SOME ADDITIONAL TIME FOR PERFORMING I/O.

Method Features Algorithms Measures Time∗ [sec]

MaxCMO [14] contact map Variable Neighborhood Search (VNS) AL, OL 24.66

DaliLite [15] inter-atomic distance distance matrices AL,Z, RMSD 2.95

combinatorial

simulated annealing

CE [16] inter-residue distances heuristics AL, Z, RMSD 2.80

rigid body superposition dynamic programming

TM-align [17] inter-atomic distance rotation matrix AL, RMSD,TMS 0.71

dynamic programming

USM [18] contact map Kolmogorov complexity USM-distance 0.62

FAST [19] inter-residue distances heuristics RMSD, AL, SN 0.05

dynamic programming

II. RELATED WORK

Recent advances in high-throughput techniques have led to a data deluge in terms of the availability

of biological and biomedical data such as 1D sequences (flat files), 3D structures, microscopic images,

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 6

videos and motifs, etc. [20]. This has put considerable strain in the computational resources that are

routinely use to store, manage, process and analyze the vast amount of data being generated. As to

cope with the increase in computational demands instigated by very large data sets, three routes are

usually followed [20]: (a) the development of new algorithms or the redesign/modification of existing

ones based on faster heuristic techniques [21], [22]; (b) development of special purpose ROM based

hardware chips [23], [24]; and (c) the use of parallel and distributed computing. Routes (a) and (b) can

only be applied in very specific cases as they require considerable in-depth knowledge of a problem or

substantial economic resources respectively. The third alternative, the utilization of distributed and parallel

computation is becoming a more ubiquitous approach as in some cases distributed/parallel solutions in

one problem can be reused (with slight modifications) in other problems. Moreover, due to ongoing

advances in processor and networking technologies, the scope of parallel computing is also extending

from traditional supercomputers to massively parallel computers, clusters of workstations (COW) and

even crossing the boundaries in the form of clusters of clusters i.e grid computing [25]. This paradigm

shift in the provision of parallel computing facilities afford scalability at very low cost. Furthermore, in

terms of code maintenance and code portability, as compared to traditional super computers, distributed

computing fares better [26], [27]. Several successful applications to nanobiosciences are discussed in

[28]–[34].

Notwithstanding the above successes, parallel and distributed computing have no magic applicability

formula and many different parallelization solutions might exists for a given problem. Which one of these

strategies would be the best one to use will depend to a large extent not only on the specific problem

structure but also on factors such as available hardware, interconnection types, security protocols and

human resources. For example, the BLAST (Basic Local Alignment Search Tool [35]) algorithm has been

parallelized/distributed through a variety of ways [28], [32], [36]–[42]. Some of these approaches use

combinations of MPI (Message Passing Interface) [43], Grid and Public Computing based architectures

to distribute either the query sequence (which could be as long as 80 billions of base pairs [44]) or the

target dataset/database(which could have up to 76 million records [44] ) or both. All these approaches use

a simple master/slave task scheduling strategy with coarse-grained level task distribution for minimizing

communication overheads [20]. Coarse-grained approaches are not always suitable: given the variable

length of the sequences to be compared and the different processing power of individual nodes in a

heterogeneous cluster/grid environment, deciding the actual unit of work to be assigned to a particular

node is a non-trivial matter for which efficient dynamic load-balancing strategies are needed. Martino et

al. [45], describe a simple, inexpensive and effective strategy that divides the target dataset/database in n

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 7

buckets of fixed size (where n represents the number of available processors). The load-balancing in this

case is achieved by ordering the sequences by their length (number of bases or residues) and assigning

them to each bucket in a way that the longest sequence is assigned to the segment having smallest sum

of sequence lengths and continuing this process in a round-robin fashion until all sequences are assigned

to buckets. This type of load-balancing strategy reduces the percentage of work load imbalance within

homogeneous computing architectures but does not take into account the heterogeneity of cluster and

grid environments. Trelles et al. [46] present another load-balancing approach based on variable size of

blocks (buckets). This strategy initially distributes blocks with small sizes so as to reduce the latency

time for each node to receive its first unit of work. It then increases the size of blocks (in the same way

as classical Self Guided Scheduling (SGS) reduces their size) until the first half of dataset/database is

processed and then again starts decreasing their size. The smallest size of final blocks guarantees that

all n processors will terminate either at a same time (ideal case) or with a maximum time difference

that depends on the size of the final block (i.e its execution time). This strategy has been tested on a

cluster of 15 nodes with significant enhancement in the performance. Proteins 3D structure comparison

algorithms (e.g. those listed in Table I) present a similar structure to algorithms for sequence comparison

(e.g BLAST, FASTA and ClustalW etc) and hence sometimes similar parallel/distributed strategies can

be used [20]. However, as compared to their sequence counterpart, there are very few instances of the

application of parallel computing for 3D structure comparison methods. Ferrari et al. [47] describes the

distributed implementation of a geometric indexing based PSC algorithm. In a first step this algorithm

uses a pre-computed hash table (that stores angular properties of secondary structure elements (SSEs)

for all 3D structures from PDB) as a quick look-up for finding the hypothetical similar structures for a

given query. It then performs more refined matching of the query with the subset of structures obtained

from the look-up using atomic representation of each structure. This algorithm was adapted to grid

environment by distributing the target dataset/database on each node with a simple load balancing strategy

that divides the data into smaller subsets of fixed sizes and assigns them to each node repeatedly. The

test experiments were conducted on a grid environment (Globus with MPICH) consisting of only 4

nodes (standard workstations) all at a single location. The authors do not provide speedup information or

detailed time analysis for their distributed implementation but they claim to have successfully compared a

target protein structure (1TIM) against a database of 19,500 proteins in a minimum time of 119 seconds.

It should be noted that algorithms like this do not perform an exhaustive pairwise comparison and hence

one can expect many false negatives. Park et al. describes another distributed environment to speed-up the

performance of a genetic algorithm based PSC method named FROG (Fitted Rotation and Orientation

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 8

of protein structure by means of real-coded Genetic algorithms) [48]. This algorithm uses the generation

alternation model with a simple master/slave task scheduling approach to distribute the new parents to

each slave repeatedly. The distributed system uses Ninf-G based RPC on a Linux cluster of 16 nodes

and achieves a speed-up of 15.61. Other examples of distributed protein structure comparison include the

use of distributed and semantics web technologies for PSC at individual method level (e.g. [49] which

is actually an extension of [47] as described above), etc. None of these methods, however, deal with

the much more complex issue of efficient and scalable distributed implementations for Multi-Criteria

Protein Structure Comparison methods. In what follows we discussed the computational issues arising

from MC-PSC by focusing on distributed strategies for the ProCKSI server.

