
P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAutomated Self-Assembly Programming Q1

Paradigm: The Impact of Network Topology
Lin Li,∗ Jonathan M Garibaldi,† Natalio Krasnogor‡

ASAP Group, School of Computer Science and Information Technology,
Univeristy of Nottingham, Nottingham, NG8 1BB, UK

In our previous work Li et al., in Proc of 3rd IEEE Int Workshop on Engineering of Automatic
& Automation Systems, Potsdam, Germany, 2006, pp 25–34; Li et al., in Proc Workshop on
Nature Inspired Cooperative Strategies for Optimization, Granada, Spain, 2006, pp 123–134,
we introduced automated self-assembly programming paradigm (ASAP2) using unguided self-
assembly and swarm-inspired methodologies. We investigated how external environment settings
affect software self-assembly speed and diversity of the generated programs. In this paper, we
extend our previous work with a diversified compartments approach based on general graphs.
This diversified compartments approach is integrated into a network structure such that each
compartment can be seen as a node in the network. We investigate how structures of the network
impacts on software self-assembly speed, complexity, and diversity of generated programs. Results
indicate that network structure can substantially affect the dynamics, diversity, and complexity of
generated programs. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

Self-assembly is a ubiquitous process in nature in which a disordered set of

Q2

components autonomously assembles into a complex and more ordered structure.
Components interact with each other without the presence of central control or exter-
nal intervention. The information on how to assemble the final products is implicitly
encoded on the way components interact with each other, and this interactions are
embodied in the structures and properties of the individual components and the
environment where they live in. Hence, the design of individual components and
their environment are the key for successful control of self-assembling systems. One
popular example of self-assembly is that of amphiphilic molecules. These are com-
posed of two ends with opposite properties: the Hydrophilic heads tend to be close
to small water molecules, whereas hydrophobic ends tend to repel water molecules
and be close to similar chains. As is shown is Figure 1, the circle-shaped ends are

∗Author to whom all correspondence should be addressed: e-mail: lxl@cs.nott.ac.uk.
†e-mail: jmg@cs.nott.ac.uk.
‡e-mail: nxk@cs.nott.ac.uk.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 00, 1–25 (2009)
C© 2009 Wiley Periodicals, Inc. Published online in Wiley InterScience
(www.interscience.wiley.com). • DOI 10.1002/int.20361

nxk

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof2 LI, GARIBALDI, AND KRASNOGOR

Figure 1. (a) Micelle structure and (b) bilayer structure formed by amphiphilic molecules when
they are placed into water.

hydrophilic heads and the tails are hydrophobic heads. As a result, various structures
can be self-assembled when amphiphilic molecules are placed into water, like for
example lipid membrane, giant vesicles, micelles, bilayers, and so on.1−4Q3

Self-assembly systems are regarded as being robust and versatile.5 These two
features come from the fact that self-assembly involves the utilization of a poten-
tially large, perhaps simple, set of components where only some will be involved
in constructing the final structure. Self-assembly systems are versatile because a
given structure can be achieved using different configurations of components. Self-
assembly systems are also considered to be robust because if a certain part of the
system fails, other components can be used to replace the failed part as to ensure
the functionality and integrity of the system as a whole.

Self-assembly plays an important role in nature not least in its purported role in
the origin of life. There are strong arguments claiming that life originated from inan-
imate matter through a spontaneous and gradual increase of molecular complexity.6

One such model that seeks to explain the origin of life is called the compartmental-
istic approach. The main concept behind this approach is the fact that known life
forms are based on cells, i.e., closed compartments that can keep inside a running
metabolism and information polymers.a The main function of life can be seen as an
interaction between the compartment and the external medium realized by the flux of
information and material exchanged through the boundaries of compartments. The
compartmentalistic approach is reinforced by the fact that molecules of prebiotic
origin are thought to have self-assembled and formed cell-like compartments as the
micelle shown in Figure 1. It has been argued6−8 that cell-like compartments were
the essential building blocks for early life forms. That is self-assembly, and more
generally, self-organization was a prerequisite for evolution by natural selection.

Inspired by natural self-assembly and the compartmentalistic approach on the
origin of life, we are taking a step back from the investigation of automatic program
synthesis by evolutionary methods such as GP,9,10 or grammatical evolution11 to
study the role that self-assembly could have in the automatic synthesis of program
parse trees. Hence, rather than using an evolutionary approach, we intend to focus
on software self-assembly instead. We focus on self-assembly for the automated
construction of programs structures rather than evolution of programs functionality,
which clearly is the ultimate and more difficult goal. In this paper we focus on
generating diversity of structure as a precursor for novel functionality because it is
widely believed in nature structure precedes function. Although genetic program-
ming and other evolutionary methods are amongst the most popular methodologies

aA virus does not have metabolism.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 3

for automated program synthesis12 and having been applied to a wide range of
problem domains (e.g., Refs. 13–16), we seek to answer whether self-assembly can
provide any complementarities and insights to automated software synthesis. Thus
our aim is not to replace genetic programming, but to complement it. Software self-
assembly can be seen as a “bottom-up” manufacturing methodology as opposed to
traditional software engineering techniques.

In our previous work, we presented automated self-assembly programming
paradigm (ASAP2). ASAP2 is a software self-assembly system in which manually
decomposed software components move and interact with each other in a confined
space and eventually self-assemble into programs. The ASAP2 could have an impact
on our understanding of self-healing17 and self-reconfigurable18 software. ASAP2

uses manually deconstructed manmade software rather than initializing the system
with random software (partial) parse tress as usually done in GP because we are
interested in understanding ASAP2 based on real software, i.e. software as it is rather
than as it could be. We previously introduced unguided software self-assembly in
Ref. 19. We extended the model and introduced a PSO-inspired approach in Ref. 20
in an attempt to shorten the so-called “time to equilibrium.” We investigated how
different factors can affect the course of self-assembly and the diversity of the
generated systems in both methodologies. This previous work is detailed in the
following sections.

