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Abstract

Comparing protein structures, either to infer bio-
logical functionality or to assess protein structure
predictions is an essential component of proteomic
research. In this paper we extend our previous
work on the use of the Universal Similarity Met-
ric(USM) and Generalized Fuzzy Contact maps.
More specifically we compare the impact that gen-
eralized fuzzy contact maps representations have
on the assessment of protein similarity by means
of the Universal Similarity Metric.

Keywords: fuzzy contact maps, protein compar-
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1 Introduction

The comparison of protein structures is an im-
portant problem in bioinformatics [2]. Struc-
ture comparison are usefull in a variety of situ-
ations like inferring biological functionality of a
new structure or assessing the quality of tertiary
structure predictors. These, and other roles of
protein structural comparison, makes this an im-
portant problem in drug development.

Protein structures can be compared in a number
of ways, but ultimately, a suitable “encoding” of
the three dimensional information is required. In
this paper we choose to encode the topological in-
formation of protein structures by means of “con-
tact maps”. In [5] we used crisp contact maps to
compute the universal similarity metric (USM),
while in [10] we generalized the concept of crisp
contact maps to fuzzy contact maps in various
ways. In this paper we study the interplay be-

tween the clustering capability of the USM and
the generalization features of fuzzy contact maps.

The paper is organized as follows: in Section 2,
we describe the very basics of protein structure.
Section 3 is devoted to the presentation of stan-
dard (crisp) and fuzzy contact maps and then in
Section 4 we review the main ideas of the univer-
sal similarity metric. The experiments and results
obtained are described in Section 5. Finally, Sec-
tion 6 is devoted to the conclusions.

2 Required Notions

A protein is a linear arrangement of amino acids,
that is, a polymer. Each amino acid is a multi-
atom compound. Usually, only the “residue” part
of these amino acids are considered when studying
protein structures for comparison purposes. Thus
a protein’s primary sequence is usually though-
of as composed of “residues”. The primary se-
quence adopts local motifs called secondary struc-

ture. The most relevant secondary structure fea-
tures are helices, sheets and loops. The native

state or tertiary structure of a protein is the three
dimensional shape the polymer adopts under cer-
tain physiological conditions. That is, the local
motifs of the secondary structure agregate further
into a higher organization level. In its native state
a protein performs its biological function. In some
cases, a protein structure may be composed by a
set of three dimensional chains structures. Figure
1 graphically shows the previous description1.

1Taken from http://www.accessexcellence.org/RC/VL/GG/
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Figure 1: Main protein structures

3 Standard and Fuzzy Contact Map

In this section, we define contact maps and we
describe its extension to fuzzy contact maps.

3.1 Standard Contact Map

A contact map [8, 9] is a concise representation
of a protein’s 3D structure. Formally, a map is
specified by a 0-1 matrix S, with entries indexed
by pairs of protein residues, such that

Si,j =

{

1 if residue i and j are in contact
0 otherwise

(1)

Residues i and j are said to be in “contact” if
their Euclidean distance is at most < (a threshold
measured in Angstroms) in the protein’s native
fold. Thus, the contact map can be also seen as
a white/black image.

In this work, contact maps are calculated by tak-
ing into account the distance of the Cα atoms
of the residues under consideration. The contact
map captures the 3D structure of proteins and
certain structural features are conspicuous when
the contact map is represented graphically.

3.2 Generalized Fuzzy Contact Maps

In the previous model, a crisp Euclidean distance
threshold is used to decide whether two residues
are in contact or not. In order to produce a more
flexible framework for protein similarity we resort
to a richer concept of contact and contact maps
that was previously addressed in [10].

We define a fuzzy contact as that made by two
residues that are approximately, rather than ex-
actly, at a distance <. Formally, a fuzzy contact
is defined by:

Fi,j = µ([i, j],<) (2)

where µ() is a particular definition of (fuzzy) con-
tact, [i, j] stands for the Euclidean distance be-
tween residues i, j, and < is the threshold as for
the crisp contacts. The standard, i.e. crisp, con-
tact map is just a special case of the fuzzy contact
map when a user-defined α-cut is specified.

