
A Study on the Design Issues of Memetic Algorithm

Q. H. Nguyen, Y. S. Ong, and N. Krasnogor

Abstract— Over the recent years, there has been increasing
research activities made on improving the efficacy of Memetic
Algorithm (MA) for solving complex optimization problems.
Particularly, these efforts have revealed the success of MA on a
wide range of real world problems. MAs not only converge to
high quality solutions, but also search more efficiently than their
conventional counterparts. Despite the success and surge in
interests on MAs, there is still plenty of scope for furthering our
understanding on how and why synergy between population-
based and individual learning searchers would lead to successful
Memetic Algorithms. In this paper we outline several important
design issues of Memetic Algorithms and present a systematic
study on each. In particular, we conduct extensive experimental
studies on the impact of each individual design issue and their
relative impacts on memetic search performances by means of
three commonly used synthetic problems. From the empirical
studies obtained, we attempt to reveal the behaviors of several
MA variants to enhance our understandings on MAs.

I. INTRODUCTION

Modern stochastic algorithms such as evolutionary al-
gorithms (EA) draw inspiration from biological evolution.
EAs, unlike conventional numerical optimization methods,
produce new search points that do not use information about
the local slope of the objective function and are thus not
prone to stalling at local optima. Instead they involve a search
from a “population” of solutions; making use of competitive
selection, recombination and mutation operators to generate
new solutions which are biased towards better regions of
the search space. Further, they have shown considerable
potentials for solving optimization problems that are char-
acterized by non-convex, disjoint or noisy solution spaces.
Modern stochastic optimizers, which have attracted a great
deal of attention in recent years; include simulated annealing,
tabu search, genetic algorithms, evolutionary programming,
evolutionary strategies, differential evolution and many oth-
ers [1], [2], [3] and [4]. These stochastic methods have
been successfully applied to many real world optimization
problems.

Evolutionary algorithms are capable of exploring and
exploiting promising regions of the search space. They can,
however, take a relatively long time to locate the exact local
optimum in a region of convergence (and may sometimes
not find the optimum with sufficient precision). Most re-
cent global optimization algorithms are now designed to
achieve better exploration and exploitation using a combi-
nation of dedicated population based and individual learning
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searches. It has the potential of exploiting the complementary
advantages of EAs (generality, robustness, global search
efficiency), and problem-specific local search (exploiting
application-specific problem structure, rapid convergence to-
ward local minima). Such combinations of optimizers are
commonly known as hybrid methods. In diverse contexts,
hybrid EAs are also commonly known as Memetic Algo-
rithms (MAs), Baldwinian EAs, Lamarckian EAs, cultural
algorithms or genetic local search. Such methods have been
demonstrated to converge to high quality solutions more
efficiently than their conventional counterparts, [5], [6] and
[7]. Since we consider evolutionary algorithms that employ
individual learning heavily during the entire lifetime of the
search, the term Memetic Algorithms is most appropriately
used. Besides, the name of Memetic Algorithms is more
widely used now since it is believed to be more general and
encompasses all the major concepts involved in the others.

Over the recent years, many dedicated MAs have been
crafted to solve domain-specific problems more efficiently
[8], [9], [10], [11], [12] while a distinct group of researchers
has concentrated on the algorithmic aspect of MA as com-
binations of EAs with individual learning procedures [13],
[14], [15], [16], [17]. From a survey of the field, it is now
well established that potential algorithmic improvements can
be achieved by considering some important issues of MA
such as the choice of individual learning procedure or local
improvement procedure or meme to employ [18], [19], [20],
the frequency and intensity at which individual learning is
used [21], [22] including the subset of solutions on which
individual learning is applied.

In this paper, the aim is to provide a systematic study on
the design issues of MA so as to reveal the behaviors of MAs
and enhance the understandings on the search mechanism of
MA. The paper is organized as follows. Section II describes
several important design issues of Memetic Algorithms in
details. Section III introduces the experimental procedures
used in this study while Section IV presents and analyzes the
experimental results obtained from studies on the mechanism
of each design issue as well as their relative impacts on
memetic search performances using three commonly used
benchmark functions. Finally, Section V concludes this paper
with a brief summary.