In this paper, we extend this work by introducing diversified population struc-
tures, that is, compartments and connections among them. The population structure
is represented by embedding compartments in a graph in which software self-
assembly takes place simultaneously in each compartment. Each vertex represents
a compartment, and components can freely move to a neighboring compartment
that is connected by an edge, thus enabling software components exchange between
compartments. We systematically investigate a range of graph topologies covering
simple reticular structures, to small world networks, to fully random ones. The idea
behind this work is the compartmentalistic view of the origin of life, and we are
interested in how different topologies and average interconnection distances within
the network can have an influence (if any) on the software self-assembly process,
along with the resulting complexity and diversity of the generated programs. In
addition, a network structure allow us to abstract the “internet” and study ASAP2 as
a phenomena of mobile code in the Web/grid.

This paper is organized as follows. In Section 2, we introduce the ASAP2 model
and give brief review of our previous experimental results. In Section 3, we discuss
the motivation of our current work and describe our extended system together with
the graph models it is based on. We explain how the experiments are conducted and
present results in Section 4. Finally, Section 5 presents conclusions and future work.

2. PREVIOUS WORK ON AUTOMATED SELF-ASSEMBLY
PROGRAMMING PARADIGM

In Ref. 19, we presented ASAP2, a software self-assembly system that automat-
ically generated programs from a set of manually provided software components.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof4 LI, GARIBALDI, AND KRASNOGOR

A program can be represented by a parsing tree, and a software component can be
an arbitrary node on this parsing tree. Software components contained ports to play
the role of binding sites. Ports can be divided into two classes with a corresponding
data type associated: input ports and output ports. A software component can have
only one input port but can contain an arbitrary number of output ports. Those
components with no output ports are the leaf nodes in its parsing tree representa-
tion. We also assume that an input port can only connect to an output port with the
same data type. This type constraint was designed to ensure valid and meaningful
configurations.

In ASAP2, software self-assembly starts by placing all software components
retrieved from a given software repository into a pool within which they move
randomly. When a component senses another component within a Euclidean distance
dδ and their types match, they self-assemble into a bigger aggregate structure.
However, if no bindings can be formed, the two components will repel each other.
This notion is formalized in Algorithm 1.

Algorithm 1 binding algorithm: dδ is a threshold distance for components to bind,
and µi indicates displacement of component ci

1: for (every pair of components c1 and c2 in the component set SA) do
2: if (distance (c1, c2) ≤ dδ) then
3: success = attemptBind(c1, c2)
4: if (success == true) then
5: add assembled component to the set SA and delete c1, c2.
6: else
7: c1.move(currentLocation, µ1)
8: c2.move(currentLocation, µ2)
9: end if

10: end if
11: end for

Figure 2a shows an early stage of software self-assembly in which simple
partial structures have assembled. Figure 2b shows a latter stage in which more
complex program trees have emerged. The simulation was deemed to have reached
an equilibrium when no more binding actions could occur between the remaining
components in the pool.

Particle swarm intelligence (PSO) is a population-based search algorithm in
which each individual represents a solution.21 PSO is similar to software self-
assembly in a way that each individual in the population is an autonomous agent
that has a velocity and follows simple rules. However, high-level behaviors emerge
by those agents as a group as in real particle swarm. In Refs. 22–24, components
follow leaders that exhibit higher fitness value, and particles determine and change
their neighbors dynamically according to the distances in each generation.

In Ref. 20, we extended our work19 by introducing dynamic leader and neigh-
borhood during a software self-assembly process. When components were first

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 5

Figure 2. (a) Early stage of software self-assembly. (b) Latter stage of software self-assembly.

placed into the pool, leaders are randomly selected from the component set based on
a fixed proportion. If a nonleading component was within a distance threshold (Dα)
to a leader, it followed the leader component. Leader components or those compo-
nents that do not have a leader perform Brownian motion as they do in Ref. 19 until
a leader appears in its neighborhood. When a certain component binds with a leader
component, the self-assembled structure also becomes a leader.

If more than one leader is within the threshold range (dα) of a nonleading
component, there needs to be a way to decide which leader to follow. To do that, we
introduced attractive force of a leader component. Nonleader components followed
a leader component containing the greatest attractive force. In this way, a nonleader
component may change its leader dynamically in a self-assembly process. The
objective was to shorten the time to equilibrium for the system and observe how
diversity of the generated populations was affected. Attractive force of a leader
component was determined by the number of available ports it contained and the
distance to its following component. Hence if a component found two identical
leader components within Dα , it followed the closer one.

2.1. Summary of Previous Results

We were interested in seeing whether we could control the result of software
self-assembly in terms of time to equilibrium and diversity of generated programs
at equilibrium. Time to equilibrium (tε) records how long it takes the system to
reach equilibrium. Dε is used to assess the diversity of the emergent parse trees.
For measuring diversity we recorded the total number of assembled tree classes, we
considered that two trees belong to the same parse tree class if both their structures
and content are identical.25 We introduced the following environment parameters
to manipulate the behavior of individual components and the environment they
are living in temperature (T), area (A), and number of copies (N) placed into the
pool. These environment parameters affect the software self-assembly process in the
following ways: (1) Software components move faster with a higher temperature.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof6 LI, GARIBALDI, AND KRASNOGOR

Figure 3. Relationship between (a) time to equilibrium and temperature (A = 3.6 × 105) and
(b) time to equilibrium and area (T = 2.0) with different number of copies of components.