Figure 2 (a),(b) and (c) shows three alternative
meanings for “contact” and the corresponding
membership functions. Each panel in the figure
is a fuzzy contact map in which a dot appears for
each pair of residues such that Fi,j > 0 (i.e. the
support of the corresponding fuzzy set).

Fuzzy contact maps are further generalized by re-
moving the constraint (in the original model) of
having only one threshold < as a reference dis-
tance. The formal definition of a General Fuzzy
Contact is given by:

Fi,j = max{µ1([i, j],<1), . . . , µm([i, j],<n)} (3)

with the contact map C defined as:

Cr×r = (Fi,j) with 0 ≤ i, j ≤ r (4)

That is, up to n different thresholds and up to
m different semantic interpretations of “contact”
are used to define the r × r contact map where r

is the number of residues in the protein.

As an example, consider the 2-thresholds, 2-
membership functions fuzzy contact map, shown
in Fig. 2 (d), that simultaneously highlight short

and long structural patterns. The membership
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Figure 2: Four examples of contact maps. In (a) the standard model; b) the simplest fuzzy gen-
eralization; c) another generalization; d) a 2-threshold, 2 membership functions fuzzy contact map.

functions µ1, µ2 for short and long patterns are
defined in such a way that they do not overlap and
with <1 < <2. A simple visual inspection shows
that the resulting patterns are different among the
maps in the figure.

From an implementation point of view, the up-
per triangular part of the contact map stores the
values Fi,j ∈ [0, 1], while the lower triangular
part stores the index of the membership function
where the maximum for Eq. 3 was achieved. In
this example, the “type” of the contact is either 1
(for short) or 2 (for long). When the maximum is
reached in two fuzzy sets, then the type assigned
corresponds to the leftmost one.

4 The Universal Similarity Metric

The similarity of two given fuzzy contact maps
is measured by means of the Universal Similarity
Metric (USM). This measure, introduced in [6]
and first used in protein structure comparison in
[5] approximates every possible similarity metric.
At the heart of the USM lies the concept of Kol-
mogorov Complexity K(.) of an object o, defined
as the length of the shortest program for a Uni-
versal Turing Machine U that is needed to output
o. Following [7] we have:

K(o) = min{|P |, P a program and U(P ) = o} (5)

A related measure is the conditional Kolmogorov

complexity of o1 given o2:

K(o1|o2) = min{|P |, P a program and U(P, o2) = o1}
(6)

Equation 6 measures how much information is
needed to produce object 1 if we knew object 2.
Then, the Information Distance between two ob-
jects, accordingly to [1], is equivalent (up to a
logarithmic additive term) to :

ID(o1, o2) = max{K(o1|o2), K(o2|o1)} (7)

The USM (as appears in [6]) is a proper metric,
universal and also normalized. It is defined as:

d(o1, o2) =
max{K(o1|o

∗

2
), K(o2|o

∗

1
)}

max{K(o1), K(o2)}
(8)

where o∗i indicates a shortest program for oi.

In our previous work [5], and following [7], each
contact map was represented as a string s and
K(s) was approximated by the size (i.e. number
of bytes) of the compressed string zip(s), that is,
K(s) ≈ |zip(s)|.

The term K(o1|o2) was calculated as K(o1 · o2)−
K(o2) where · denotes string concatenation and
K(.) was estimated as mentioned above.

In [5], we use the approximation proposed to com-
pute the similarities of standard protein’ contact
maps. In the next section, we compute the USM
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Figure 3: Definitions used to create the fuzzy contact maps.

based on generalized fuzzy contact maps to as-
sess the impact of the encoding in the resulting
clusters induced by USM.

5 Experiments and Results

In order to test the benefits of using fuzzy con-
tact maps and the universal similarity metric for
protein structure comparison, we use the Chew-
Kedem dataset [3] composed by 32 medium size
proteins grouped in 5 different families: globins
(1eca, 5mbn, 1hlb, 1hlm, 1babA, 1ithA, 1mba, 2hbg,

2lhb, 3sdhA, 1ash, 1flp, 1myt, 1lh2, 2vhb), alpha-
beta (1aa9, 1gnp, 6q21, 1ct9, 1qra, 5p21), tim-barrels

(6xia, 2mnr, 1chr, 4enl), all beta (1cd8, 1ci5, 1qa9,

1cdb, 1neu, 1qfo) and alpha (1cnp,1jhg). These are
extracted from the Protein Data Bank [4].

