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Abstract

Stochastic simulation algorithms (SSAs) are
used to trace realistic trajectories of biochemi-
cal systems at low species concentrations. As
the complexity of modelled bio-systems in-
creases, it is important to select the best per-
forming SSA. Numerous improvements to SSAs
have been introduced but they each only tend to
apply to a certain class of models. This makes
it difficult for a systems or synthetic biologist
to decide which algorithm to employ when con-
fronted with a new model that requires simula-
tion. In this paper, we demonstrate that it is
possible to determine which algorithm is best
suited to simulate a particular model, and that
this can be predicted a prior: to algorithm exe-
cution. We present a web based tool ssapredict
that allows scientists to upload a biochemical
model and obtain a prediction of the best per-
forming SSA. Furthermore, ssapredict gives the
user the option to download our high perfor-
mance simulator ngss preconfigured to perform
the simulation of the queried biochemical model
with the predicted fastest algorithm as the sim-
ulation engine. The ssapredict web application
is available at http://ssapredict.ico2s.org.
It is free software and its source code is dis-
tributed under the terms of the GNU Affero
General Public Licence.
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1 Introduction

Simulation of mathematical and computational
models of reaction networks is an invaluable
tool for scientists aiming to understand the dy-
namic behaviour of complex biochemical sys-
tems. In the fields of Systems and Synthetic
Biology, repeated rounds of model-driven hy-
pothesis generation, validated or refuted by wet
lab experimentation, lead to refined quantita-
tive and predictive models, and ultimately bet-
ter bio-designs. In silico experimentation with
these models is cheaper, faster, and more re-
producible than its real world counterpart (i.e.
wet lab). In order to maximise the potential
of in silico experimentation, it is important to
ensure that (1) simulation algorithms can scale
efficiently with the class and size of problem and
(2) optimised reference code is readily available,
well documented and easy to reuse.

Stochastic Simulation Algorithms (SSAs) are
the primary means of simulating naturally dis-
crete cellular systems affected by stochastic
noise. They generate multiple realistic trajec-
tories of molecular quantities over time given an
initial state (e.g. species counts), a set of reac-
tions (with associated stochastic rate constants)
and stopping criteria. SSAs are an important



tool in systems biology software suites such as
Infobiotics Workbench (1) and have been used
for theoretical work (2—4).

FEzact SSAs, introduced by Gillespie (5), gen-
erate trajectories that are demonstrably equiva-
lent to the Chemical Master Equation and must
simulate each and every reaction in the sys-
tem. SSA algorithmic complexity being O(M)
(where M is the set of reactions), and concomi-
tant generation of pseudo-random numbers to
emulate stochasticity for each reaction event,
makes simulating ever larger reaction networks
increasingly intractable despite continued ad-
vances in computational power. This has led
to many studies addressing point (1) above,
namely how to improve the scalability of the
SSA. For example, approzimate SSAs have been
introduced that conditionally apply multiple re-
actions at each step (6) as well as optimised ez-
act variants that use improved data structures
to accelerate computations (7-12).

However, the availability of multiple variants
of the SSA comes at the cost of a lack of
clarity as to which one to use for a particu-
lar biochemical model. More specifically, many
published SSAs are tested with an insufficient
number of models, mostly tailored to proper-
ties of the newly introduced algorithm. Conse-
quently, it is hard to extrapolate or compare
performance between algorithms as each will
often be benchmarked against competitors’ al-
gorithms using only biochemical models that
perform favourably with the newly introduced
algorithm. When considering these variants,
a scientist may wish to know which SSA will
be the fastest for simulating their particular
model(s).

Currently, it is common to execute reaction
networks with a single SSA implementation, for
example Next Reaction Method (NRM) (7).
Due to the lack of model and algorithmic anal-
ysis available, scientists are unaware that a dif-
ferent algorithm may perform orders of magni-
tude faster than their “default” algorithm. To
compound this issue, whilst several stochastic
simulators are freely available (13-16), their
selection of algorithms is limited. Such a sit-
uation would result in a scientist limiting the
complexity of their model to obtain a tractable

simulation time. Therefore, it is preferable that
scientists are provided with tools that match
the best algorithm for their model and allow
for better performing simulations. If simula-
tion time can remain tractable in spite of in-
creasing model complexity, the development of
finer grained biological knowledge is possible.