III. COMPUTATIONAL CHALLENGES IN MULTI-CRITERIA PROTEIN STRUCTURE COMPARISON

ProCKSI is an online automated system that implements a protocol for MC-PSC. In particular, it allows

the user to submit a set of protein structures and perform either all-against-all or target-against-all protein

comparisons with the methods listed in Table I. ProCKSI combines the results of pairwise comparisons

delivered by the various available methods, normalizes them and presents a consensus form of the results

through an intuitive web-based visual interface. Furthermore, it gathers information about the proteins

being compared through hyper links to external sources of information e.g. Information Hyperlinked Over

Protein (IHOP) [50], Structural Classification of Proteins (SCOP) [51], and Class Architecture Topology

and Hierarchy (CATH) [52]. ProCKSI executes, on a given pair of proteins, several comparison methods

that, in turn, can result in one or more similarity measures. In order to be able to compute a consensus

similarity assessment, ProCKSI normalizes all of the resulting similarity measures derived from the

methods it uses to values in the [0, 1] interval. The normalization process proceeds as follows. First,

the origin of the matrix containing the similarity/dissimilarity values is shifted to zero by subtracting the

matrix’ minimum value from each matrix element. Then, the intermediate matrix is scaled by dividing all

matrix elements by the matrix’ maximum value. Although this makes sure that the values of all elements

are within the correct range, it does not satisfy an additional requirement for self-similarity (SS) values,

namely, that self-similarity should be 0 for Distance Matrix (DM) and 1 for Similarity Matrix (SM).

Furthermore, similarity values also depend on the size (length) of the proteins. Therefore, in order to

normalize a similarity value Sij resulting from the comparison of proteins Pi and Pj , it is divided by

the highest SS value of both proteins [53]:

Sij,norm =
Sij

max{Sii, Sjj}
(1)

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 9

When applying Equation 1 to SS values Sii, one obtains normalized values Sii,norm = 1 asmax{Sii, Sii} =

Sii. For the purpose of clustering, the above similarity can be easily converted to distances. As demon-

strated in [13], and previously suggested in [54] and [55], the ensemble and consensus based approach

adopted by ProCKSI yields more reliable results of biological significance as compared to the results

obtained with any single structure comparison method developed so far. However, the integration of

multiple methods for protein structure comparison, on the one hand, coupled with a rapidly growing

number of 3D structures in the Protein Data Bank (PDB), on the other hand, gives rise to a computational

challenge that is far beyond the capabilities of a single standard workstation or a group of workstations,

specially if one would like to perform a multi-criteria comparison for very large datasets in real-time.

That is, as the number of protein structures being compared increases, the corresponding number of

pairwise comparison jobs, I/O files and directories, computational time and memory required for each

comparison method and associated pre-processing (e.g. data extraction and contact map preparation) and

post-processing (e.g. consensus generation, clustering and result visualization) methods also increases.

An estimate of some of these complexities is presented in the following sections.

A. Job complexity

Job complexity for protein structure comparison depends on the size (i.e number of structures) of the

dataset/database in hand as well as the mode of comparison. As of April 28, 2009 there are 52,905

protein structures in the PDB and this number grows steadily. If we compare a particular protein against

all the proteins in a given dataset (e.g. PDB), this is referred to as target-against-all mode of comparison.

While being the simplest mode, it is usually used to compare a protein of unknown function but known

structure with those whose structures and functions are known. The results of comparison would provide

clues regarding the function of the query protein. The number of pairwise comparison jobs in this mode is

directly related to the number of structures in the target dataset. For example, given the current holdings of

PDB, there will be 52,905 comparison jobs while using target-against-all mode of comparison. However,

in the case of multi-criteria comparison the actual number of jobs will be the number of target structures

× the number of methods being used for multi-comparison.

Another mode of comparison is the one in which we compare all the elements of a particular dataset

among itself or with all the elements of another dataset. This mode is referred as all-against-all comparison

and is mostly used to cluster/classify a group of structures. The resulting clustering/classification is

aimed to reveal the functional and evolutionary similarities among the proteins. The number of pairwise

comparison jobs in this mode is proportional to the square of the number of protein structures involved

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 10

in the comparison1 × the number of methods. For example, the comparison jobs for current holdings of

PDB using all-against-all mode with only one method will be:

Nj = n2 = 529052 = 2, 798, 939, 025

Where, Nj represents the number of pairwise comparison jobs, while n being the current number of

protein structures available in the PDB.

As mentioned above the actual number of jobs will be 2,798,939,025 × the number of methods

being used. Therefore, it will require an optimal way to distribute all these jobs in the form of some

smaller subsets (working packages) that could be submitted for parallel/distributed execution. Needless

to say, this complexity calls for a high performance computing solution. Please note that protein structure

prediction methods, e.g. Robetta [56] and I-TASSER [57], often sample thousands of “decoys” that must

be compared and clustered together at each iteration of the algorithm as to obtain a centroid structure.

Thus comparing thousands or ten of thousands of protein structures is not limited to assessing the PDB

only but actually occurs as a subproblem in many other structural bioinformatics activities.

B. Time complexity

Different protein structure comparison algorithms have different time complexities and run time profiles.

Table I provides an indicative comparison between the times taken by the algorithms we used in our

experiments for a typical protein pair. Arguably, depending on the length of the members of a protein

pair, the times mentioned in the table would change. However, these can be use to give a rough estimate2

of the run time profile that can be expected from these algorithms:

target-against-all: for a given protein structure compared against the 52,905 structures in the PDB

(assuming only one chain per PDB file), a Multi-Criteria comparison with the methods available in

Table I consuming the time mentioned in the fifth column, would take, on a P4 (1.86GHz, 2GB

RAM) dual-core workstation 19.5 days.

all-against-all: if one were to execute this type of comparison for the entire PDB, this will result

on 2,798,939,025 pairwise comparison jobs (assuming again one chain per PDB file) and it would

take about 85.4 years for all jobs to finish on a single machine.