II. MEMETIC ALGORITHM

Memetic Algorithms are population-based meta-heuristic
search methods inspired by both Darwinian principles of
natural evolution and Dawkins notion of a meme as a unit
of cultural evolution capable of individual learning. In a
more diverse context, MA can be defined as a synergy of



evolution and individual learning. The pseudo-code of a
Memetic Algorithm is outlined in Algorithm 1.

Algorithm 1 Memetic Algorithm
Initialize: Generate an initial population;
while Stopping conditions are not satisfied do

Evaluate all individuals in the population.
Evolve a new population using stochastic search opera-
tors.
Select the subset of individuals, Ωil, that should undergo
the individual improvement procedure.
for each individual in Ωil do

Perform individual learning using meme(s) with fre-
quency or probability of fil, for a period of til.
Proceed with Lamarckian or Baldwinian learning.

end for
end while

In order to locate the global optimum of a search prob-
lem accurately and efficiently under limited computational
budget, a good balance between exploration and exploitation
in the MA must be appropriately maintained throughout the
optimization search process. In what follows, we present a
brief overview on some of the core issues considered in the
literature. For the sake of conciseness, we use the following
definitions and notations throughout the rest of this paper:

Definition 1: Individual learning frequency, fil, defines
the proportion of an EA population that undergoes individual
learning. For instance, if po is the EA or MA population size,
the number of individuals in the population that undergoes
individual improvement is then fil × po.

Definition 2: Individual learning intensity, til, is the
amount of computational budget allocated to an iteration of
individual learning, i.e., the maximum computational budget
allowable for individual learning to expend on improving a
single solution.

Definition 3: The subset of individuals that should un-
dergo the individual learning procedure is denoted by Ωil,
where |Ωil| = fil × po.

The frequency and intensity of individual learning di-
rectly define the degree of evolution (exploration) against
individual learning (exploitation) in the MA search, given a
fixed limited computational budget. Clearly, a more intense
individual learning provides greater chance of convergence
to the local optima but limits the amount of evolution that
may be expended without incurring excessive computational
resources. Therefore, care should be taken when setting
these two parameters to balance the computational budget
allocated to the two objectives. If not all individuals of the
population undergo individual learning, it becomes necessary
to also consider which subset of individuals to improve so
as to maximize the utility of MA search. Last but not least,
the individual learning procedure/meme used also favors a
different neighborhood structure, hence the need to decide
which meme or memes to use for a given optimization
problem at hand.

III. EXPERIMENTAL PROCEDURE

In this section, we describe the experimental procedure
used to study the various design issues of MAs. To begin,
we investigate first the impacts of choice of population-
based and individual learning procedures used in creating
an MA. Among the candidate population-based approaches
considered here are i) Simple Genetic algorithm (GA) [2],
and ii) Differential Evolution (DE) [23] and iii) Evolutionary
Strategy (ES) [1]. For individual learning procedures or
memes, we consider the i) procedure of Davies, Swann,
and Campey with Gram-Schmidt orthogonalization (DSCG)
[24], ii) Broyden-Fletcher-Goldfarb-Shanno method (BFGS)
[25] and iii) Lagrangian interpolation strategy [24] which
are representatives of first and zeroth order exact individual
learning methods commonly found in the literature. Note that
we have a total of nine potential hybrid global-local search
combinations or MA variants.

In addition, we conduct experiments for various configura-
tions of til and fil where fil ∈ [0, 1] and til is some integer
value. Here, we limit til to the set {100, 200, 300, 400, 500}
in the present study. For each setting of til, we also exper-
imented for different values of fil at 0.1, 0.3, 0.5, 0.7, 0.9
and 1.0. Further, we examine the effects of three commonly
used schemes for selecting the subset of individuals, i.e., Ωil,
that will undergo individual learning.