(2) A pool with a smaller size exhibits a greater density. (3) With more copies of
components placed into the search pool, greater diversity can be achieved. However,
it is important to note that the diversity of the generated programs is not only a
function of the total number of components but it is also dependent on their relative
concentrations. That is, Dε will be lower from a system starting with a large number
of similar components than one with same number of greatly diversed components.

Experimental results shown in Figures 3a and 3b illustrate how tε was affected
by area (A), temperature (T), respectively, with unguided dynamics. It can be seen
that time to equilibrium decreases as temperature increases. This is because as
components move faster to explore more areas in the pool, it is more likely for them
to form valid bindings. Second, it takes longer for the system to reach equilibrium
with a larger pool because the level of concentration in the pool decreases. Moreover,
an interesting point to note here is that with more components in the pool, it takes
less time for the system to reach equilibrium. This is because when there are more
components in a fixed confined space, it is easier for components to find another
component to bind with.

Figure 4. Using unguided self-assembly: (a) relationship between total different tree classes and
number of copies (A = 3.6 · 105). (b) relationship between total number of different tree classes
and number of copies (T = 2.0).

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 7

Figure 5. Relationship between (a) time to equilibrium and temperature (A = 3.61̇05) (b) time
to equilibrium and area (T = 2.0) with different number of copies of components.

The experimental results from Ref. 19 in Figure 4 illustrate that the number
of copies of components placed into the pool is the primary factor that influence
the diversity of generated programs. As more components are placed into the pool,
self-assembly system yields more diversity of the generated programs.

In Ref. 20, PSO-based methodology was used to guide the process of software
self-assembly, rather than the unguided dynamics used in Ref. 19. The same set of
experiments in Ref. 20 was performed as in Ref. 19. Figure 5 shows a faster time to
equilibrium is achieved. However, temperature (T) and area (A) no longer played an
important role in tε. The presence of leaders resulted in a less diversified population
as shown in Fig. 6. It can be seen, however, that Dε was influenced by the same Q4
factors in similar ways.

2.2. Prediction Models

We presented prediction models in Ref. 20 to interpolate tε and Dε with
(A, T , N) for software self-assembly with unguided dynamics. The following for-
mulae were produced to predict tε having one of the three free environment param-
eters fixed to a prespecified value (T = 2.0, N = 8, A = 360, respectively):

Figure 6. Software self-assembly with leaders: (a) relationship between total tree classes and
number of copies in different temperature settings; (b) relationship between total tree classes and
number of copies in different area settings.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof8 LI, GARIBALDI, AND KRASNOGOR

Figure 7. Prediction model assessment on (a) time to equilibrium with T = 2.0 (b) time to
equilibrium with N = 8 (c) time to equilibrium with A = 3.6 · 105 (d) diversity of the generated
programs with A = 3.6 · 105, T = 0.25. Triangles (!) represent experimental data, and circles
(•) represent the corresponding data obtained from our predictive model.

As has been shown in Figure 4, diversity of self-assembled programs was
not mainly affected by temperature neither by area of the pool. Hence, we con-
cluded Equation 4 to predict program diversity in relation to number of copies of
components only.

tε(A, N) = (7.05 × A) + 321.2
N

+ (3.91 × A) − 593.71 (1)

tε(A, T) = (5.21672 × A) − 659.015
T

+ (3.7274 × A) − 416.114 (2)

tε(T , N) =
(

1
T

+ 1
)

×
(

1726
N

+ 637.325
)

(3)

Dε(N) = 15 × N + 16.6 (4)

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 9

Table I. Error statistics for predictive model on ASAP2.

Equation Category Average error rate Standard deviation

1 A = 160 0.208 0.148
A = 250 0.425 0.525
A = 360 0.389 0.473
A = 490 0.261 0.374

2 A = 160 0.242 0.145
A = 250 0.152 0.146
A = 360 0.192 0.098
A = 490 0.097 0.090

3 N = 1 0.106 0.106
N = 2 0.129 0.089
N = 3 0.181 0.108
N = 4 0.263 0.095
N = 8 0.224 0.144

N = 16 0.219 0.189
N = 24 0.733 0.207
N = 32 1.190 0.521

4 N/A 0.039 0.010

Figure 7 shows the comparison between the predicted results and the obtained
experimental data, in which Figures 7a, 7b, 7c, and 7d correspond to Equations 1, 2,
3 and 4, respectively. The comparison suggests that the predictive model was fairly
accurate as experimental data follow the same trend as predicted by the formulae.
To the best of our knowledge, similar predictive capacity has not yet been achieved
in GP.

With a lower area setting in Equations 1 and 2, the equations predicted more
accurately with a smaller average error rate. Table I also shows a smaller average
error rate for the predicted Dε using Equation 4, which means the prediction agreed
quite well with the experimental results.