The cost of simulating a system with one
SSA variant or another depends on the prop-
erties of the underlying network of the model
and the states reached during the simulation.
Each biological model exhibits characteristics
that may be suited to a particular simulation al-
gorithm. Thus effective discrimination between
SSAs should be based on matching model char-
acteristics to algorithmic performance. Net-
work analysis is an important aspect of Systems
and Synthetic Biology, but Roy (17) notes that
usually only a few “handpicked” network prop-
erties are considered to determine the influence
of the network structure. As an example, the
StochKit2 (13) simulation software selects algo-
rithm based on model “properties” but actually
only considers the number of reactions in the
model and is therefore very limited in discrimi-
nation. A prediction based on a comprehensive
evaluation of network properties is required to
discriminate between the significant number of
SSA variants that exist as a function of their
performance with specific biochemical models.

To address these problems, we have created
a complete meta-stochastic simulation solution
implemented as a user-friendly web application
called ssapredict. Our tool allows a scientist to
upload their model and automatically predicts
the best algorithm to use. Once a prediction
has been made, the user can download ngss, our
portable high performance simulator, precon-
figured to run their model with the predicted
fastest algorithm. Our web application tackles
three issues: (a) it simplifies the decision mak-
ing process for the scientist, (b) it produces an
acceptably accurate prediction of SSA-to-model
match, and (c) it standardises SSA source code
contributing to reproducibility of in silico ex-
periments.

The ngss simulator and ssapredict web appli-
cation are under continuous development and
we are open to integrating new algorithmic



methods as well as to extend the set of mod-
els we use for training. In the long term, we
would like to lead an effort, in collaboration
with other scientists in the field, to construct an
open benchmark composed of both algorithms
and models. This will not only result in im-
proved prediction accuracy but also increased
simulation speed for a wide range of models.

2 Results and Discussion

2.1 Stochastic Simulation

Our experimental analysis included eight exact
SSA formulations that we had implemented.
These are Direct Method (DM) (18) and First
Reaction Method (FRM) (5), Next Reaction
Method (NRM) (7), Optimised Direct Method
(ODM) (10), Sorting Direct Method (SDM)
(8), Logarithmic Direct Method (LDM) (9),
Partial Propensities Direct Method (PDM)
(12) and Composition Rejection (CR) (11). An
approzimate algorithm, Tau Leaping (TL) (6)
was also implemented and analysed. A brief
description of these algorithms is provided in
Section 3.1.

In our experiments, we used models taken
from the BioModels database (19) and the
performance (reactions executed per second of
CPU time) of each of the algorithms was mea-
sured for every model. The distribution of
best performing algorithms across all models is
shown in Table 1.

Table 1: Distribution of best performing algo-
rithms for all 380 models from the BioModels
dataset. The first row shows how many times a
particular algorithm was the fastest for a model
in the dataset. The same value is also displayed
as a percentage of the total (second row).

CR DM NRM FRM LDM SDM TL ODM PDM

0 1 1 2 9 43 75 87 162

0.00% 0.26% 0.26% 0.53% 2.37% 11.32% 19.74% 22.9% 42.63%

To put this result into perspective, we com-
pared the performance of each algorithm to the
best algorithm in the group for each of the mod-
els. Figure 1 shows that three frequent winners

PDM, ODM and SDM, have very similar per-
formance profiles (they are all improved vari-
ants of DM) with the notable exception of a
few models for which PDM performs badly. TL,
another algorithm in the top 4, performs excep-
tionally well for about 20% of the models, but is
outperformed by other algorithms for the rest
of the dataset. For the worst performers, CR
and FRM, there is a clearly visible gap that
separates their performance from the best.

In Table 2, we show how consistent the top 4
algorithms are. For each algorithm in the top
4, we measure how many times it was ranked
below the top 4. ODM was the algorithm that
most consistently remained in the top 4 (378
out of 380 models), but was closely followed by
SDM (368 out of 380 models). On the other
hand, PDM and TL were ranked below the top
4 many times, including being ranked as the
worst algorithm for some models. TL in partic-
ular remained in the top 4 for only 80 models.