In our study, three commonly used continuous paramet-
ric benchmark test problems already extensively discussed
in the literature are considered here to study the effects
of the diverse MA design issues and their configurations.
The benchmark problems used represent classes of Uni-
modal/Multimodal, Epistatic/Non-Epistatic test functions.

1) Sphere:
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i=1

x2
i (1)

Sphere is a smooth and unimodal function. Though it is not
a great challenge for most optimization methods in finding
the global optimum, Sphere poses as a useful benchmark for
evaluating the convergence speed of a search algorithm.

2) Ackley:
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Ackley function has a search landscape containing many
local optima with weak epistasis, which makes it difficult for
some approaches to optimize.



TABLE I
BENCHMARK FUNCTIONS USED IN THE STUDY

Func Range Characteristics
Epistasis Multi-modality

FSphere [−100, 100]30 no no
FAckley [−32, 32]30 yes yes

FWeierstrass [−0.5, 0.5]30 no yes

TABLE II
MA PARAMETERS SETTING

General parameters
Population-based methods GA, DE and ES
Individual learning procedures DSCG, Lagrange and BFGS
Stopping criteria 300, 000 evaluations or conver-

gence to global optimum
Population size 50

Genetic Algorithm parameters
Encoding scheme Real number
Selection scheme Roulette wheel
Crossover operator Two point crossover pc = 0.7
Mutation operator Gaussian mutation pm = 0.03

Differential Evolution parameters
Crossover probability pc = 0.9

Evolutionary Strategy parameters
Selection method µ + λ, µ = 50, λ = 100
Mutation operator Gaussian mutation

Individual Learning parameters
Individual learning intensity til 300

3) Weierstrass:

FWeierstrass =
n∑

i=1

(
kmax∑

k=0

[ak cos(2πbk(xi + 0.5))])

−D

n∑
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(
kmax∑

k=0

[ak cos(2πbk · 0.5)]) (3)

a = 0.5, b = 3, kmax = 20

The Weierstrass function also contains a large number
of local optima. Hence, first or second order individual
learning methods that operate the search based on gradient
information generally do not work well on this function due
to getting stuck at some local optimum.

For a pictorial view on the fitness landscape of the
benchmark functions, the readers are referred to the appendix
provided at the end of this paper. Note that here the land-
scapes of the search problems are also shifted so that the
global optima are not at the origin. This also avoids any
biased of the search algorithms on exploiting the symmetric
property of the benchmark functions. Table I summarizes
these functions with their notable characteristics. Note that
in this study, we consider the 30-dimensional version of the
benchmark functions.

IV. EMPIRICAL RESULTS

In this section, we present the experimental results of
various MAs in optimizing the three benchmark functions.
For the sake of brevity in our discussion, the numerical
results obtained are grouped as three subsections. In the
first subsection, the effects of different population based

and individual learning procedures are investigated. The
second subsection illustrates the effects of individual learning
frequency, fil and individual learning intensity til. Finally,
the last subsection considers the effects of individual subset
selection schemes used for selecting subset Ωil.

All results presented are the average of 25 independent
runs. Each run continues until the global optimum was found
(i.e., the fitness function error < 10−8) or a maximum of
300,000 function evaluations was reached. For each run, the
initial population is sampled randomly within the search
range. Table II summarizes the parameter settings of the
evolutionary algorithms and local optimizers used in this
study.

A. Impact of different Population-Based and Individual
Learning procedures on MA

We begin by presenting the results of diverse MA variants
with different population based and individual learning pro-
cedures. From a survey of the literature, it it worth noting
that among the three population based search candidates con-
sidered, Genetic Algorithm remains to be most extensively
used for forming MAs [19]. Hence it becomes common
for the term hybrid-GA to be used interchangeably with
Memetic Algorithm in many existing works. Recently, [26]
also considered the use of Differential Evolution as one of
the population based search method in MAs. Nevertheless,
to the best of our knowledge, a smaller number of papers
have dealt with the hybridization of evolutionary strategies
and local search.