3. THE IMPACT OF TOPOLOGICAL NETWORKS

3.1. Motivation

The compartmentalistic theory on the origin of life argues that compartment
structures form spontaneously through self-assembly processes, and perhaps pro-
vided the original membrane-bounded environment required for cellular life to
begin.7,8 The importance of compartment structure lies in the fact that information
and materials can be exchanged through its border. Although the previous work on
ASAP2 resembles this compartmentalistic approach such that self-assembly takes
place in a confined area, no information exchange occurs from the inside to the
outside of compartments. In this paper, we include this important aspect of com-
partmentalistic approach by introducing a general graph structure of compartments
within which software self-assembly takes place. In this graph structure, each vertex
represents a compartment and software components at the border of a compartment
have the choice to move to another compartment through a connecting edge.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof10 LI, GARIBALDI, AND KRASNOGOR

The graph model we use for our system is called β-graph, which is originated in
one of the graph models that Watts26 proposed to analyze small world phenomena.
The question Watts tries to answer can be briefly explained as: What are the most
general conditions under which the elements of a large, sparsely connect network
will be “close” to each other. The closeness of vertices is determined by the length
property of the graph, which has been an active research area and been studied on
different problem classes, for example, the performance of computer networks,27

telecommunication network,28 etc.29 Characteristic path length (abbreviated as CPL
in the remaining of this paper) is one of the most important statistics used to measure
the shortest distance between each vertex (i, j) in a graph. The formal definition of
CPL is given in Ref. 26 as “The characteristic path length (CPL) of a graph (G) is the
median of the means of the shortest path lengths connecting each vertex v ∈ V (G)
to all other vertices. That is, calculate d(v, j) ∀ V (G) and find d̄v for each v. Then
define L as the median of {d̄v}.”

Based on β-graphs, we seek to answer what impact, if any, closeness between
compartments and the neighborhood structure of the graph have on the process and
results of software self-assembly. The length properties of the graph is measured
by CPL, and the neighborhood structure is measured by the clustering coefficient
(abbreviated as CC in the remaining of this paper) of the graph, the definition of
which is given in Ref. 26 as “The CC γv of &v characterises the extent to which
vertices adjacent to any vertex v are adjacent to each other. More specifically,

γv = |E(&v)|
(
kv

2

)

where |E(&v)| is the number of edges in the neighbourhood of v and
(
kv

2

)
is the total

number of possible edges. The CC of G is γ = γv averaged over all v ∈ V (G).”
Solé30 has investigated self-organized network traffic flow in a simple lattice

architecture. Our work is also inspired by this approach in which the graph topology
is used as a model of the network. The general graph model that we deploy for
ASAP2 can also be regarded as representatives of various network topologies on
a LAN, the Internet or grid infrastructure, where each vertex in the graph is an
individual computer and the edges represent direct telecommunication links. Hence
software self-assembly can happen anywhere in the network.

Farley31 presented a similar approach with the goal of investigating how fitness
and diversity of genes within an evolutionary algorithm can be affected by different
population structure. Farley uses specific graphs (i.e., string, ring, and various tree
topology) as population structures. Moreover, each individual resides at a vertex of
the graph and could only choose a mating partner from among its neighbors in the
graph.

3.2. Our Implementation

We use β-graphs to study software self-assembly based on the following re-
strictions on the generated graphs. First, to study meaningful configurations, the
graph is assumed to be simple, meaning that multiple edges between the same pair

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 11

of vertices or edges connecting a vertex to itself are forbidden. Second, the graph
has to be connected such that a unique global equilibrium will eventually be reached
for software self-assembly. Furthermore, software components can flow in and out
of any vertex in a graph. Hence, the graph is assumed to be undirected. Finally, the
graph is unweighted because we are merely taking into account the relation between
vertices on the graphs and the connections themselves, while ignoring constraints
such as distances between vertices or link capacity.

β-graphs capture a variety of network topologies from a highly ordered to a
completely random graph. Three parameters are used to define the properties of
graphs generated under the β-graph model.

• v: the number of vertex in the graph. Each vertex represents a compartment.
• k: determines how many initial nearest neighbors each vertex has.
• β: a probability value determining the “rewiring rate.”

With the parameters mentioned above defining the properties of graphs, β-
model starts with a perfect ring structure, in which each vertex has precisely
k-neighbors (k/2 on either side, and hence we restrict k to be an even number).
Given a prespecified probability value β, the algorithm then randomly rewires the
edges of the ring using the following algorithm: (1) Each vertex i is chosen in turn,
along with the edge that connects it to its nearest neighbor in a clockwise fashion.
(2) A random deviator γ is generated. If γ < β, then (i, i + 1) is deleted and rewired
such that i is connected to another vertex j , which is chosen randomly from the
entire graph (excluding self-connection and repeated connections). Otherwise, the
connection is unaltered. (3) After all vertices have been considered once, the pro-
cedure is repeated for edges that connects each vertex to its next nearest neighbor,
i.e., (i, i + 2), until all edges have been considered for rewiring once.

Figure 8 shows some β-graphs constructed in this fashion with v = 20, k = 4,
and β ∈ {0.0, 0.2, 0.6, 1.0}. On one extreme, β is set to 0 and the original structure
is unaltered. Hence a highly ordered structure is constructed as shown in Figure 8a.
On the other extreme, with β = 1.0, a stochastic graph with all edges rewired is
produced as shown in Figure 8d. Hence, β-graphs can be gradually transformed from
ordered graphs to random graphs with increasing β value. As Figure 8 suggests, the
properties of randomness and order is controlled by this single parameter β.

We use unguided dynamics in this work so that components move randomly in
each pool and interact with each other as in Ref. 19. That is, software components
perform Brownian motion in the compartment where they “live” in. Our previous
work has suggested that the environment has more obvious impacts on software self-
assembly with unguided dynamics than with swarm-based methodology. Although
software self-assembly with leaders improves the speed to reach equilibrium to some
extent, we are more interested in how the graph structure and properties can have
impacts on complexity and diversity of software self-assembly generated programs,
which are more favored by unguided rather than swarm realizations.