1Please note that some methods return different similarities for the comparison of Pi with Pj and the reverse comparison
2In later sections we provide a more detailed analysis of run times.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 11

C. Space complexity

Executing potentially millions of pairwise protein structure comparison has strict requirements in terms

of memory and bandwidth allocation. MC-PSC jobs generate a very large number of output data files

that need to be parsed and summarized in a way that enables the execution of the normalization and

consensus steps but also that falls within the constraints of the available computational infrastructure. With

the current number of proteins structures in PDB, and the total number of comparison measures/metrics

for all six methods (Table I) there may be as many data items in the resultant di(similarity) matrix as:

n2 × (Nmt + 2) =52,9052 × 17= 47,581,963,425.

Where n again represents the current number of protein structures in PDB, Nmt represents the total

number of measures/metrics (see Table I) and the additional 2 accounts for the two protein IDs involved

in each comparison. Using a minimum of 5 digits/charachers to hold each data item it may require about

238GB to hold the matrix. Given the size of this matrix, it becomes indispensable to compute and hold

its values in a distributed environment and use some parallel I/O techniques to assemble each distributed

portion directly at an appropriate storage location.

The above back-of-the-envelope calculations point to the need for a high-performance solution to the

MC-PSC problem.

IV. A HIGH-THROUGHPUT DISTRIBUTED FRAMEWORK FOR PROTEIN STRUCTURE

MULTI-COMPARISON

In this section we present the algorithmic framework we use to compute in a distributed environment

solutions to the MC-PSC problem. Figure 2 illustrates the overall architecture of the proposed system. The

top module performs the distribution (through two different decomposition approaches as explained in

the following sections) of pairwise comparisons and allocates them over the available nodes. Then, using

the assigned (bag) proteins, each node performs, in parallel and without the need for synchronization, the

pairwise comparisons required by its associated protein bag using each of the available PSC methods. That

is, each compute node computes a sub-matrix from the all-against-all similarity matrices associated to each

method. Afterwards, a phase of normalization and estimation of missing/invalid values is executed. This

phase exchanges information among nodes, as it needs the global minimum and maximum similarities

for the normalization as well as for the estimation of missing/invalid cells. All the results concerning

the current node are stored on a local matrix. Note that no global and centralized matrix is maintained

by the system and that all the communication among the nodes are performed using the MPI (Message

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 12

Passing Interface) libraries for a cluster of computers and using the MPICH-G2 libraries [58] in the case

of a grid-based implementation.

The pseudo-code shown in Algorithm 1 illustrates the main steps performed by each node in the

distributed framework. This procedure is further optimized for minimizing communications; indeed, data

are exchanged only for the methods in which missing/invalid values are reported. The subsequent phases

of normalize diagonal and normalize extrema do not require any further communication among nodes.

Fig. 2

SOFTWARE ARCHITECTURE OF THE DISTRIBUTED FRAMEWORK.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 13

Algorithm 1 Pseudo-code executed from each node x concerning the multi-comparison part and the

normalization/replacing invalid missing values part. Line 1 iterates for each method, with m representing

the total number of methods.
1: for all method k such that 1 ≤ k ≤ m do

2: for all protein i in row (x) do

3: for all protein j in column (x) do

4: compute method k on the couple of proteins i and j {on node x}

5: end for

6: end for

7: end for

8: for all k such that 1 ≤ k ≤ m do

9: find local min

10: find local max

11: end for

12: exchange and find all global min and max {MPI Allreduce routine}

13: replace invalid missing values

14: normalize diagonal

15: normalize extrema

A. Decomposition Strategies

The efficiency of the distributed framework strongly depends on the way in which proteins are assigned

to compute nodes.

A good load balancing strategy should considerably reduce the execution time and the memory

necessary to store the main matrix and other data structures necessary to the overall computation of

MC-PSC.

Consider a set of resources (nodes of the clusters or machines on the grid) N1,N2, . . . ,Nn and the main

matrix (proteins× proteins×methods) storing the result of the computation and of the normalization

(and estimating invalid/missing values) phases. Let p be the total number of proteins and m the total

number of methods computed. Note that, indeed, M indicates the total number of indices computed by

the different m methods; in fact, M =
∑m

k=1
Mk, where Mk is the number of indices computed by the

method k (see Table II for complete nomenclature).

In order to distribute the overall M among the nodes, there may be as many possible partitioning

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 14

schemes as:

1) Comparison of one pair of proteins with one method. This will create p × p × m jobs

2) Comparison of one pair of proteins with all methods. This will create p × p jobs

3) Comparison of all pairs of proteins with one method. This will create m jobs

4) Comparison of a subset of pairs of proteins with a set/subset of methods. This will create an optimal

number of jobs based on the availability of nodes as well as the number of proteins in a given

dataset.

Partitioning 1 and 2 will be too fine-grained, whereas 3 will be too course-grained to be considered

for a large cluster/grid environment. Partitioning 4 on the other hand could be devised in an intelligent

way to achieve better load-balancing.

We investigate the 4th partitioning scheme by applying two different approaches. The first decompo-

sition adopted is shown in figure 3. The main matrix that stores the results is decomposed among the

available nodes along the two proteins axis, so each comparison among two proteins for all the methods

is performed on the same node, better balancing the different methods. This decomposition is the more

efficient in terms of inter-jobs communication overhead, as it minimizes the number of information

exchanges amongst compute nodes. Furthermore, the matrix is perfectly partitioned as each node is

responsible for the computation and storage of same number of proteins p2m
n . In the next subsection

these results will be analyzed in more detail. However, initial experiments suggested that execution times

for different couples of proteins can largely fluctuate (see table IV), making the load among the different

nodes not really balanced.

A second strategy is to balance the total execution time per compute node rather than the number

of pairwise comparisons. Thus, this strategy takes into account the inhomogeneities in the size of the

proteins being compared and is shown in figure 4. In order to set up a bag of proteins having the same

overall number of residues on each node, the following largely used strategy was followed. Consider the

case of proteins to be assigned to the
√

n row processors (but the procedure is analogous for the column

processors). First of all, proteins are sorted by the number of residues. Then, they are assigned, from the

longest to the shortest one, to the node having the current lowest sum of residues. This procedure is not

really time consuming, as it requires p log p for sorting the proteins and p(
√

n)2 = pn for assigning

them to the correct node. The same distribution obtained for the row is also chosen for the column, so

that the order of rows is not different of that of the columns and the operation of normalization and

removing invalid/missing values could be performed without other overheads.