Table 2: Number of times one of the 4 best
performing algorithms (See Table 1) was ranked
below the top 4 for any of the 380 models from
the BioModels dataset. Each row shows the
total number of models for which an algorithm
was ranked under a given threshold. The lowest
possible rank was 9.

rank ODM SDM PDM TL
>4 2 12 42 300
> 9 0 1 22 287
> 6 0 0 17 205
> 7 0 0 7 51
=9 0 0 6 8

2.2 Performance Prediction

We define meta-stochastic simulation as an au-
tomatic methodology for selecting the best al-
gorithm for a given model. Different SSAs have
varying performance profiles dependent on a
particular model’s properties. Stochastic mod-
els can be represented as graphs of dependen-
cies between reactions or species. Using these
graphs we are able to build a topological profile



. DM . LDM . FRM
10° ¢ 10 3 10° ¢
107 k /« / 107 F /«
§ / 110" F . § —
3 ] Vu 3 Y ."
[~ 1 10° L= | ._(...
10° k= E 10° | S 4
.
10 10° 10*
ODM SDM NRM
'8 10° ¢ 2 10° 2 10° .
o i i 1
(@) ] ] ]
g 4 4 p
7 7 7
o 10" F /? 10 3 /? 10 3 /?
V - i 3 —_ i b o e ]
e e | T oy
n g
g 10° | 4 10° E 4 10° k& g
8 3 3 3
O
©
Y 10 10° 10°
. CR . PDM . TL
10° ¢ 3 10 3 10 3
1 110k E
10" F 4 w0 F E i ? ]
) 1 . [ 7 ]
I 4 - " 1)
[ _— ] [ 10°F 4°a E
| ~ ’ AN TGRS | [ & 3
o PSRN ! ;
106 L~aVet” © A 105 L 1 K
F 1 10°”" 4
. 2
5 5 4

10

models

Figure 1: Comparison of the performance of each algorithm against the best performance for each
model. The red data points are the algorithm performance values for each model. The grey data
points show the best performance for each model. The models on the horizontal axis are ordered

by best performance.

of each model. We use the topological prop-
erties to learn how to predict the fastest SSA
(from a pool of nine algorithms) for a given
model.

An example of what we include in the model
topological profile is the number of nodes or
the number of connections in the reaction or
species dependency graph. Other properties
contain information about the connections of
individual nodes (node degree), the entire graph
(graph density) or the existence of mutual de-
pendencies (reciprocity). All topological prop-
erties used in our analysis are discussed in Sec-
tion 3.3 and listed in Table 5.

To provide the reader with an intuition of
which graph topological properties might be
useful in algorithm performance estimation, we

performed a small case study. For two top 4 al-
gorithms, PDM and TL, we selected 5 models
for which their performance is the worst and 5
models for which it is the best. We then mea-
sured a median value of each topological prop-
erty for the two sets (worst and best) of models.
Finally, we selected 10 properties for which the
absolute difference between median(worst) and
median(best) is the highest. We found that the
worst models for PDM had high reaction graph
density and total degree, high species graph min
degree and medium species reciprocity. Inter-
estingly for TL, the worst models had low reac-
tion graph density and low species graph min
degree, which is the opposite of the worst mod-
els for PDM.

In Figure 2, we show the distribution of nor-
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Figure 2: Distribution of values of selected topological properties. For all properties, the mean
value is equal to 0 and the standard deviation is equal to 1. The whiskers represent the 1.5 IQR
(interquartile range) past the closest quartile (left/right edge of the box). Observations outside this
range are marked as outliers. Horizontal axis is on a logarithmic scale.

malised values of properties selected for both al-
gorithms. The species graph min degree stands
out as having a dominating value (here 1) with
many outliers. For other properties the range of
values is much broader but outliers remain fre-
quent, indicating possible hard to predict edge
cases.

2.2.1 Performance Estimation

Linear regression (ordinary least squares
method) was used to fit a linear model esti-
mating the performance. Regression was per-
formed on a per algorithm basis with results
shown in Table 3. The coefficient of determina-
tion (R?) is close to 1 (perfect fit) for 7 out of
9 algorithms. PDM and TL algorithms are the
exception with R? of 0.71 and 0.6 respectively,
which indicates that their performance is more
difficult to estimate with a linear function.

Table 3: The linear regression fit of algorithm
performance on all models measured with the
coefficient of determination (R?).

TL PDM NRM CR FRM SDM ODM DM LDM

0.600 0.712 0971 0.973 0979 0.985 0.98  0.989 0.991

2.2.2 Prediction of the Fastest SSA

Employing 10-fold cross-validation, we aimed
to determine the quality of algorithmic perfor-
mance predictors that could be generated from
the BioModels dataset using model topological
properties.

Some of the analysed model properties are
impractical for use in a prediction tool. This
is because with large reaction networks those
properties can require even more computational
time to compute than the simulation time of
the model. A topological features set that
was fast to compute (as these would be the
strongest candidates to be used in a tool that
could predict algorithm performance of a par-
ticular model a priori to simulation) was there-
fore identified (see Table 5 in Section 3.3).