The individual learning candidates used are representatives
of first and zeroth order exact individual learning methods
commonly found in the literature. BFGS is a Quasi-Newton
method, which determine the search directions based on
the first order derivation of the fitness functions. Lagrange
strategy, on the other hand, uses a second-order interpolation
to generate the search points, and generally works better if
the fitness surface is quadratic or closed to quadratic. Last but
not least, the DSCG approach executes a line search in each
dimension independently. This individual learning procedure
has been shown to work extremely well on search problems
having low epistasis.

Table III presents the optimization results of different mul-
tistart individual learning procedures on the benchmark func-
tions. These are used as base-line results with which other
MAs may be compared. The average number of evaluation
calls incurred by the different variants of MAs to converge at
the global optimum of the benchmark functions or the best
solution quality obtained are summarized in Figures 1-3. We
examine first the results in Figure 1 on the Sphere function.
On this function, it is observed that the BFGS procedure
outperforms the other two individual learning counterparts,
regardless of the population based method used to form
the MAs. The Sphere function is a convex, continuous and
unimodal function, hence the gradient vector at any decision
point would direct the search to the global minimum. Since
BFGS makes use of the gradient information in guiding its
search, it converges rapidly to the global optimum of the



TABLE III
OPTIMIZATION RESULTS OF MULTISTART INDIVIDUAL LEARNING ON

THE BENCHMARK PROBLEMS. FOR SPHERE FUNCTION, THE AVERAGE

NUMBER OF EVALUATIONS INCURRED BY THE ALGORITHMS IN

LOCATING THE GLOBAL OPTIMUM IS REPORTED INSTEAD.

Func MS-BFGS MS-DSCG MS-Lagrange
FSphere (95) (1300) (1147)
FAckley 19.3993 1.37624 2.2336

FWeierstrass 49.9721 13.6501 20.3064

Sphere function by simply moving in the negative gradient
direction. Hence its search performance is unaffected by the
choice of global method used and is capable of converging
to the global optimum regardless of the starting point used.
This also explains why the results obtained by a stochastic
multistart individual learning is competitive to those obtained
by MA.

We refer next to the search convergence performances of
the MAs on the Ackley function summarized in Figure 2.
Since Ackley is a multimodal function, the use of gradient
information in BFGS causes it to getting stuck at some local
optima hence the results obtained shows that all the MAs
employing BFGS as the individual learning procedure fails to
locate the global optimum successfully within the allocated
computational budget. On the other hand, the functional form
of the Ackley function can be easily approximated using a
second-order model. As a result, it can be observed in Figure
2 that by means of quadratic approximation, the Lagrange
method generally outperforms the other counterparts on Ack-
ley, regardless of the stochastic population based methods
used.

On the Weierstrass function, none of the MAs managed
to converge to the global optimum within the maximum
computational budget allowable. Hence, the best mean fitness
values attained by each MA across 25 runs are summarized
in Figure 3. The results also indicate that both the BFGS and
Lagrange interpolation individual learning procedures do not
fare well on this problem. We believe this is likely due to
a mismatch between the neighborhood search structures of
BFGS and Lagrange interpolation to the fitness landscape
of Weierstrass. DSCG, on the other hand, fares best on this
problem.

Further, from the results obtained, neither the population
based nor individual learning procedure nor a particular
synergy of MA display superiority on all the three problems
considered. However, it is worth noting that the choice of in-
dividual learning procedure appears to be the key of success
in the MA search. This greatly highlights the importance of
selecting suitable meme for the given optimization problem
at hand as discussed extensively in [18], [19]. Overall, DSCG
works generally better on all three problems considered; a
conclusion also obtained in [18] and [19]. The choice of
population based method in MA, on the other hand, appears
to have little significance on convergence speed and solution
quality for the three benchmark problem considered.
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Fig. 1. Search performance of different population based-individual
learning or global-local MAs on Sphere function
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Fig. 2. Search performance of different population based-individual
learning or global-local MAs on Ackley function
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Fig. 3. Search performance of different population based-individual
learning or global-local MAs on Weierstrass function



B. Impact of Individual Learning frequency and intensity on
MA

Based on the results presented in the previous subsection,
the MA based on a synergy of ES and DSCG or otherwise
labelled in this paper as ES-DSCG is observed to obtain
highest average ranking on the three benchmark functions.
As a result, we will consider the ES-DSCG for studying the
other design issues in the rest of this study.

