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Background: Functional networks play an important role in the analysis of biological processes and systems.
The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the
similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes
a functional relationship between genes which are expressed at similar levels across different samples. An
alternative to this paradigm is the inference of relationships from the structure of machine learning models.
These models are able to capture complex relationships between variables, that often are
different/complementary to the similarity-based methods.

Results: We propose a protocol to infer functional networks from machine learning models, called FuNeL. It
assumes, that genes used together within a rule-based machine learning model to classify the samples, might
also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then
evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the
real-world data are compared against gene co-expression networks of equal size, generated with 3 different
methods. The comparison is performed from two different points of view. We analyse the enriched biological
terms in the set of network nodes and the relationships between known disease-associated genes in a context of
the network topology. The comparison confirms both the biological relevance and the complementary character
of the knowledge captured by the FuNeL networks in relation to similarity-based methods, and demonstrates
its potential to identify known disease associations as core elements of the network. Finally, using a prostate
cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to
the disease and consistent with the specialised literature and with an independent dataset not used in the
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Background

The inference of biological networks is a highly relevant
and challenging task in systems biology and integra-
tive bioinformatics. Biological networks are graphs in
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which nodes represent genes or proteins, and a con-
nection between them indicates some kind of biologi-
cal relationship, e.g. regulatory or functional. The net-
work inference is, in an essence, an attempt to reverse
engineer the biological relationships from the high-
throughput biological data [1].

Most biological network inference methods focus on
the definition of gene regulatory networks, in which
edges represent direct regulatory interactions between
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Fig 1 Two approaches to functional network inference: one based on the expression profile similarity and the other based on the
extraction of knowledge from machine learning models. The similarity-based methods construct a new network edge X <> Y, when
the similarity between the expressions of genes X and Y across the samples is above a threshold. Methods based on machine
learning, first build a predictive model, in this example a rule-based model, using the samples phenotype information (class labels)
and then construct a network edge X <+ Y, when genes X and Y are used together within that model to classify the samples. As
these two approaches lead to different functional networks, it is possible that they capture complementary knowledge.

genes [2-4]. Far less effort has been put into the de-
sign of methods to build functional networks in which
a connection indicates a functional relationship, e.g.
membership in the same pathway or protein complex.
One of the typical uses of these networks is the iden-
tification of functional modules (subset of genes with
multiple internal connections and a few connections
with genes outside the module that describe, explain
or predict a biological process or phenotype.).

One of the earliest (but still widely used) approach to
infer functional networks is the ”guilt-by-association”
principle [5]. That is, if two genes show similar expres-
sion profiles, it is assumed they are also functionally
related (via a direct or indirect interaction). Initially,
this paradigm was applied to infer networks from tran-
scriptomics data, and this is why in most of the liter-
ature it is known as the co-expression network infer-
ence principle. Nevertheless, it is abstract enough to
be applied to all kinds of biological data. It has been
demonstrated that co-expression networks are able to
effectively identify pathways and candidate biomark-
ers [6] or reveal gene modules representing a biological
process perturbed in a disease [7], just to name a few
examples, and the similarity-based approach remains
the dominant method of functional network inference
today, with many recent examples: [8-12].

A different approach that is recently gaining popu-
larity, is the use of machine learning techniques to
infer biological networks. Due to the wide range of

knowledge representations used within machine learn-
ing methods (e.g. classification rules, decision trees, ar-
tificial neural networks, SVM kernels, etc.), they can
discover more complex and diverse relationships, and
overcome the limitations of the similarity-based meth-
ods. This is possible since within machine learning
models the attributes are associated not because they
are similar (e.g. have similar expression profiles), but
because together they detect strong patterns. In addi-
tion, if learning is supervised, it can take advantage of
the additional phenotype information (class labels of
the samples, e.g. case and control) available with the
data. Therefore, by mining the complex machine learn-
ing models, it should be possible to uncover new and
different (biological) knowledge, that is likely to escape
the traditional approaches. Figure 1 illustrates these
differences between the two approaches (similarity-
based methods vs. knowledge extraction from the ma-
chine learning models).

Alternative strategies exist to infer networks using
machine learning. One approach is to train machine
learning models that directly predict network edges
[13], but this process requires an experimentally ver-
ified ”ground truth” of known interactions and suit-
able controls. A different approach, which is the focus
of this work, is to generate machine learning models
from the biological data and then mine the structure
of the models to infer networks. Several types of ma-
chine learning have been successfully applied to this
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task: unsupervised learning in the form of association
rules [14], supervised learning using regression (model
trees [15]) or classification (random forest [16]).