We used two variants of a random predictor
and four predictors based on well known meth-
ods (linear regression, logistic regression, sup-
port vector classifier and a nearest neighbour
classifier). For each predictor we performed
a 10-fold cross-validation experiment and mea-
sured the mean accuracy and standard devia-
tion of the predictions. The accuracy of each
predictor is tested with four tolerance thresh-
olds (¢ = [0%, 1%, 5%, 10%)]). In this scenario,



e=0%

linear regression
random (informed)

random (blind)

o

0.2 0.4 0.6 0.8 10

0.8

10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

prediction accuracy

Figure 3: Results of the 10-fold cross-validation classification experiment using a reduced set of
properties (computational complexity < O(V + E)) with increasing tolerance threshold e.
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Figure 4: Results of the 10-fold cross-validation classification experiment using the total set of
available properties with increasing tolerance threshold e.

if the performance of a best algorithm selected
by a predictor for a given model lies within the
tolerance threshold of the performance of the
actual best algorithm, the prediction is scored
as correct because the performance of the pre-
dicted best SSA only differed from the actual
best SSA performance by an acceptable amount
(e.g. 10%).

For the first experiment, we decided to as-
sess the performance of predictors when given
the full set of 32 computationally inexpensive
(fast) properties. Results displayed in Figure 3
demonstrate that all classifiers perform better
than a random selection. k-Nearest Neighbour
and linear SVC had the same prediction accu-
racy (63% with ¢ = 0%), which is a signifi-
cant improvement over a blind random selec-
tion (12% with € = 0%). However, from eval-
uating the prediction quality at differing toler-
ance thresholds, it appears that linear SVC was
the strongest predictor (85% with ¢ = 10%).
For comparison, a blind random selection at
e = 10% results in half the accuracy at 42%.

For a comparative analysis, we subsequently

tested the prediction accuracy with the entire
set of 100 slow and fast topological features,
results are shown in Figure 4. Prediction ac-
curacy overall was similar to the previous (fast
properties) experiment but demonstrated some
slight improvement. Linear SVC was still the
strongest predictor and had improved from 63%
to 65% (85% to 86% with ¢ = 10%). As ex-
pected, higher quality predictions occur when
more properties are introduced in the cross-
validation experiments (effectively testing on
the training set). However, it is important to
note that using just the computationally inex-
pensive properties produced results of similar
quality to the full set of properties. Therefore,
the strong performance of the predictors with
fast properties means that we can create a tool
that produces an accurate prediction quickly.

2.2.3 Prediction Inaccuracies

Often the failures of a tool are as important as
its successes. To demonstrate the consequences
of mispredictions of ssapredict, we ran another



10-fold cross-validation experiment. This time
we measured the related relative performance
loss for each inaccurate prediction. Figure 5
shows the distribution of these values for the
best predictor in the group (linear SVC) com-
pared to the random predictors. The median
value for the best predictor was only 5.4% and
the interquartile range was lower than 20%.
This means that most of the mispredictions
correspond to less than a 20% performance
loss. However, we also found several outliers
for which the performance drop was large (up

to 86%).
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Figure 5: Distribution of relative performance
loss caused by mispredictions for the best (lin-
ear SVC) and worst predictors (two variants of
random choice). The whiskers represent the 1.5
IQR (interquartile range) past the closest quar-
tile (top/bottom edge of the box). Observations
outside this range are marked as outliers.

2.2.4 Large Scale Model Experiments

In our final experiment, we investigated
whether the predictors trained on small models
would be accurate for large models. Figure 6
shows the algorithmic performance for the Fs-
cherichia coli quorum sensing model instan-
tiated on 1 x 1, 10 x 10 and 100 x 100 two-
dimensional lattices (see Table 4 in Section 3.2
for the model network sizes).

The linear SVC predictor selected TL for the
single cell lattice and PDM for the 10 x 10 and
100 x 100 lattices. Whilst the TL prediction is

accurate, for the large lattices CR is the fastest
algorithm. The PDM algorithm is 13% slower
than CR for the 10 x 10 lattice and 82% slower
for 100 x 100.

2.3 Web Application

Our meta-stochastic simulation solution, ss-
apredict, is implemented as a web application.
Ssapredict is designed to be easy to use and re-
ceiving a prediction only requires the user to
press an upload button and select the biochem-
ical model of interest (in SBML (20) format)
that resides on their computer. Once the pre-
diction has been made, the user can download
our portable high performance simulator, ngss
(next generation stochastic simulator) which is
preconfigured to run the model with the pre-
dicted fastest algorithm.