In this subsection, we study the effects of individual learn-
ing intensity til and individual learning frequency fil on MA
search performance. til, defines the maximum computational
budget allowable to each individual learning procedure. fil,
on the other hand, defines the proportion of individuals in
each population that will undergo individual learning. Hence
for a fil configuration of 0.5, only half of the MA population
undergoes individual learning.

A larger value of til gives more computational budget
or greater emphasis on improving each individual chromo-
somes, thus leading to higher level of precision or accuracy
in the solution quality. Similarly, with large fil, i.e. fil → 1,
more individuals in the current population will have the
opportunity to undergo individual improvement, giving a
higher chance of reaching the local or global optimum.
In practice, however, the maximum computational budget
allowable for an MA search is often limited. Hence even
though more intense individual learning, i.e., a large til or
fil, provides greater chance of convergence to high precisions
at the local or global optimum, the amount of evolution that
may be expended without incurring excessive computational
resources becomes limited. As a result of the scarce compu-
tational resources available in practice, the MA could fail to
hit the region or basin where the global optimum lies before
the potential of individual learning could start to bite.

Figures 4 - 6 present the search performance of ES-DSCG
on the Sphere, Ackley and Weierstrass problems, for different
combinations of til and fil configurations, i.e., til ∈ {100,
200, 300, 400, 500} and fil ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.
Note that in the experiments conducted, only the elite (fil×
po) chromosomes of the current population will undergo
individual learning or individual learning improvement (po
is the MA population size). Figures 4 and 5 indicate that
all MAs converged to the global optimum of the Sphere
and Ackley problems, hence only the number of evaluations
incurred have been presented. On the Weierstrass problem,
none of the MA converged to the global optimum, thus the
average best fitness values obtained across 25 independent
runs are reported instead. From these figures, one can also
observed that all the MA variants investigated performs
poorly on small values of individual learning intensity, i.e.,
til = 100 or 200. Clearly, this is the result of lack of sufficient
computational budget provided for individual learning to
generate any positive impact on search.

On Sphere function, til at 300 evaluations looks sufficient
for generating the superior search performance among the
MAs. Any further increase in til actually results in detri-
mental effects on the MA search performances, see Figure

4. Further, it makes good sense that MA performs better with
a smaller fil since any starting point in the search space will
lead the MA to the global optimum, especially if sufficient
computational budget, til, is provided.

Next, we examine the design issue of MA on Ackley
function with Figure 5 reflecting the trade-off between til and
fil. When fil is large, i.e., approaches 1.0, MAs with til =
300 or 400 perform more efficiently over 500 evaluations.
In contrast, MAs at til = 500 fares better than those coun-
terparts with til = 300 or 400 and low fil configurations.
Clearly, this agrees with our earlier hypothesis that under
some given fixed computational budget, a good balance
between til and fil is necessary to ensure superior search
performance in the MA.

On the Weierstrass function, the results summarized in
Figure 6 indicate the trends of improving solution quality
with increasing individual learning intensity. On such a
problem, the results indicate that one should provide a large
individual learning intensity for maximum solution quality
and search efficiency. It is also worth noting that the fil = 0.5
works best over the range of different til which implies that
for complex problems, it may be appropriate to undergo
individual learning on half of the MA population.
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Fig. 4. Search performance of MA with different configurations of (fil,
til) on Sphere function

C. Impact of individual subset selection scheme, Ωil, on MA

In this section, we examine three schemes for selecting
the subset of chromosomes in the EA or MA that would
undergo individual learning. The “Random-walk” scheme
provides all chromosomes in each population equal chances
of undergoing individual learning. In contrast, the “best”
scheme assumes that fitter chromosomes have better chances
of converging to the global optimum. Last but not least, the
“stratified” scheme is a compromise between the two where
individual learning is only performed on individuals that are
regarded as unique. The uniqueness of individuals in a MA
population may be measured by various means and may