The specific focus of this paper is the network infer-
ence from rule-based machine learning models. Such
models have been successfully applied before to ex-
tract knowledge from genetic data [17] and identify
disease risk factors in a bladder cancer study [18]. The
methods presented in these works share some pipeline
components with our current work, such as the per-
mutation test and a 2-phase learning strategy. In our
previous works we applied rule-based machine learning
to transcriptomics [19, 20], proteomics [21], lipidomics
[22] and protein structure data [23]. We formulated
a paradigm called co-prediction (in opposition to the
classic co-expression) in which the prediction rules of
a classification algorithm, in our case BioHEL [24], are
used to identify relationships between genes.

Co-prediction is based on the assumption that at-
tributes (e.g. genes) within the same classification
rules, due to their co-operation in predicting the sam-
ple class, have an increased likelihood of being func-
tionally related to the biological process in question
(Figure 2). Differently than co-expression, the co-
prediction approach exploits the phenotype informa-
tion of the data (class labels) to detect functional re-
lations.

Classification rule:
T '

If .Gene A > 0.05 and Gene B > 0.01:then: Cancer

Fig 2 Co-prediction paradigm. Association between the genes
is inferred from their co-occurrence in classification rules.

However, from a methodological perspective, many
questions remained unanswered. Can the co-prediction
approach identify known genetic relationships? How
can we quantify the biological significance of the co-
prediction networks? What is the impact of data pre-
processing on the generated networks? Is this method-
ology able to capture knowledge that escapes other
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methods? Are the discovered functional relationships
meaningful in the human disease context?

To address these questions, we propose in this arti-
cle a new network inference protocol, called FuNeL
(Functional Network Learning). FuNeL substantially
extends our previous work [19] by incorporating: (1)
statistical filtering of inferred functional relationships
via permutation tests, (2) a multi-stage network gener-
ation to maximise the knowledge extraction, and (3) a
configurable feature selection stage to control the size
of the generated networks.

We first tested FuNeLl’s ability to correctly iden-
tify functional relationships using a set of synthetic
datasets. Then, we evaluated FuNeL on 8 real-world
transcriptomics datasets related to different types of
cancer. For each dataset we tested 4 different configu-
rations of the protocol and compared the inferred net-
works to co-expression networks of equivalent size. In
order to have an extensive evaluation of our approach,
we employed 3 different methods to generate co-
expression networks. We systematically looked at the
differences between co-prediction and co-expression
networks from two points of view: (1) the enriched bi-
ological terms and (2) the relationships between the
genes known to be associated with a particular type of
cancer. Finally, we used a prostate cancer dataset as
a case study and performed a more detailed biological
analysis of the enriched terms and the disease related
genes. We looked at the largest hubs and the most
central nodes in the prostate cancer co-prediction net-
works and studied their involvement in the disease. We
found literature support for the association between
these topologically important genes and prostate can-
cer, and we further confirmed it with an independent
transcriptomics dataset (not used as a source in the in-
ference process). Overall, we found that the FuNeL in-
ferred networks: (1) capture relevant biological knowl-
edge that is complementary to the knowledge captured
by different co-expression networks, and (2) more ad-
equately represent the relationships between genes as-
sociated with the disease targeted by each dataset.

Materials and Methods

In this section we describe the proposed network in-
ference protocol, the datasets from which we inferred
the networks and the experimental design we used to
evaluate it.

The functional network inference protocol

The stages of the co-prediction inference protocol are
illustrated in Figure 3. Two of these stages are optional
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(1 and 4), they lead to a total of 4 different protocol
configurations. If the first optional stage (feature se-
lection) is performed, the original dataset is reduced
to the most relevant attributes. In the second stage a
rule-based machine learning is used to infer a network.
This network is statistically refined in Stage 3, in which
a permutation test is used to filter out non-significant
nodes. The final stage, in which the network generation
is repeated for the second time, is again optional. A
complete time complexity analysis of the FulNeL: pro-
tocol is available in Section 2 of the Supplementary
Material.

STAGE
1 Feature Option 1
Selection
Reduced
dataset
2 Rule-based network generatior

3 Permutation test -

____________________ }_____________________.

No 2nd

Training Option 2

Yes

Rule-based network generﬂ

Fig 3 Stages of the functional network inference protocol.

Feature selection (stage 1) When datasets contain a
large number of attributes, some might be irrelevant
to the prediction target and discarding them helps the
classification algorithm to focus its learning effort on
the attributes that matters. Therefore, the feature se-
lection is the first stage of the inference process. To
pick the relevant attributes we used the support vec-
tor machine recursive feature elimination (SVM-RFE)
[25]. We opted for the SVM algorithm with a linear

Page 4 of 16

kernel as our preliminary studies suggested that it can
eliminate as much as 90% of the original dataset at-
tributes, without losing much of the classification ac-
curacy (see Section 1 in Supplementary Material).