Each of the two proposed load balancing approaches result in a different CPU and memory usage.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 15

In what follows we analyze the benefits and drawbacks behind each of them. Unless otherwise stated,

a given analysis/argument applies to both of the strategies. Henceforth, the first decomposition will be

referred to as even and the second one as uneven.

Fig. 3

EVEN DISTRIBUTION OF THE PROBLEM SPACE (proteins × proteins × methods). EACH NODE IS RESPONSIBLE FOR THE

SAME COMPUTATION, I.E. SAME PORTION OF THE MATRIX)

.

B. Cost Analysis

Space analysis

In what follows we do not take into account transient memory requirements by the different methods

(e.g. internal data structures) as these have, on the one hand, been already analyzed in the paper where

each method was originally introduced and, on the other hand, these transient space requirements are

released as soon as a particular pairwise comparison is done. The nomenclature used in our analysis is

summarized in Table II.

The entire matrix, storing the comparison/normalization results, is decomposed along each of the two

proteins axis among n nodes. So, in the case of even distribution, each node handles a matrix of size p2m
n

and of size = max(row protx × col protx) × m for the uneven distribution, where p is the number of

proteins, n the number of nodes,m the total number of computed methods and row protx and col prot x

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 16

Fig. 4

UNEVEN DISTRIBUTION OF THE PROBLEM SPACE (proteins × proteins × methods). NOTE THAT THE DIFFERENT SIZES

TAKE DIFFERENT PROTEIN SIZES INTO ACCOUNT (E.G. ONE NODE ONLY FOR A FEW BIG PROTEINS, WHICH TAKE QUITE

LONG TO CALCULATE; AND ONE NODE FOR MANY SMALLER PROTEINS, WHICH ARE QUICKER TO CALCULATE).

are respectively the proteins stored on the row and on the column of the matrix assigned to the node x.

In this case the space → p2m
n if max(row protx → p

n and max(col protx → p
n , i.e. almost the same

number of proteins is stored on each node.

The space necessary to store the proteins is p2mSp

n for even distribution and max(row protx ×

col protx)mSp for uneven distribution, where Sp is the average size of proteins. This is the worst

case as in many cases row proteins and column proteins are overlapped.

Obviously, in the case of the uneven distribution, the memory space is balanced only if the number of

proteins stored on a node are not much different from those stored in the others.

Time analysis

Let Tm be the average execution time of all the methods over all the couple of proteins and Tmx be

average execution time of all the methods over all protein pairs stored on node x.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 17

Description

p Number of proteins

n Number of nodes (processors)

m Number of methods used (i.e. MaxCMO, FAST, etc..)

Mk Number of indices computed by the method k

M Total number of indices computed by all the methods

row protx Number of row proteins present on node x

col protx Number of col proteins present on node x

Evalx Number of evaluation conducted on node x (row protx × col protx)

Sp average size of proteins

Tmx average execution time of all the methods over all the couples of proteins stored on the node x

Tm average execution time of all the methods over all the couples of proteins

TABLE II

SYMBOLS USED FOR THE ANALYSIS.

So, only for the computation part of the algorithm, in a single node execution, the total execution time

will be Ts = p2 × Tm. As for the distributed case, formulation is not so simple as, depending on the

distribution of the proteins, average execution times could be really different from node to node. In such

case, in the even distribution the parallel execution time will be Tp = p2Tmx

n and Tp = max(row protx×

col protx × Tmx) ≤ max(row protx × col protx) × max(Tmx) for the uneven distribution. So, one

has to balance this product as to obtain a fair computation; in the case of even distribution only if

Tmx → Tm for each node, a balanced load is achieved.

Communication overhead

In addition to considering different execution times over different nodes, communication overheads must

also be taken into consideration. This overhead happens in the first phase, when proteins are distributed

over the nodes (using MPI Bcast routine) and in the latter phase, when normalization and invalid/missing

value replacement must be conducted (using MPI Allreduce routine).

Moving the proteins to different nodes does not require an excessive time in comparison with the large

computation time of the computing phase. Naturally, even decomposition needs slightly less overhead

than uneven one as almost the same number of protein must be send to each node. The amount of data

exchanged is, as discussed before, p2Sp

n for even distribution and max(row protx × col protx)Sp for

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 18

uneven.

As for the normalization phase, we need to compute the global minimum and maximum for all the

methods for a total of 2 m values exchanged. For the correction of invalid or missing values we need the

minimum or maximum for each row and column and method in which we got an invalid value. Thus, in

the worst case, we have to exchange 2n2m, but typically invalid values are found only for a few methods

and not for many cells.

Although the same amount of information is exchanged by the two decomposition strategies, the

communication overhead is higher for the uneven strategy. This is mainly due to the worse efficiency for

collective communication in an environment in which there are different number of rows and columns

for each processor.

C. Discussion

The two decomposition strategies adopted present different pros and cons. Although the even decom-

position better utilises memory both in terms of cells of the matrix (p
2m
n ) and proteins (p

2Sp

n ), it does

not balance well the execution time on the different nodes, especially if, as usual, proteins have very

different structures (or number of residues). On the contrary, the uneven distribution, paying the cost of

a larger memory requirements (max(row protx × col protx)×m for the matrix and max(row protx ×

col protx)Sp for proteins), is the only approach usable for obtaining appreciable reduction in execution

times for small-medium and not well balanced datasets of proteins.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

Different experiments were conducted to validate the quality of the two decomposition strategies. Two

metrics are usually used for testing the computational scalability of a parallel/distributed system: the

speedup S and the efficiency E. The speedup of a parallel algorithm is the ratio between the time taken

by the best sequential implementation of an application measured on one processor Ts and the execution

time taken by the same application Tp running on p processors.

S =
Ts

Tp
(2)

The optimal case is given by a linear speedup, i.e. If we run the same application on p processors,

then we can expect at best a reduction in time of p, and therefore that the speedup will be at most p. In

fact, this is only a theoretical condition because the parallel algorithm introduces an overhead, mainly

due to the communication times among different processors. If the problem is not sufficiently complex,

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 19

and the communication times are not negligible with respect to computational time, then the speedup

might be noticeably smaller. Efficiency is given by the ratio between the speedup S and the number of

processors p:

E =
S

p
(3)

and it represents an index of the fraction of time usefully spent by each processor. In this case, the

highest value of efficiency (equals to 1) is attained when all the processors are utilized to the maximum

(communication times and other overheads equal to zero).