0.2
0.4

0.6
0.8

1

100

200

300

400

500

10
4

10
5

 

t
il

f
il

 

F
un

ct
io

n 
ev

al
ua

tio
n 

ca
lls

Fig. 5. Search performance of MA with different configurations of (fil,
til) on Ackley function
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Fig. 6. Search performance of MA with different configurations of (fil,
til) on Weierstrass function

be categorized into those means for genotype, phenotype or
fitness level. Here we considered uniqueness or the diversity
based on fitness values. Table IV provides a summary of
these schemes.

In studying the different selection schemes, we kept the
individual learning frequency fixed at 0.5 in the experiments,
i.e., half of the MA population undergoes individual learning.
On the other hand, we conduct further experiments for til =
200, 300 or 400 to study the relative impact of the selection
scheme and til on MA search performance.

Figures 7 - 9 summarize the search performance of the
MAs for various selection schemes on optimizing the bench-
mark problems. Figure 7 indicates that the stratified subset
selection scheme works best on the Sphere function. The
result appears to contradict our initial hypothesis that the
“best” scheme would perform superior over the other two
counterpart schemes since on the unimodal Sphere function

TABLE IV
CHROMOSOME SELECTION SCHEMES

Scheme Description
Random-
Walk(rand)

Chromosomes undergoing individual improve-
ment are randomly chosen from the current pop-
ulation using uniform sampling without replace-
ment

Stratified(strat) The population is sorted according to their fitness
values. Subsequently, the individuals are divided
into n equal range where n is the number of
individuals to be chosen to undergo individual
learning. Next, from each range, one individual
will be selected.

Best(best) The best n individuals will undergo individual
learning.

(Figure 10 in Appendix), every candidate solution should
converge precisely to global optimum if sufficient individual
learning intensity or computational budget is provided. Upon
greater analysis, it is realized that this is due to the search
structure of DSCG that does not exploit gradient information
in its search. Hence a starting point that is nearer to the
global optimum in a quadratic sense does not translate to
faster convergence in an MA based on ES-DSCG. On the
Weierstrass function, the results in Figure 9 display little
difference in performances for different selection schemes.
On the other hand, the “best” scheme significantly outper-
forms all others on the Ackley function, see Figure 8. Across
the three benchmark problems considered, the choice of
selection scheme in the MA appears to have greatest impact
on Ackley function. The results in the figures also indicate
that the selection scheme used has little impact on the relative
performances of the MA for different individual learning
intensities. Hence, the configuration of individual learning
intensity is generally unaffected by the choice of selection
scheme in the MA.
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V. CONCLUSIONS

In this paper we have discussed several important design
issues of Memetic Algorithms and presented the results
obtained from a systematic study on both the impact of
each individual design issue as well as their relative impact
on memetic search performances using three commonly
used benchmark functions. From the empirical results, we
analyzed the behaviors of MAs and discussed why some syn-
ergies of stochastic population-based and individual learning
optimizers led to successful Memetic Algorithms while some
did not. It was shown that the choice of suitable meme for
the given optimization problem at hand was more important
compared to the choice of population based search when
designing MA. The MA search performance is also greatly
affected by the configurations of individual learning intensity
and frequency. Further, a good balance between til and fil

must be maintained to ensure good efficiency in the MA

search algorithm, under some fixed computational budget.
In addition, it remains inconclusive which selection scheme
works best for a problem at hand. Nevertheless, both the
“stratified” and “best” scheme appeared to generate good
and robust MA search performances. Last but not least, the
configurations of individual learning intensity is generally
unaffected by the choice of selection scheme. Finally, it is
hoped that the present study would help to enhance the under-
standings on MA search and aid the research communities in
their design of successful MAs that are appropriate for new
problem domains.
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APPENDIX

3D plots of the two dimensional benchmark functions used
in the present study
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Fig. 10. 2-dimensional Sphere function
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Fig. 11. 2-dimensional Ackley function
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