Rule-based network inference (stage 2) To infer the
rule-based classification models we used BioHEL [24].
It generates sets of classification rules using a genetic
algorithm and is able to work with large datasets. Due
to the stochastic nature of BioHEL’s learning process,
each of its runs generates a different rule set. We lever-
age this fact by creating a large number of alterna-
tive hypotheses of functional relationships via multi-
ple runs of the algorithm. For each dataset we run
BioHEL 10 000 times and infer the network from the
consensus of all the generated rule sets. To do that, we
use all the pairs of attributes that appear together in
the same classification rule as the network edges (co-
prediction paradigm). Then, we score each network
node (attribute) by counting how many times it has
been used in the rules (node score).

Permutation test (stage 3) Given a list of edges
(attribute-attribute associations) extracted from the
rule sets, we try to filter out the non-significant nodes.
To determine the node significance, we follow a statis-
tical analysis procedure based on a permutation test,
similar to the one described in [17]. We generate 100
permutated datasets by randomly shuffling the class
labels. Next, we infer the co-prediction networks (as
in Stage 2) from these permutated datasets. Then,
for each node, we calculate a distribution of scores
across the 100 networks generated from the permu-
tated datasets. Using a one-tailed permutation test, we
assign to each node a p-value, to estimate how likely
it is to draw its score from the calculated distribution.
With this process we make sure that the nodes with
high scores are really tied to the classes present in the
data, and that the network truly represents functional
relationships. To decide if a node is statistically signif-
icant we use a typical o = 0.05 threshold.

After preliminary experiments we realised, that using
significant nodes alone leads to small and dense net-
works. To counter that, we relaxed the node pruning to
also keep all direct neighbours of the significant nodes.

Network construction (stage 4) There are two ways
to interpret the result of the statistical test (option 2
in Figure 3). The first approach is to use the significant
nodes as a filter for the inferred relationships (edges)
and remove all the edges between two non-significant
nodes. The second approach is to use the permuta-
tion test as a further feature selection and build a new
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rule-based machine learning model using only the sig-
nificant nodes. This second run of the learning algo-
rithm is then focused only on the statistically impor-
tant genes and creates the final network.

Protocol configurations As a result of two indepen-
dent optional stages in the FuNeL protocol, there are
4 different configurations that it can run with (see Ta-~
ble 1). We decided to test them all and infer four net-
works from each dataset, one per configuration.

Table 1 Protocol configurations used in the experiments.

Config.  Description

C reduced dataset + 1 stage of network generation

Ca original dataset + 1 stage of network generation

Cs reduced dataset + 2 stages of network generation

Cy original dataset + 2 stages of network generation
Datasets

Synthetic datasets

To verify if FuNeL is able to correctly identify func-
tional relationships we tested it on a set of synthetic
datasets. Although there are several generators that
model expression data with genetic relationships, such
as GNW used in several DREAM challenges [26], they
generate unlabeled samples (without phenotype infor-
mation, e.g. case vs. control) and the class labels are
necessary to perform the supervised learning at the
core of FuNeL.

For that reason, we decided to use GAMETES instance
generator [27], designed to create genetic datasets with
multi-locus disease associations, where no fewer than
n loci can predict a phenotype (disease status). GA-
METES generates genotype data (rather than gene ex-
pression data) based on models with specific genetic
constraints, e.g. different heritabilities or frequencies
of the SNPs.

To generate the synthetic datasets, we used a set of
2-locus configurations similar to what was employed
in a recent work of Li et al. [28] to evaluate permuted
random forest networks of gene interactions. Specifi-
cally, the genetic models varied in terms of heritability
(0.001-0.4) and number of attributes (5-25), with fixed
allele frequency of 0.2 and 2000 samples per dataset.
For each configuration, we selected from 100 000 ran-
dom models, two models with extreme value of the ease
of detection metric (EDM) (the least and the most dif-
ficult). Finally, for each selected model we generated
50 datasets, obtaining 4000 datasets in total.
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Real-world datasets

We used 8 publicly available human cancer microar-
ray datasets (see Table 2). These datasets represent
a broad range of characteristics in terms of biologi-
cal information (different types of cancers), number of
samples (patients) and number of attributes (genes).
For each dataset the attributes were defined by the
probes used in the microarray experiment. Generally,
a gene can be represented by more than one probe
and extra post-processing step is needed to merge the
information and generate networks where nodes truly
represent genes. We used MADGene [29] to map the
Affymetrix probe IDs into HUGO gene 1Ds, then for
all probes mapped to the same gene, we merged the
probes and their connections. If a probe was unmapped
it was removed from the network.