With the generated β-graphs, software components are distributed evenly in
each compartment. If two compartments are directly connected via an edge, this pair
of compartments is identified as neighboring compartments. When a component hits

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof12 LI, GARIBALDI, AND KRASNOGOR

Figure 8. Exemplar β-graphs with v = 20, k = 4, β ∈ {0.0, 0.2, 0.6, 1.0}.

a border, it will be randomly transferred to one of its neighboring compartment with
equal probability. The simulation finishes when there are no more possible binding
actions between the remaining self-assembled trees in the whole graph network.
That is, global equilibrium on the network rather than local equilibrium of each
compartment is the terminating condition for our simulations.b

The compartmentalistic approach introduces local gradients of software com-
ponents concentrations. As studied in previous work,19,20 a smaller compartment
might exhibit a greater concentrations of key components than a larger compart-
ment. We introduce equal probability for components to migrate into a neighbor
compartment and all compartments in the network have equal size.

3.3. Graph Properties

Watt investigated in Ref. 26 how length and clustering properties, i.e., CPL and
CC, are affected by β under fixed k and v value. Figure 9 illustrates the relationship

bPlease note that global equilibrium of the complete graph implies equilibrium at local level.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 13

Figure 9. Relationship between CPL and β, k with (a) k = 2, (b) k = 4, (c) k = 6, and
(d) k = 8.

that exists between CPL of a graph and the parameters (β, k, v) used to construct it.
It can be seen from the figures that CPL of a graph decreases with a higher β value.
Hence, a graph with more ordered structure results in a greater average length than
a random graph does. The transition of CPL value occurs when β is greater than
0.01 regardless of k. In addition, the decrease in CPL value against β becomes more
obvious with a larger graph, i.e. a greater v value. Moreover, CPL increases with a
larger graph as Figure 9 suggests. Finally, CPL decreases when k value increases.
The reason is rather straightforward, a graph with more vertices connected before
β-model rewires connections exhibit shorter average length property of the graph.

Hence, it can be concluded that in general, a β-graph starting with higher k, β,
and lower v value will result in a graph with lower average graph length. On the
contrary, a graph with high CPL value has a greatest probability of being the result
of a low k, β, or high v value.

Figure 10 illustrates the relationship between CC and the three graph parameters
(β, k, v). It can be seen that CC behave dramatically different under different k. When
k ∈ 4, 6, 8, it can be seen that the CC decreases as β increases. The decrease in CC
becomes more significant and obvious with a higher v. In addition, CC increases as
k increases. This means when k ∈ 4, 6, 8, a β-graph starting with a higher k, v and
β value is more clustered than those constructed with a lower k, v and β value. On
the contrary, when k equals to 2, CC increases as β increases, and number of vertices
in the graph does not have an obvious impact on CC. The relationship between β

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof14 LI, GARIBALDI, AND KRASNOGOR

Figure 10. Relationship between CC and β, k with (a) k = 2, (b) k = 4, (c) k = 6, (d) k = 8.

and CC is shown as a parabola under k = 2. Hence, when k is set to 2, a β-graph
constructed under high β value is more clustered than those constructed under a low
β value.

4. EXPERIMENT

4.1. Methods

Based on the knowledge of how (β, k, v) influence the characteristic path length
and clustering properties of a graph, we aim to find out the relationship between
CPL, CC, number of components (N), time to equilibrium (tε), diversity (Dε), and
complexity of the generated programs at equilibrium.

Our previous work has shown how external environment parameters can in-
fluence the software self-assembly process. Because we are working on the graph
topology and its influence on software self-assembly, we fix the previously intro-
duced parameter as temperature (T) to be 2.25, as this is the median temperature
value we used in our previous work.19,20 The total area (A) is 5000 × 5000, which
is 10 times the size we used before. The total area (A) in our simulation is constant
regardless of the number of compartments. The size of each compartment (Ai) is in-
versely proportional to the total number of compartments involved in the graph, i.e.,
Ai = A/v. Hence, the size of each compartment decreases and the software com-
ponents concentration in the compartment could increase with more compartments

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 15

involved added to the network. However, note that for the V values used in our
experiments the size of Ai is never smaller than that used in Refs. 19 and 20.

Since a particular β-graph is constructed by rewiring edges in a stochastic
fashion, each (β, k, v) triplet represents a family of graphs for which an average
CPL and CC must be computed. We construct five graphs in each (β, k, v) triplet,
with different number of copies (N) placed into each graph and run 20 replicas.
The ranges for k, v, N are k ∈ {2, 4, 6, 8}, v ∈ {10, 15, 20, 25, 30, 35}, and N ∈
{10, 25, 40, 55, 70, 85, 100}. As Watts26 suggests, a significant transition in CPL
and CC occurs when β ranges from 0.0001 to 0.1. Hence, we set β in a detailed full
scale, i.e., β ∈ {0, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. That is, we run
a total of 151,200 experiments. The average of time to equilibrium, diversity, and
complexity is calculated for each run. The complexity of a program is measured by
the height and number of nodes contained in its tree representation.

4.2. Results

4.2.1. Time to Equilibrium Analysis

Figures 11 and 12 show for different number of copies of components how
time to equilibrium (tε) is influenced by CPL and CC, respectively. Most β-graph
constructed have CPL value less than 4 and CC ranging from 0.2 to 0.6 as indicated
in Figures 11 and 12. We wish to see how software self-assembly with multiple com-
partment structures differs from software self-assembly with single compartment.
To do that, we compared the experimental results with predicted tε using Equations
1 and 2 for a single compartment structure. Each prediction data uses the same
parameter settings {β, k, v} as the corresponding experimental data. In one case, we
set the area (A) in Equations 1 and 2 to be the total area of the compartments in
the network. The predicted results are shown as empty square and empty diamonds
for Equations 1 and 2, respectively. Figure 11 illustrates the predictive outcome
differ slightly between Equations 1 and 2. Moreover, as CPL increases, tε gradually
becomes lower than the corresponding predicted results.