Figure 7 shows a screen shot of the results af-
ter ssapredict model analysis. Model properties
are displayed along with the predicted fastest
algorithm. The simulate model button allows
the user to download the preconfigured ngss bi-
nary for their platform.

2.4 Discussion

Our proof-of-concept SSA performance predic-
tor has demonstrated that even using a limited
set of topological properties it is possible to pick
a fast algorithm for a given model. The pre-
diction accuracy was found to be much higher
than a random choice. In addition, this work
has highlighted that no single SSA is superior
to all others for all models. For example, for
models with high min degree in species graph
TL outperforms PDM, but when that degree is
low, PDM outperforms TL.

Looking back at the distribution of fastest
algorithms (Table 1 and Figure 1), some re-
sults are to be expected. For example, FRM
being a weak performer, and a more sophisti-
cated algorithm such as PDM being a strong
performer. However, we see some unexpected
results too, such as one of the most sophisti-
cated algorithms, CR, never winning and NRM
being a less frequent winner than FRM. Table 2
demonstrates that whilst an algorithm may be
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Figure 6: Average performance for the Fscherichia coli quorum sensing circuit. The model was
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the standard deviation across 10 runs.

Model Topological Properties

Re SUItS Num. Vertices (RDG) 120588

Num. Edges (RDG) 2279804

Min. In Degree (RDG) 3

. . Max. In Degree (RDG) 37
Biochemical Model Name: Mean In Degree (RDG) 18.9057
Min. Out Degree (RDG) 3

oregonator-64x64.sbml Max. Out Degree (RDG) 22

. . . Mean Out Degree (RDG) 18.9057
Predicted Optimal Algorithm: Min. Total Degree (RDG) 14

. . . Max. Total Degree (RDG) 57
Partial Propensity Direct Method (PDM) Mean Total Degree (RDG) 37.8115
Density (RDG) 0.00015678

Reciprocity (RDG) 0.349225

Weak Components (RDG) 1

Biconnected Components (RDG) 1

Articulation Points (RDG) 0

Simulate Model Num. Vertices (SDG) 36864

Num. Edges (SDG) 153356

Min. In Degree (SDG) 0

Max. In Degree (SDG) 13

Partial Propensity Direct Method (PDM) - Ramaswamy et al (2009) (doi) Mean In Degree (SDG) 4.16005
Min. Out Degree (SDG) 0

PDM differs from other exact formulations in the sense that it scales with the Max. Out Degree (SDG) 12
Mean Out Degree (SDG) 4.16005

number of species N in the system rather than the number of reactions M which is Min. Total Degree (SDG) 1
likely to be much greater. The idea behind PDM is to factor out a particular species Max. Total Degree (SDG) 25
Mean Total Degree (SDG) 8.3201

from each reaction, generating partial propensities that depend on the population Density (SDG) 0.000112849
. : Reciprocity (SDG) 0.536261

of zero or one species. PDM uses novel data structures to update partial Weak Components (SDG) 1
propensities including an implicit species dependency graph, but retains the same Biconnected Components (SDG) 8193
Articulation Points (SDG) 8192

time step sampling method as DM. Unlike other exact methods, this algorithm
performs well with highly coupled networks because of its species scaling

characteristic.

Figure 7: Screenshot displaying the results of analysis performed on a model by ssapredict. Model
topological properties can be inspected and a prediction of fastest algorithm is displayed. There is
an option to simulate the model.



considered the fastest for a significant number
of models, there are also models for which it
may perform poorly. TL was the fastest algo-
rithm for 75 out of 380 models, but was also
ranked below the top 4 algorithms for 300 mod-
els. This result highlights the importance of se-
lecting an algorithm on a per model basis rather
than using a single algorithm for all models.

The large scale model prediction experiment
results (see Figure 6) show that CR is the
fastest algorithm for these larger models. Due
to lack of models of this scale in our training
set, ssapredict is unable to predict that result.
However, it does select PDM, the second fastest
algorithm in the group. This is one of the lim-
itations in predictor accuracy — it is highly
dependent on the size and variability of mod-
els used for training. In order to train better
quality predictors, a larger number of models is
needed, preferably containing special instances
for which each of the algorithms was designed
to perform best with.