A. Datasets and Test Suite

All the experiments were performed on a Linux cluster, named spaci and placed at ICAR-CNR institute

in Italy, with 64 dual-processors Itanium2 1.4GHz nodes each having 4GB of main memory and being

connected by a Qsnet high performance network. In addition to this, some experiments (for the large

dataset) were also conducted on the eScience infrastructure provided by the National Grid Service (NGS),

UK. In this case we used MPIg [58] (grid-based implementation of MPI) to spawn the jobs across two

NGS sites; one at Leeds and the other at Manchester. Each of these sites have 256 cores (AMD Opteron)

with 2.6GHz and 8GB of main memory.

In our experiments, we used the first chain of the first model both for the Rost and Sander dataset

(RS119) and for the Chew-Kedem (CK34) data set (see Table III for the characteristics of these datasets).

As an example of a large dataset, we used the one proposed by Kinjo et al. [59]. This dataset has been

prepared by using PDB-REPRDB [59] algorithm to select 1012 non-redundant protein chains. The length

of each chain in this dataset is greater than 50 with a sequence identity less than 30%. Furthermore, the

dataset does not contain any chain with non-standard residues or chain breaks and all of its chains have

resolution better than 2 Å and R factor better than 20%.

B. Scalability of the Even Decomposition

To evaluate the quality of the even decomposition, the previously introduced metrics of scalability and

efficiency were used, together with the execution time on different numbers of processors. The speed-up

values obtained for the two medium datasets CK34 and RS119 are shown in figure 5.

For both datasets, the speed-up remains good using up to 16 processors, but using more processors

does not help to speed up the total execution time to the same degree. This is due to the structural

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 20

Dataset # Chains # Comparisons # Residues

per Datasets per Datasets per Datasets

CK34 [60] 34 1, 156 6, 102

RS119 [61] 119 14, 161 23, 053

Kinjo et al. [59] 1012 1, 024, 144 252, 569

TABLE III

OVERVIEW OF THE DATASETS USED IN THE EXPERIMENTS. THE HASH SYMBOL (#) IS AN ABBREVIATION FOR Number of

0 4 16 25 640
4
8

16

25
30

64

Number of processors

Sp
ee

d−
up

 

 

Ideal
CK34
RS119

Fig. 5

SPEEDUP OF THE EVEN DECOMPOSITION USING THE CK34 AND RS119 DATASETS ON spaci CLUSTER.

0 4 16 25 640
4

16

25
30

40

64

Number of processors

Sp
ee

d−
up

 

 

Ideal
CK34
RS119

Fig. 6

SPEEDUP OF THE UNEVEN DECOMPOSITION USING THE CK34 AND RS119 DATASETS ON spaci CLUSTER.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 21

differences of the proteins, as each protein is composed by a different number of residues. Indeed, in

spite of having the same number of proteins on each node, some proteins could have a large number of

residues on a node and a few on another one. This consideration is confirmed by the large variance in

the execution times of the different methods (Table IV). As for the execution time, for the RS119 and

the CK34 dataset, the entire execution time was reduced respectively from about 6 days and 6.2 hours,

using the sequential implementation on one machine, to 4.8 hours and 14.15 minutes on 64 processors.

However, on 64 processors, the efficiency degrades to the values of 41% and 46% respectively for CK34

and RS119.

TABLE IV

TOTAL NUMBER OF RESIDUES AND AVERAGE NUMBER OF CHAINS PER DATASET AND AVERAGE EXECUTION

TIMES AND STANDARD DEVIATION (MINUTES) OF THE DIFFERENT METHODS FOR THE CK34 AND RS119

DATASETS AVERAGED OVER 60 TRIES.

Dataset # Res. per Datasets # Res. per Chain USM FAST TM-ALign Dali CE MaxCMO

CK34 6102 179 0.52 ± 0.28 0.14 ± 0.07 0.28 ± 0.11 3.49 ± 1.53 3.20 ± 0.66 0.99 ± 0.34

RS119 23053 197 3.68 ± 0.31 2.16 ± 1.05 5.78 ± 2.86 44.59 ± 20.51 41.05 ± 20.41 20.13 ± 9.69

C. Empirical Analysis of the Load Balancing Factors

It is important to understand whether the execution times of the different methods described in the

previous sections depends on the number of proteins, on the numbers of residues, or on both of them.

To this end we randomly divided the proteins composing the two datasets CK34 and RS119 among 64

nodes (a 8x8 grid of processors) and we run all the available methods and measured the execution time,

the overall number of residues and of proteins present on each node. This procedure was repeated for

20 times for a total of 1280 different measures of time.

Then, we plotted the execution time vs the number of proteins (figures 7 a and b) and the execution

time vs the overall number of residues (figures 8 a and b). Observing the figures, it is clear that the

execution time depends mainly on the overall number of residues present on a node, i.e. the dependence

of time as a function of residues number is nearly linear, while it does not exhibit a linear dependence on

the number of proteins. The largely used Pearson product-moment correlation coefficient (PMCC) was

computed to better assess the dependency between time and residues versus the time and proteins. In the

first case, we obtained a coefficient of 0.992 and 0.995 respectively for the CK34 and RS119 dataset,

while in the latter case we obtained only 0.582 and 0.585 for the same two datasets.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 22

0 20 40 60 80 1000

500

1000

1500

2000

Number of proteins

To
ta

l E
xe

cu
tio

n 
Ti

m
e

 

 

ck34

(a)

0 200 400 600 8000

0.5

1

1.5

2 x 104

Number of proteins

To
ta

l E
xe

cu
tio

n 
Ti

m
e

 

 

rs119

(b)

Fig. 7

EXECUTION TIME VS NUMBER OF PROTEINS PRESENT ON THE NODE FOR THE (A) CK34 AND (B) RS119 DATASET

0 0.5 1 1.5 2 2.5
x 106

0

500

1000

1500

2000

Number of residues

To
ta

l E
xe

cu
tio

n 
Ti

m
e

 

 

ck34

(a)

0 0.5 1 1.5 2 2.5
x 107

0

0.5

1

1.5

2 x 104

Number of residues

To
ta

l E
xe

cu
tio

n 
Ti

m
e

 