We constructed 6 different definitions for the
fuzzy contact maps (Fig. 3) to check how much
information a contact map should have to provide
good results. Then, we followed these steps:

1.- From each protein file in the dataset, extract
the first chain.
2.- For each chain and membership function def-
inition, produce a fuzzy contact map.
3.- For each pair of protein contact maps c1, c2,
compute d(c1, c2) using Eq. 8 to obtain the sim-
ilarity between them. The similarities are stored
in a matrix.
4.- Apply single linkage clustering over such ma-
trix.

The results obtained using this protocol, are
shown as dendrograms in Fig. 4. Each tree corre-
sponds to a particular similarity matrix obtained

using a particular definition of contact map. The
character between brackets, corresponds to the
definitions shown in Fig. 4, so the dendrogram
(a) corresponds to the clustering obtained using
crisp contact maps. To simplify the analysis, we
add a symbol at the right of a protein name, de-
noting the class where the protein belongs.

Interestingly, some common features arise in ev-
ery clustering. First, it seems to be easy to per-
form a good clustering of some classes, namely,
globins (denoted with ∼), alpha (+) and tim bar-
rels (#). The all beta class (∗) is the hardest one.
The class has six proteins and appears separated
in two groups in half of the trees (namely a,c,d),
having three proteins on each group.

The protein 1ct9, from the alpha-beta class (∧),
always appears within the tim-barrels group (#).

The simplest generalization, namely (b), allows to
obtain an almost perfect detection of the classes.
Just the protein 1ct9 is misclassified. This group-
ing can not be achieved with the standard model
of contact map.

The dendrogram (e), constructed from contact
maps that includes the definition of those used
in (b), also achieves an almost perfect clustering
but with different ordering than (b). The contact
maps produced by definition (e) has more infor-
mation than (b), because the matrix stores infor-
mation for every distance occurred, so there is no
entry with zero, neither in the membership values
nor in the contact types. Most of the values are
1, so it may happen that this novel information
can be compressed extremely well so it does not
deteriorate the results, as occurs in (d). In other
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words, the information gained by the righmost
fuzzy set of definition (e) is useless.

The dendrogram (f) is also interesting, because it
shows a perfect detection of classes #,∧ and ∗.
The two members of class + appears separated.
One of them, is put alone in one branch of the
tree, while the other is coupled within the ∗ class.

Definitions (c) and (f) differ on the type of mem-
bership functions used, although they cover the
same range of distances. The corresponding con-
tact maps are the same in terms of the type of
contacts, but the membership values differ. Such
values are greater when definition (f) is applied.
In turn, the changes on the fuzzy contact maps,
allowed to obtain better results with respect to
(c). In the former, just the class + appears sepa-
rated, while in the later, both + and ∗ are.

So, (not considering protein 1CT9), definitions
(a) and (c) leaded to trees where two classes ap-
peared separated. Definitions (d) and (f) divided
just one class, while the trees for definitions (b)
and (e) obtained a perfect recovering of all of
them.

6 Conclusions

In this contribution we focused on the protein
structure comparison problem, from the point of
view of fuzzy contact maps and the universal sim-
ilarity metric.

The results obtained show that even the simplest
generalization of the standard contact map, can
produce similarity values that in turn, allowed
to recover the class structure presented in the
dataset used.

Also, it seems clear that the shape of the mem-
bership function is relevant for the results. This is
clearly seen when Figs 4(c) and (f) are compared.

The approach proposed here works fast. Pro-
ducing the fuzzy contact maps from the corre-
sponding pre-calculated distance matrices, and
performing an all against all comparison (through
Eq. 8) took around 3 mins on a Pentium IV PC
(496 comparisons).

Now, we are focusing in the design and test of the
proposed approach on more challenging data sets.
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Figure 4: Clustering of the similarities values obtained using different definitions of fuzzy contact maps.
The letter between brackets, corresponds to the definitions shown in Fig. 3
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