While there are many biochemical models
available in the literature and online, there are
few that are specifically intended for stochastic
simulation. Most of the models we used from
the BioModels dataset were deterministic mod-
els and to simulate them stochastically we fixed
rate constants. Whilst there are many com-
plete deterministic models available from on-
line databases, few complete curated stochastic
models are freely available. Therefore, a future
analysis featuring complete stochastic models
will have to be preceded by the creation of a
dataset with a large number of curated stochas-
tic models.

Initial species amounts were set to a constant
100 to complement the static topological anal-
ysis. A major limitation of our current anal-
ysis is that it will not be able to account for
transient changes that occur within a simulated
stochastic model. This is important because
high copy numbers of chemical species can cre-
ate intractable simulation conditions for exact
algorithms.

With a larger and more diverse training set,
we should be able to minimise the cost of mis-
predictions. Although currently it is often small
(median value of the relative performance drop

was 5.4%), there are edge cases where the pre-
dictor is choosing an algorithm with 15% of the
performance of the best algorithm in the group.

We believe that future work in this area must
include a comprehensive benchmark of algo-
rithms with a large set of models that exhibit
varied characteristics. This work can be consid-
ered a precursor to producing a meta-stochastic
simulator that can dynamically switch algo-
rithms when transient changes that affect per-
formance occur in a biochemical system. As
Synthetic Biology aims to compose large sys-
tems from smaller biological components, it is
expected that the size of models will increase
rapidly in the future. These large systems will
be intractable for simulation without further
algorithmic innovation. In our opinion, meta-
stochastic simulation is one of the ways to keep
up with the growing requirements of Synthetic
Biology.

We invite scientists to contribute biological
models and stochastic simulation algorithms
that we could use to improve ssapredict. Sub-
mission instructions are available at the ssapre-
dict website: http://ssapredict.ico2s.org.
We intend to periodically re-train the predictor
with a growing set of models and to add more
algorithms to the ngss simulator.

3 Methods

3.1 Simulation Algorithms

In this section we will give a brief review of the
algorithms available for prediction in ssapredict
and consequent simulation in ngss. FRM was
the first SSA introduced by Gillespie in 1976.
FRM is a simple algorithm that requires a ran-
dom number generated for each reaction in the
system every algorithmic iteration (). DM was
introduced to replace FRM and only required
two random numbers generated per algorithmic
iteration. DM is the de facto standard SSA for-
mulation and is still commonly used for simu-
lation (18).

NRM (based on FRM) used a large number
of optimisations including the use of a reaction
dependency graph to minimise propensity recal-



culation and a priority queue to find the next
reaction to fire. Furthermore, NRM only re-
quired one random number generated per iter-
ation (7). ODM builds on DM with a reaction
dependency graph and reduces reaction search
depth by performing a pre-run and sorting reac-
tions by their likelihood of firing (10). SDM is
similar to ODM but dynamically sorts reactions
during algorithm execution. This means that
SDM performs well with simulations that ex-
perience significant transient fluctuations (8).
LDM is similar to ODM and SDM but uses a
binary search to reduce reaction search depth
(9).

PDM builds on DM but uses a species depen-
dency graph and factors out reaction propensi-
ties by species. PDM claims to be superior for
highly coupled reaction networks (12). CR is
another DM variant which uses rejection sam-
pling to select the next reaction and thus claims
constant time scaling. Therefore, in theory, CR
should outperform other exact algorithms when
presented with large reaction networks. CR
uses composition (reaction propensity group-
ing) to reduce the number of rejections per al-
gorithmic iteration (17).

In addition to the exact SSAs, there are many
approximate and hybrid algorithms (6, 21-23).
At this stage, we focused on exact methods and
have only included one approximate method
(ezplicit TL). We selected TL, as it is the first
hybrid method introduced by Gillespie and can
be considered as the de facto standard hybrid
SSA formulation. TL is an approximate algo-
rithm that applies many reactions per algorith-
mic step (rather than one per step as in the
exact formulations). This is dependent on the
propensities of the system being relatively sta-
ble, otherwise the algorithm reverts to DM (6).
We used an updated version of TL that incor-
porates optimised step size selection (24).

As more algorithms are added to the ngss
simulator in the future, we will also retrain our
predictor to offer the best simulation option for
the user’s model.