 

rs119

(b)

Fig. 8

EXECUTION TIME VS NUMBER OF RESIDUES PRESENT ON THE NODE FOR THE (A) CK34 AND (B) RS119 DATASET

Further analysis aimed to explore whether this linear dependence was influenced by one or more

slowest methods or is verified for all the methods. Figures 9 show the execution time vs the number of

residues for each method for CK34 (a and b) and RS119 (c and d). Although FAST, USM and MacCMO

perform faster as compared to Dali, CE, TM-Align, however the dependency is quite evident for each

of them. Also considering PMCCs, they are always higher than 0.95 for the residue case and lower than

0.60 for the protein case. The only exception is the USM method that obtained a value of 0.914 and

0.888 (respectively for CH34 and RS119) for residues and a value of 0.667 and 0.6958 for the protein

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 23

0 0.5 1 1.5 2 2.5
x 106

0

20

40

60

80

100

Number of residues

Ex
ec

ut
io

n 
Ti

m
e

ck34

 

 

USM
FAST
TM−ALign

(a)

0 0.5 1 1.5 2 2.5
x 106

0

200

400

600

800

1000

Number of residues

Ex
ec

ut
io

n 
Ti

m
e

ck34

 

 

Dali
CE
MaxCMO

(b)

0 0.5 1 1.5 2 2.5
x 107

0

200

400

600

800

1000

1200

Number of residues

Ex
ec

ut
io

n 
Ti

m
e

rs119

 

 

USM
FAST
TM−ALign

(c)

0 0.5 1 1.5 2 2.5
x 107

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of residues

Ex
ec

ut
io

n 
Ti

m
e

rs119

 

 

Dali
CE
MaxCMO

(d)

Fig. 9

EXECUTION TIME VS NUMBER OF RESIDUES PRESENT ON THE NODE FOR THE DIFFERENT METHODS FOR THE (A) CK34

AND (B) RS119 DATASET

case.

D. Scalability of the Uneven Decomposition

From the previous section, it is clear that the execution time strongly depends on the number of residues

per node. Thus, scalability experiments for the same dataset as the even distribution were also conducted

with uneven decomposition and results are reported in figure 6. For the RS119 (CK34) dataset, the entire

execution time was reduced from about 6 days (6.2 hours), using the sequential implementation on one

machine, to 3.4 hours (11.65 min.) on 64 processors. In comparison with the even strategy, we obtained

an improvement on 64 processors of about 18% for the CK34 dataset and of about 29% for the RS119

dataset. Furthermore, on 64 processors, the efficiency is maintained at a quite good value of 64% for

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 24

RS119. For the CHK34, we obtained a value of 50% that is not a bad result, given the small grain of

the dataset.

E. A further experiment on a large dataset

The last experiment was performed using the the uneven strategy running on 4, 16, 25 and 64 processors

applied to the Kinjo dataset, comprising of 1012 non-redundant protein chains. Using this dataset, the

algorithm performed about 1 million of comparisons for all the methods.

As the execution time on a single processor is extremely large, this case was not considered, instead,

scalability was measured based on an estimated base line on 4 processors runing the faster of all the

methods, namely, the FAST algorithm. For reference note that FAST takes approximatedly 11 days to

execute on a single processor for such a large number of proteins.

4 16 25 64
4

16

25
30

40

50

64

Number of processors

Sp
ee

d−
up

 

 

Ideal
Kinjo

Fig. 10

SPEEDUP OF THE UNEVEN DECOMPOSITION USING THE KINJO DATASET ON spaci CLUSTER.

The execution time of the algorithm applied to this huge dataset was reduced from 152 days on 4

processors, to 39.7 days on 16 and finally to 10.7 days on 64 processors. Obviously the scalability

obtained is very close to the ideal case, as you can see in figure 10. In fact, on 64 processor, respectively

a scalability value of 57 and an efficiency value of 89% were measured.

In order to investigate further scalability of this dataset, some more experiments were conducted on

the NGS infrastructure and the results are ... [TO BE WRITTEN ]

VI. CONCLUSIONS

A high-throughput/grid-aware distributed Protein structure comparison framework for very large datasets

is proposed, based on an innovative distributed algorithm running both in a cluster and grid environment.

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 25

This framework is able to perform structure comparison using all or a selection of the available methods.

The design of this algorithm have been analyzed in terms of space, time, and communication overhead.

Based on this analysis two different load balancing approaches have been used to improve the overall

performance: even and uneven strategies. The former permits to obtain the best distribution in terms of

memory, while the latter performs better in terms of execution time and scalability on cluster computers.

Experiments conducted on medium and large real datasets prove that the algorithm permits to reduce

execution time (i.e. for the RS119 dataset it was reduced from 6 days on a single processor to about 5

hours on 64 processors) and to cope with problems otherwise not tractable on a single machine as the

Kinjo dataset, which took about 11 days on a 64-processors cluster. [NGS RESULTS TO BE WRITTEN

HERE]. In the future, we intend to investigate in more depth the use of grid computing environments

in order to cope with very large proteomics datasets.

VII. ACKNOWLEDGMENTS

The authors would like to thank the ICAR-CNR institute and particularly Gennaro Oliva for providing

assistance and useful information in using the SPACI cluster. We would also like to acknowledge the use

of the UK National Grid Service in further carrying out this work.

REFERENCES

[1] T.-S. Mayuko, T. Daisuke, C. Chieko, T. Hirokazu, and U. Hideaki, “Protein structure prediction in structure based drug

design,” Current Medicinal Chemistry, vol. 11, pp. 551–558, 2004.

[2] A. Zemla, C. Venclovas, J. Moult, and K. Fidelis, “Processing and analysis of casp3 protein structure predictions,” Proteins

Struct Funct Genet, vol. Suppl 3, pp. 22–29, 1999.

[3] D. Kihara, Y. Zhang, H. Lu, A. Kolinski, and J. Skolnick, “Ab initio protein structure prediction on a genomic scale:

Application to the mycoplasma genitalium genome,” PNAS, vol. 99, pp. 5993–5998, 2002.

[4] Y. Zhang and J. Skolnick, “Automated structure prediction of weakly homologous proteins on a genomic scale,” PNAS,

vol. 101, p. 75947599, 2004.

[5] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “Scop: a structural classification of proteins database for the

investigation of sequences and structures,” J Mol Biol, vol. 247, pp. 536–540, 1995.