In another case, we set the area (A) deployed in Equations 1 and 2 to be the
size of each subcompartments in the network, that is Ai = A/V . The predicted
results from Equations 1 and 2 are indicated in Figure 11 as black square and black
diamonds, respectively. It can be seen that the predicted results of Equations 1 and
2 are similar. The corresponding scattered points are situated at the bottom of the
figures, showing a faster time to equilibrium is expected using a single compartment
structure with (Ai = A/V).

Comparing across panels in Figure 11, we can see that tε decreases significantly
from 1.2 × 106 to 3.5 × 105 as more components are placed into the network. This
behavior is similar to the single compartment approach.19

Figures 11a and 11b also show that for N = 10, N = 25, tε increases to max-
imum when CPL approaches 4, and then decreases for values greater than 4. On
the other hand, Figures 11c–11g indicate that tε on average decreases with larger
CPL. The decrease on tε is counterintuitive as it suggests that a network with longer
average path length results in faster software self-assembly. This phenomenon is

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof16 LI, GARIBALDI, AND KRASNOGOR

Figure 11. Relation between time to equilibrium and CPL for runs with (a) N = 10, (b) N = 25,
(c) N = 40, (d) N = 55, (e) N = 70, (f) N = 85, and (g) N = 100. Comparisons are made
between the experimental data and predicted time to equilibrium using Equation 1 (squares) and
Equation 2 (circles) under the same environment parameters of the experimental data, i.e., using
the same temperature (T = 2.25) and area (A = 5000 × 5000, Ai = 5000 × 5000/V).

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 17

Figure 12. Relation between time to equilibrium and CC for runs with (a) N = 10, (b) N = 25,
(c) N = 40, (d) N = 55, (e) N = 70, (f) N = 85, and (g) N = 100. Comparisons are made
between the experimental data and predicted time to equilibrium using Equation 1 (squares) and
Equation 2 (circles) under the same environment parameters of the experimental data as before.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof18 LI, GARIBALDI, AND KRASNOGOR

Figure 13. Relationship between Dε and number of copies and CPL.

possibly due to the decrease in the size of the subcompartments in the network.
As the total area is fixed to 5000 × 5000 in our experiments, a larger network with
greater V will have smaller individual compartment size and hence have a higher
pressure and concentration. As the results in Ref. 18 suggests, higher pressure leads
to a smaller tε. Hence, software components find possible binding components faster
in local compartments.

Figure 12 shows how tε is influenced by the clustering features of the graphs.
It can be seen that tε increases to maximum while CC approaches 0.5 regardless
of N . In addition, Figure 12 suggests that tε is higher than the predicted results
with area equals to the size of subcompartments, i.e., Ai = A/V . However, when
area deployed in Equations 1 and 2 is the size of the total area in the network, tε
gradually increases and eventually exceeds the predicted data as CC increases from
0 to 0.6.

4.2.2. Diversity Analysis

Figure 13 illustrates how CPL and number of copies of components affect the
diversity of the generated programs. As can be seen, the total number of assembled
tree classes rises with more copies of components placed into the system. In addition,
fluctuations occur in the number of total distinct assembled tree classes when CPL
value ranges from 2 to 4, and the fluctuation is more obvious with a greater N .

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 19

Figure 14. Relationship between Dε and number of copies and CC.

Figure 14 shows how CC and number of copies of components affect the diver-
sity of the generated programs. The fluctuations in the number of total assembled
trees occur under all number of copies of components. However, under a greater
number of copies, the fluctuations become more obvious (when CC ranges from 0.5
to 0.8) than under a small number of copies.

4.2.3. Analysis of Emerging Complexity

As has been mentioned, complexity of a program tree is measured by its
height, hε, and number of nodes it contains, nε, at equilibrium. Figure 15 shows
the histograms of number of assembled trees versus complexity bins for different
number of copies. For each copy number, we differentiate graphs based on their
CPL and CC. In Figure 15, we can see that there is an exponentially larger number
of simple, small trees than complex and large ones. Figure 15 shows that in general
a smaller CPL value results in a greater nε. Therefore, a sparsely connected network
structure yields less complex programs than a densely connected network. Moreover,
with a larger number of copies placed into the system, the rate of growth on nε

increases; nε grows linearly with the increase in the number of copies. This result
matches the diversity analysis, where the total number of distinct assembled trees
increases with number of copies in a linear way. Figure 16 illustrates that hε behaves
similarly yet not identical to nε. The only difference is that the rate of growth in
number of assembled trees is greater with hε than with nε.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof20 LI, GARIBALDI, AND KRASNOGOR

Figure 15. Histogram of average number of trees assembled in different nodes bin size and in
different CPL categories.

Figures 17 and 18 show the histograms for generated programs as a function of
CC of the network along with number of copies of components. The figures suggest
that the number of simple and small trees is exponentially larger than the number
of complex and large ones. In addition, it can be seen that the smallest and greatest
CC value results in the greatest complexity (nε and hε).

4.2.4. ANOVA Analysis

We perform an ANOVA analysis to assess whether the number of assembled
trees varies significantly for different CC and CPL. This was done for each copy
number. The computed p-value from the ANOVA test is the probability that the
variation between groups may have occurred by chance, hence a smaller p-value
indicates a more significant difference. By convention, p-values below 0.05 are
considered to be statistically significant. Table II illustrates the p-values grouped by
CPL and CC under different number of copies of components (N). p-values are close
to 1 for a small number of copies, and as N increases, p-value decreases. This means
that the difference between nε (hε) in different CPL or CC becomes more obvious
with a larger N . Moreover, Table II shows that CC p-values become significant
earlier, i.e., with smaller N , than CPL p-values. This indicates that CC is perhaps a
more important factor for software self-assembly in terms of the complexity of the
self-assembled programs.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 21

Figure 16. Histogram of average number of trees assembled in different tree height bin size and
in different CPL categories.