10

3.2 Biochemical Models

We used 380 models retrieved from the BioMod-
els database (19) in SBML (20) format. These
models describe various different biological pro-
cesses and are curated from peer reviewed liter-
ature. This gives us access to a large number of
models used by scientists with variation in re-
action network sizes. In Figure 8, a histogram
is shown displaying the spread of model size
within the dataset, quantified by the number of
reactions in the model. It can be seen from the
histogram that the vast majority of BioModels
have a reaction network size of 50 reactions or
less, but there is also a small number of larger
models (up to 1800 reactions).
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Figure 8: Distribution of the size of model re-
action network across the BioModels dataset.
The bin size is 25. The vertical axis is on a
logarithmic scale.

Our proof-of-concept algorithmic perfor-
mance predictors only consider static struc-
tural model topological properties to test if we
could make accurate predictions with that data.
Therefore, alterations were made to models to
focus on the model structure analysis. In order
to simplify models and remove extra variables
that cannot be captured by the dependency
graph analysis, the amounts of all species were
set to 100 and remain constant throughout
simulation. The BioModels usually contain de-
terministic rate functions instead of stochastic
rate constants, and thus, a decision was made
to set the stochastic rate constants of all re-
actions to 1.0. This is technically justified as

1800



it turns the deterministic models into stochas-
tic ones, and because the property analysis is
performed upon the wunweighted dependency
graphs derived from these models (i.e. depen-
dency graphs independent of reaction rates).
As the BioModels are limited in size, we were
interested to test the accuracy of the predictors
algorithmic performance when presented with
a much larger model. We used the Escherichia
coli AI-2 quorum signal circuit from Li et al.
(25). Whilst this model only contains 25 reac-
tions and 21 species, we scaled it up by instan-
tiating it on each point of a hypothetical two-
dimensional lattice. We generated 10 x 10 and
100 x 100 models, adding transport reactions
between adjacent lattice points to incorporate
quorum signal molecule transfer (see Table 4).

Table 4: Reaction and species graph sizes for
different versions of the stochastic Escherichia
coli AI-2 quorum signal circuit model from Li
et al. The model size is the number of points
on a 2D lattice the model was instantiated on.

model size reactions species
1x1 25 21

10 x 10 2860 2100

100 x 100 289600 210000

3.3 Topological Analysis

Ssapredict performs a model property analysis
and uses the results to predict the fastest SSA
for that model. After parsing the model, a reac-
tion dependency graph and species dependency
graph are generated. In a reaction dependency
graph, each vertex corresponds to a unique re-
action, hence the number of vertices in a reac-
tion dependency graph is equal to the number
of reactions in the model. A directed edge is
placed from vertex V; to vertex V; if the firing
of reaction R; changes the propensity of reac-
tion R;. In a species dependency graph, each
vertex corresponds to a unique species, and so
the number of vertices in a species dependency
graph is equal to the number of species in the
model. A directed edge is drawn from vertex
Vi to vertex Vj if for any reaction species \S; is
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a reactant and species §; is a product. Any
duplicate edges are removed from each graph.

54 properties were generated for each of the
reaction and species dependency graphs of a
model. An additional property, reaction stiff-
ness ratio, was also calculated bringing the to-
tal number of properties to 109. For some mod-
els certain properties were not possible to com-
pute, for example, when a division by zero oc-
curred. We replaced all missing values with
zeros. Nine model properties were found to
be constant for all models and therefore would
be of no use as performance indicators and
thus were removed from the data set, resulting
in 100 model properties available for analysis.
Ssapredict analyses a restricted set of 32 fast
(computational complexity < O(V + E)) prop-
erties ensuring that the graph analysis com-
pletes in a timely manner (see Table 5).

3.4 Algorithm Performance

The performance metric used to measure algo-
rithmic computational speed was reactions per
second (rps) of CPU time. Rps allows one to
compare algorithm performance in a manner
that ignores simulation run time. This means
that algorithm performance can be compared
between two models that take vastly differing
amounts of time to execute. Using rps also
improves comparative accuracy, if we wish to
run an algorithm for x seconds, and measure
how many reactions are executed, the amount
of time elapsed would almost certainly not be
ezactly x seconds, but a number extremely close
to x seconds. If this was compared to another
run of x seconds, neither run would be exactly
the same amount of time, and thus a compari-
son in this manner would lose accuracy. Divid-
ing the number of reactions executed by the ex-
act simulation time to get a result in rps leaves
us with a value that is appropriate for compar-
ison. All runs were executed on a single core of
an otherwise idle benchmarking machine that
possessed an Intel i7 2600K CPU with 16GB
RAM and was running Ubuntu 11.04. The large
amount of RAM available and size of models in-
volved meant that all simulations could be run
in memory and thus avoid performance deteri-