[6] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton, “Cath - a hierarchic classification

of protein domain structures,” Structure, vol. 5, pp. 1093–1108, 1997.

[7] S.-Y. Huang and X. Zou, “Efficient molecular docking of nmr structures: Application to hiv-1 protease,” Protein Sci.,

vol. 16, pp. 43–51, 2007.

[8] A. Williamson, “Creating a structural genomics consortium,” Nat Struct Biol, vol. 7, 2000.

[9] B. Matthews, “Protein structure initiative: getting into gear,” Nat Struct Mol Biol, vol. 14, pp. 459–60, 2007.

[10] “Proteomics’ new order,” Nature, vol. 437, pp. 169–70, 2005.

May 22, 2009 DRAFT

nxk


nxk


nxk




IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 26

[11] H. Berman, K. Henrick, and H. Nakamura, “Announcing the worldwide protein data bank,” Nat Struct Biol, vol. 10, p.

980, 2003.

[12] R. Kolodny, P. Koehl, and M. Levitt, “Comprehensive evaluation of protein structure alignment methods: Scoreing by

geometric measures,” J Mol Biol, vol. 346, pp. 1173–1188, 2005.

[13] D. Barthel, J. Hirst, J. Blazewicz, E. K. Burke, and N. Krasnogor, “The ProCKSI server: a decision support system for

protein (structure) comparison, knowledge, similarity and information,” BMC Bioinformatics, vol. 8, p. 416, 2007.

[14] D. A. Pelta, J. R. Gonzalez, and M. V. M., “A simple and fast heuristic for protein structure comparison,” BMC

Bioinformatics, vol. 9, p. 161, 2008.

[15] L. Holm and J. Park, “Dalilite workbench for protein structure comparison,” Bioinformatics, vol. 16, pp. 566–567, 2000.

[16] I. Shindyalov and P. Bourne, “Protein structure alignment by incremental combinatorial extension (ce) of the optimal path,”

Protein Eng, vol. 11, pp. 739–747, 1998.

[17] Y. Zhang and J. Skolnick, “Tm-align: A protein structure alignment algorithm based on tm-score,” Nucleic Acids Res,

vol. 33, pp. 2302–2309, 2005.

[18] N. Krasnogor and D. A. Pelta, “Measuring the similarity of protein structures by means of the universal similarity metric,”

Bioinformatics, vol. 20, pp. 1015–1021, 2004.

[19] J. Zhu and Z. Weng, “Fast: A novel protein structure alignment algorithm,” Proteins Struct Funct Bioinf, vol. 58, pp.

618–627, 2005.

[20] T. O, “On the parallelisation of bioinformatics applications,” Briefings in Bioinformatics, vol. 2, pp. 181–194, 2001.

[21] A. SF and S. A. Madden TL, “Gapped blast and psi-blast: A new generation of protein db search programs,” Nucleic Acids

Res., vol. 25, pp. 3389–3402, 1997.

[22] P. W. R. and L. D. J., “Improved tools for biological sequence comparison,” Proc. Natl Acad. Sci., vol. 85, pp. 2444–2448,

1988.

[23] “The bio-accelerator.” [Online]. Available: http://sgbcd//weizmann.ac.il/

[24] R. K. Singh, W. D. Dettlo, V. L. Chi, D. L. Homan, S. G. Tell, C. T. White, S. F. Altschul, and B. W. Erickson, “Bioscan:

A dynamically recongurable systolic array for biosequence analysis,” in Proc. of CERCS96, National Science Foundation,

1996.

[25] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,” in IFIP International Conference on Network

and Parallel Computing, ser. LNCS 3779, 2005, pp. 2–13.

[26] A. Shah, D. Barthel1, P. Lukasiak, J. Blacewicz, and N. Krasnogor, “Web and grid technologies in bioinformatics,

computational biology and systems biology: A review,” Current Bioinformatics, vol. 3, no. 1, pp. 10–31, 2008.

[27] A. Shah, D. Barthel, and N. Krasnogor, “Grid and distributed public computing schemes for structural proteomics,” in

Frontiers of High Performance Computing and Networking ISPA 2007 Workshops, ser. LNCS 4743. Berlin:Springer,

2007, pp. 424–434.

[28] S. Pellicer, G. Chen, K. C. C. Chan, and Y. Pan, “Distributed sequence alignment applications for the public computing

architecture,” IEEE TRANSACTIONS ON NANOBIOSCIENCE, vol. 7, pp. 35–43, 2008.

[29] W.-L. Chang, “Fast parallel dna-based algorithms for molecular computation: The set-partition problem,” IEEE TRANS-

ACTIONS ON NANOBIOSCIENCE, vol. 6, pp. 346–353, 2007.

[30] I. Merelli, G. Morra, and L. Milanesi, “Evaluation of a grid based molecular dynamics approach for polypeptide

simulations,” IEEE TRANSACTIONS ON NANOBIOSCIENCE, vol. 6, pp. 229–234, 2007.

May 22, 2009 DRAFT

http://sgbcd//weizmann.ac.il/


IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 27

[31] M. Mirto, M. Cafaro, S. L. Fiore, D. Tartarini, and G. Aloisio, “Evaluation of a grid based molecular dynamics approach

for polypeptide simulations,” IEEE TRANSACTIONS ON NANOBIOSCIENCE, vol. 6, pp. 124–130, 2007.

[32] A. Arbona, S. Benkner, G. Engelbrecht, J. Fingberg, M. Hofmann, K. Kumpf, G. Lonsdale, and A. Woehrer, “A service-

oriented grid infrastructure for biomedical data and compute services,” IEEE TRANSACTIONS ON NANOBIOSCIENCE,

vol. 6, pp. 136–141, 2007.

[33] M. Cannataro, A. Barla, R. Flor, G. Jurman, S. Merler, S. Paoli, G. Tradigo, P. Veltri, and C. Furlanello, “A grid environment

for high-throughput proteomics,” IEEE TRANSACTIONS ON NANOBIOSCIENCE, vol. 6, pp. 117–123, 2007.

[34] A. Boccia, G. Busiello, L. Milanesi, and G. Paolella, “A fast job scheduling system for a wide range of bioinformatic

applications,” IEEE TRANSACTIONS ON NANOBIOSCIENCE, vol. 6, pp. 149–154, 2007.