Figure 17. Histogram of average number of trees assembled in different nodes bin size and in
different CC range.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof22 LI, GARIBALDI, AND KRASNOGOR

Figure 18. Histogram of average number of trees assembled in different tree height bin size and
in different CC range.

Table II. ANOVA analysis for nε and hε under different number of copies. The figures in bold
are those p-values close to or smaller than the threshold.

N = 10 N = 25 N = 40 N = 55 N = 70 N = 85 N = 100

nε grouped by CPL 0.99287 0.98592 0.80157 0.3715 0.32458 0.24854 0.05604
hε grouped by CPL 0.98344 0.9581 0.59761 0.14386 0.13001 0.05601 0.00697
nε grouped by CC 0.97513 0.82167 0.35649 0.0576 0.04857 0.02995 0.0139
hε grouped by CC 0.93468 0.651 0.12889 0.0451 0.03301 0.00116 3.2 · 10−5

5. CONCLUSION AND FUTURE WORK

In our previous work in ASAP2, unguided dynamics and PSO-driven approach
was presented for software self-assembly simulations within unstructured com-
partments. In this paper, we extend our previous work and introduced software
self-assembly using diversified compartment structures based on β-graphs, a graph
theoretic model that uses one parameter to control the complexity of the graphs
ranging from highly ordered to totally random. The graph constructed by β-model
represents a software self-assembly network system, in which each vertex in the
network can be seen as a compartment where software components self-assemble
locally. Components can migrate into another compartment by a connecting edge in
the graph.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 23

5.1. Conclusions

We overviewed how length and clustering property of a graph, measured by
the characteristic path length (CPL) and clustering coefficient (CC) of the graph,
are affected by the β-graph parameters (β, k, v). Based on the knowledge of the
relationship between (β, k, v) and CPL, and CC, we investigated how length and
clustering properties of a graph and the amount of software components involved can
affect the process of software self-assembly within a network, we measured: time
to equilibrium, diversity, and complexity of the generated programs. We report the
experiments conducted on the extended system, which have shown that complexity
of self-assembled programs rise with more copies of components.

Experimental results also show a counterintuitive behavior: On average, a
higher CPL of the graph leads to a lower time to equilibrium. Furthermore, time
to equilibrium decreases with more number of components, which matches our
previous results based on ASAP2 with single compartment structure. Moreover,
regardless of number of components placed into the system, a fluctuation in diversity
of generated programs is observed when CPL ranges from 2 to 4. The fluctuation in
total number of distinct assembled trees is also observed when CC ranges from 0.5
to 0.8.

A possible explanation for the unexpected experimental results in the analysis
of time to equilibrium and diversity of generated programs is that the concentration
in each compartment is changed because of the change in CPL and CC.

Experimental results have also suggested that a sparsely connected network
structure (greater CPL values) yields less complex programs than a densely con-
nected network (smaller CPL values). In addition, a network structure with CC
ranging from either 0 to 0.2 or from 0.8 to 1.0 manifests greatest complexity of the
generated programs.

5.2. Future Work

We will investigate how gradient of concentrations changes the behavior of
software self-assembly in greater details in our future work. To do this, we will
set different migration probability of each compartment based on its size. This will
essentially introduce nested compartment structures in which information between
compartments can flow to the inner/outer world through its border. We will also
investigate what effects (if any) do capacity, i.e., bandwidth, constraints have on
ASAP2.

The ASAP2 system we introduced in this paper focuses on static self-assembly
in which an equilibrium state will eventually be reached over time. We will present
source and sink compartments in which software components are flown in or taken
away from the system, hence introducing an ASAP2 system far from equilibrium.
In addition to the random and ordered graphs that we studied in this paper, we
will further propose preferential attachment model32 to investigate software self-
assembly on scale-free networks in dynamic software self-assembly.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author Proof24 LI, GARIBALDI, AND KRASNOGOR

Acknowledgments

We thank the reviewers for their detailed and constructive comments. We acknowledge the
EPSRC funding projects EP/D021847/1 and EP/E017215/1.

References

1. Hargreaves WR, Deamer DW. Liposomes from ionic, single-chain amphiphiles. Biochem-
istry 1978;17:3759–3768.

2. Hargreaves WR, Mulvihill S, Deamer DW. Synthesis of phospholipids and membranes in
prebiotic conditions. Nature 1977;266:78–80.

3. Imae T, Mori O, Takagi K, Itoh M, Sawaki Y. Self-assembly formation of amphiphilic
molecules mixed with photoreactive, aromatic unsaturated-acids: examination by light scat-
tering. In: Colloid & polymer science. Berlin: Springer; 2004.

4. Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-
like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci 2002;99:5355–5360.

5. Hogg T. Robust self-assembly using highly designable structures. In: Papers from the Sixth
Foresight Conference on Nanotechnology, 1999.