Table 5: Summary of model topological properties analysed. Complexity relates to worst case time
complezity for the computation of the propensity, where V' is vertices, E is edges, and d is the
average node degree. Properties marked with T have constant or linear scaling and are used for the
restricted set of fast properties.

computational complexity graph property

o)t number of edges, number of vertices, density of graph

o)t min/mean/max outgoing edges, min/mean/max incoming
edges, min/mean/max all edges

OV + E)t weakly connected components, articulation points, bi-
connected components, reciprocity of directed graph

O(VE) average geodesic length, longest geodesic length,
min/mean/max outgoing closeness, min/mean/max incoming
closeness, min/mean/max closeness in undirected graph,
min/mean/max betweenness, min/mean/max betweenness
in undirected graph, min/mean/max edge betweenness,
min/mean/max edge betweenness undirected graph

OV (V+E)) min/mean/max shortest path in undirected graph,
min/mean/max shortest incoming path, min/mean/max
shortest outgoing path

O(V + E)?) girth of undirected graph

O(Vd?) transitivity of graph vertices, average local transitivity

o(v?) min edge connectivity

O(V?) min vertex connectivity

orations caused by memory paging.

Each of the BioModels were executed for 10
seconds of CPU time for all 9 algorithms. Each
algorithm was run 10 times on each model,
hence a total of 90 rps values for each model.
Because the BioModels were void of parameters
such as simulation time and species amounts,
it was decided that 10 seconds of CPU time
for each model/algorithm combination would
be enough to determine an accurate result for
algorithm performance.

3.5 Prediction Methods

We used two variants of a random predictor, a
classifier based on a set of linear regression es-
timators trained separately for each algorithm,
logistic regression (26), support vector classifier
with linear kernel (27) and a nearest neighbour
classifier (28) using a vote of 5 nearest mod-
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els. For each predictor we performed a 10-fold
cross-validation experiment and measured the
mean accuracy and standard deviation.

The two random predictors used different
amounts of information. First was a blind ran-
dom predictor which assumed that each algo-
rithm is equally probable to perform best. The
probability of such a blind guess to be correct
is equal to § (see Equation 1).

pzzwipizézpi:% (1)

The second random predictor assumed that
each algorithm is as probable as it was observed
in the training set. Then, roulette wheel selec-
tion was used to make a prediction. In the ideal
case, the informed random guess would assign
a weight equal to the true probability of win-
ning for each algorithm (see Equation 2). Given
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Figure 9: Structural diagram of ssapredict architecture and work-flow.

the distribution of winners in our benchmark we
expect the probability of a correct guess to be
three times greater than in the case of the blind
guess.

p= Zwipi = pr ~ (.27 (2)

3.6 Application Architecture

The ssapredict web application is built with
python using the web2py framework (29). Fig-
ure 9 visualises the structure and work-flow of
ssapredict. Models are uploaded to ssapredict in
SBML (20) format and parsed using libSBML
(80). After producing dependency graphs from
the model data, a model topological analysis is
performed. The model property analysis soft-
ware is written in C++ with performance as
a design priority and calls functions from the
igraph library (81) to compute the graph prop-
erties.

The application then performs fast property
analysis of the supplied model using the set
of 32 computationally inexpensive properties.
The result of this model analysis is delivered to
a linear SVC classifier which makes a prediction
of the fastest algorithm to simulate the model.
Linear SVC was the best performing classifica-
tion method identified by the cross-validation
experiments and is trained with the algorithmic
performance data and fast set of properties for
all models. The linear SVC classifier is written
in Python using scikit-learn (32).

After a prediction has been made, ssapredict
allows users to simulate their models with the
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predicted fastest algorithm. The simulator ngss
is written in C++4 with an emphasis on per-
formance and released under the terms of the
GNU General Public Licence. Ngss is portable
and will operate on GNU/Linux, Mac OS X
and Windows platforms. Ngss is distributed
such that no extra dependencies need to be in-
stalled by the user. Ngss supports OpenMP,
allowing parallel runs (stochastic trajectories)
on multi-core computers. Ssapredict simulation
functionality is provided to the user through a
zip archive that contains the uploaded model
and simulator executable for their platform. An
auto-generated simulation parameter file that
configures ngss is also contained in the archive.
By simply extracting the files and entering a
one line command (instructions provided in
archive), the simulator will generate stochastic
trajectories as time-series in CSV format.
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