[35] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local alignment search tool,” Journal of Molecular

Biology, vol. 215, p. 403410, 1990.

[36] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. chun Feng, “Massively parallel genomic sequence search on the blue

gene/p architecture,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing. Piscataway, NJ,

USA: IEEE Press, 2008, pp. 1–11.

[37] A. J., W. chun Feng, and T. E., “A pluggable framework for parallel pairwise sequence search,” in 29th Annual International

Conference of the IEEE, 2007, pp. 127–130.

[38] O. C. and N. J., “Scalablast: A scalable implementation of blast for high-performance data-intensive bioinformatics

analysis,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, pp. 740– 749, 2006.

[39] A. Krishnan, “Gridblast: a globus-based high-throughput implementation of blast in a grid computing framework,”

Concurrency and Computation: Practice and Experience, vol. 17, pp. 1607–1623, 2005.

[40] A. E. Darling, L. Carey, and W. chun Feng, “The design, implementation, and evaluation of mpiblast,” in In Proceedings

of ClusterWorld 2003, 2003.

[41] R. L. D. C. Costa and S. Lifschitz, “Database allocation strategies for parallel blast evaluation on clusters,” Distrib. Parallel

Databases, vol. 13, no. 1, pp. 99–127, 2003.

[42] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, and C. Roberts, “Parallelization of local blast service on

workstation clusters,” Future Generation Computer Systems, vol. 17, p. 745754, 2001.

[43] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance, Portable Implementation of the MPI Message Passing

Interface Standard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, Sep. 1996.

[44] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler, “Genbank,” Nucleic Acids Res., vol. 17, p.

D25D30, 2008.

[45] R. Martino, C. Johnson, E. Suh, B. Trus, and T. Yap, “Parallel computing in biomedical research,” Science, vol. 265, pp.

902–908, 1994.

[46] O. Trelles-Salazar, E. Zapata, and J. Carazo, “On an efficient parallelization of exhaustive sequence comparison algorithms

on message passing architectures,” Bioinformatics, vol. 10, pp. 509–511, 1994.

[47] C. Ferrari, C. Guerra, and G. Zanottib, “A grid-aware approach to protein structure comparison,” J. Parallel Distrib.

Comput., vol. 63, pp. 728–737, 2003.

[48] S.-J. Park and M. Yamamura, “Frog (fitted rotation and orientation of protein structure by means of real-coded genetic

algorithm) : Asynchronous parallelizing for protein structure-based comparison on the basis of geometrical similarity,”

Genome Informatics, vol. 13, pp. 344–345, 2002.

[49] M. Cannataro, M. Comin, C. Ferrari, C. Guerra, A. Guzzo, and P. Veltri, “Modeling a protein structure comparison

May 22, 2009 DRAFT



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2009 28

application on the grid using proteus,” in Scientific Applications of Grid computing (SAG2004), ser. LNCS 3458.

Berlin:Springer, 2004, pp. 75–85.

[50] “ihop: Information hyperlinked over proteins.” [Online]. Available: http://www.ihop-net.org

[51] “Scop: Structural classification of proteins.” [Online]. Available: http://scop.mrc-lmb.cam.ac.uk/scop

[52] F. M. G. Pearl, C. F. Bennett, J. E. Bray, A. P. Harrison, N. Martin, A. Shepherd, I. Sillitoe, J. Thornton, and C. A.

Orengo, “The cath database: an extended protein family resource for structural and functional genomics,” Nucleic Acids

Res, vol. 31, pp. 452–455, 2003.

[53] D. A. Pelta, N. Krasnogor, C. Bousono-Calzon, J. L. Verdagay, J. D. Hirst, and E. Burke, “A fuzzy sets based generalization

of contact maps for the overlap of protein structures,” Fuzzy Sets and Systems, vol. 152, pp. 102–123, 2005.

[54] O. Camoglu, T. Can, and A. Singh, “Integrating multi-attribute similarity networks for robust representation of the protein

space,” Bioinformatics, vol. 22, pp. 1585–1592, 2006.

[55] F. V and S. S, “Heterogeneous data integration with the consensus clustering formalism,” in 1st International Workshop

on Data Integration in the Life Science (DILS), ser. LNCS 2994. Berlin:Springer, 2004, pp. 110–123.

[56] C. A. Rohl, C. E. M. Strauss, K. M. S. Misura, and D. Baker, “Protein Structure Prediction Using Rosetta,” in Numerical

Computer Methods, Part D, ser. Methods in Enzymology, L. Brand and M. L. Johnson, Eds. Academic Press, Jan. 2004,

vol. Volume 383, pp. 66–93.

[57] S. Wu, J. Skolnick, and Y. Zhang, “Ab initio modeling of small proteins by iterative TASSER simulations.” BMC Biol,

vol. 5, no. 1, p. 17, May 2007.

[58] N. T. Karonis, B. Toonen, and I. Foster, “Mpich-g2: a grid-enabled implementation of the message passing interface,”

Journal of Parallel and Distributed Computing, vol. 63, no. 5, pp. 551–563, 2003.

[59] A. R. Kinjo, K. Horimoto, and K. Nishikawa, “Predicting absolute contact numbers of native protein structure from amino

acid sequence,” Proteins Struct Funct Bioinf, vol. 58, pp. 158–165, 2005.

[60] L. P. Chew and K. Kedem, “Finding the consensus shape for a protein family,” in Proceedings of the 18th Annual Symposium

on Computational Geometry (SCG). New York: Springer, 2002, pp. 64–73.

[61] B. Rost and C. Sander, “Prediction of protein secondary structure at better than 70% accuracy,” J Mol Biol, vol. 232, pp.

584–599, 1993.

May 22, 2009 DRAFT

http://scop.mrc-lmb.cam.ac.uk/scop
http://www.ihop-net.org

	Introduction
	Related Work
	Computational Challenges in Multi-Criteria Protein Structure Comparison
	Job complexity
	Time complexity
	Space complexity 

	A High-throughput Distributed Framework for Protein Structure Multi-comparison
	Decomposition Strategies
	Cost Analysis
	Discussion

	Experimental Results and Discussions
	Datasets and Test Suite
	Scalability of the Even Decomposition
	Empirical Analysis of the Load Balancing Factors
	Scalability of the Uneven Decomposition
	A further experiment on a large dataset

	Conclusions
	Acknowledgments
	References