6. Luisi PL. The emergence of life. Cambridge, UK: Cambridge University Press; 2006.
7. Morowitz HJ. Beginning of cellular life. New Haven, CT: Yale University Press; 1992.
8. Dyson FJ. Origins of life. Cambridge, UK: Cambridge University Press; 1985.
9. Koza JR. Genetic programming: On the programming of computers by means of natural

selection. Cambridge, MA: MIT Press; 1992.
10. Ryan C. Genetic programming 3: Darwinian invention and problem solving. Genetic Pro-

gram Evol Mach 2000; 1(4).
11. O’Neill M, Brabazon A, Adley C. The automatic generation of programs for classifica-

tion problems with grammatical swarm. In: Proc 2004 IEEE Congress on Evolutionary
Computation, Portland, OR, June 20–23, 2004. Piscataway, NJ: IEEE Press. pp 104–110.

12. Abbott RJ. Object-oriented genetic programming, an initial implementation. In: Proc of the
Sixth Int Conf on Computational Intelligence and Natural Computing, Embassy Suites Hotel
and Conference Center, Cary, NC, Sept. 26–30, 2003.

13. Koza JR, Jones LW, Keane MA, Streeter MJ. Towards industrial strength automated design
of analog electrical circuits by means of genetic programming. In: O’Reilly U-M et al.,
editors. Genetic programming: Theory and practice II; May 13–15, 2004.

14. Lohn J, Hornby G, Linden D. An evolved antenna for deployment on NASA’s space tech-
nology 5 mission. In: O-Reilly U-M et al., editors. Genetic programming theory and practice
II; May 13–15, 2004.

15. Abramson M, Hunter L. Classification using cultural co-evolution and genetic programming.
In: Koza JR, Goldberg DE, Fogel DB, Riolo RL, editors. Genetic Programming 1996: Proc
First Annual Conf, Stanford University, CA; July 28–31 1996. Cambridge, MA: MIT Press.
pp. 249–254.

16. Adorni G, Cagnoni S, Mordonini M. Genetic programming of a goalkeeper control strategy
for the robocup middle size competition. In: Poli R, Nordin P, Langdon WB, Fogarty TC,
editors. Genetic Programming: Proceedings of EuroGP’99, Goteborg, Sweden; May 26-27
1999. Volume 1598 of LNCS. Berlin: Springer-Verlag. pp. 109–119.

17. Davidson L, George S, Evans D. A biologically inspired programming model for self-healing
systems. In: Workshop on Self-Healing Systems, Proc First Workshop on Self-Healing
Systems. New York: ACM Press; 2002. pp 102–104.

18. Shen W-M, Will P, Khoshnevis B. Self-assembly in space via self-reconfigurable robots.
ICRA 2003;2516–2521.

19. Li L, Krasnogor N, Garibaldi JM. Automated self-assembly programming paradigm: ini-
tial investigations. In: Proc Third IEEE Int Workshop on Engineering of Autonomic
& Autonomous Systems, Potsdam, Germany; 2006. Washington, DC: IEEE Computer
Society. pp 25–34.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofAUTOMATED SELF-ASSEMBLY PROGRAMMING PARADIGM 25

20. Li L, Krasnogor N, Garibaldi JM. Automated self-assembly programming paradigm: A
particle swarm realization. In: Proc Workshop on Nature Inspired Cooperative Strategies for
Optimization, Granada, Spain; 2006. Granada, Spain: University of Granada. pp 123–134.

21. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proc Sixth Int
Symp on Micro Machine and Human Science, Nagoya, Japan. Piscataway, NJ: IEEE Service
Center, 1995. pp 39–43.

22. Hu X, Eberhart RC. Multi-objective optimization using dynamic neighbourhood particle
swarm optimization. In: Proc 2002 Congress on Evolutionary Computation, Honolulu, HI;
2002.

23. Ray T, Liew KM. A swarm metaphor for multi-objective design optimization. Eng Optim
2002;34(2):141–153.

24. Coello CA, Lechuga MS. A proposal for multiple objective particle swarm optimization. In:
Proc Congress on Evolutionary Computation (CEC’2002), Piscataway, NJ; 2002. pp 1051–
1056.

25. Burke E, Gustafson S, Kendall G, Krasnogor N. Advance population diversity measures in
genetic programming. In: Proc Parallel Problem Solving from Nature; 2002.

26. Watts DJ. Small Worlds: The dynamics of networks between order and randomness (Prince-
ton Studies in Complexity). Princeton, NJ: Princeton University Press; 2003.

27. Frank H, Chou W. Topological optimization of computer networks. Proc IEEE 1972;
60(11):1385–1397.

28. Lin S. Effective use of heuristic algorithms in network design. In: The mathematics of
networks, Proc Symposia in Applied Mathematics, number 26, Providence, RI: American
Mathematical Society. pp 63–84.

29. Rouvray DH. Predicting chemistry from topology. Sci Am 1986;255(3):40–47.
30. Valverde S, Solé R. Self-organized critical traffic in parallel computer networks. Physica A

2002;312:636–648.
31. Farley AM. Population structure and artificial evolution. In: Artificial evolution. 2005.

pp 213–225. Q5
32. Barabasi A-L, Albert R. Emergence of scaling in random networks. Science 1999;286:509.

International Journal of Intelligent Systems DOI 10.1002/int

P1: SBQ

International Journal of Intelligent Systems JWUS274C/INT20361 April 4, 2009 19:1

Author ProofQueries

Q1: AU: Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 are in color in the source files.
Figures appear in color online at no cost to you. If you would like any figure to appear in color
in the print issue, please advise and we will send you a formal quote for the cost. Otherwise they
will appear in black and white in the print issue and in color online.

Q2: AU: Confirm whether name and e-mail of the corresponding author are OK as set.
Q3: AU: All references are renumbered to appear in a sequence. Please confirm.
Q4: AU: Confirm whether citation of Figure 6 is OK here.
Q5: AU: Provide name and location of the publisher.

26