Table 2 Description of the source datasets used to infer
networks.

Name Attributes Samples Class labels

Dibcl [30] 2647 77  Dlbcl; Follicular lymphoma
CNS [31] 7129 60  Survivor; Failures

Leukemia [32] 7129 72 AML; ALL

Lung-Michigan [33] 7129 96  Tumor; Normal
Lung-Harvard [34] 12534 181  Mesothelioma; ADCA
Prostate [35] 12600 102 Tumor; Normal

AML [36] 12625 54  Remission; Relapse
Colon-Breast [37] 22283 52  Colon cancer; Breast cancer

While in this instance we focused on transcriptomics
datasets only, the FuNeL. protocol is general and can
be applied to other types of biological data too (pro-
teomics, lipidomics, etc.).

Co-expression networks

In this paper we are comparing our FuNeL networks
against co-expression networks. The co-expression
paradigm identifies similarity of gene expression pat-
tern under different experimental conditions. Co-
expression edges are an abstraction of functional rela-
tionships between genes and do not represent physical
binding as in protein interaction or gene regulatory
networks. Two genes are considered to be function-
ally related (co-expressed), if their transcript levels
are similar across a set of samples.

In here we employed three well known methods to infer
co-expression networks, each one uses a different met-
ric to assess gene expressions similarity: Pearson cor-
relation coefficient, ARACNE [2] and MIC [38]. In the
following subsections we briefly present those methods,
for more details check the cited original papers.

Pearson correlation coefficient

Pearson’s correlation coefficient (PCC) is a well known
measure of linear dependence between two variables.
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Applied to gene expression profiles, it measures the
similarity in the direction of gene response across sam-
ples. Its main disadvantages are the lack of distribu-
tional robustness (it assumes data normality) and the
sensitivity to outliers. We generated the PCC-based
co-expression networks using the SciPy Python library
[39].

ARACNE: Algorithm for the Reconstruction of Gene
Regulatory Networks

The ARACNE method [2] measures the dependence
between two gene expression profiles using mutual in-
formation. Mutual information I(X;Y") estimates en-
tropy to quantify the amount of information that Y
contains about X (measured in bits). In contrast to
correlation, it is able to detect non-linear dependen-
cies. ARACNE calculates I(X;Y) for every pair of
gene expression profiles X and Y, and applies the data
processing inequality to remove the majority of indi-
rect dependencies. For each triplet X, Y and Z the
weakest link is removed, e.g. the edge between X and
Y is removed if I(X;Y) < min(I(X;Z), M(Z;Y)) —
€. The tolerance threshold € is used to adjust for
the variance of the mutual information estimator. To
generate the ARACNE based networks we used the
minet R package [40] with the following parameters:
mi.empirical estimator, equalwidth distance and € = 0.

MIC: Mazimal Information Coefficient

The MIC [38] is a recently proposed measure of the
strength of association between two variables, closely
related to mutual information. Instead of using a single
discretisation strategy to bin the compared variables,
it chooses individual bins for each variable, such that
value of mutual information I(X;Y") is maximised.
Compared to standard estimation of I(X;Y’) value
used in ARACNE, the optimised estimation provided
by MIC is able to detect a wider range of non-linear
associations. To generate MIC based networks we used
the minepy Python library [41] with the following pa-
rameters: a = 0.6 and ¢ = 15.

Inference of the co-expression networks counterparts

To fairly compare the co-prediction and co-expression
networks generated from the same data, we had to
make sure they match in size. To do that, for every
co-prediction network C' with m edges and n nodes,
we created two co-expression counterparts:

e SE(C): co-expression network with m edges

e SN(C): co-expression network with n nodes
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PCC and MIC methods directly compute the pairwise
similarity between the gene expressions. Given that,
we generated SE(C) using m gene pairs with the high-
est similarity coefficient. To build SN(C) we used as
many top gene pairs as needed, to reach at least n
nodes (as we included all pairs tied on the similarity
value, sometimes we end up with a few nodes more).

ARACNE uses a pruning procedure and generates a
weighted network, not a list of pairwise similarities.
When the resulting network was smaller than m edges
or n nodes, we increased the default tolerance thresh-
old € to obtain a large enough network. This was the
case for the CNS (e = 0.002) and the Dibcl datasets
(e = 0.043). Then we used the edge weights to select
top gene pairs, as in the case of PCC and MIC meth-
ods.

Several examples of inferred co-prediction networks
and corresponding co-expression networks are visu-
alised in Section 7 of the Supplementary Material and
are accompanied, in there, by an initial analysis of se-
lected topological properties in Section 3.

Enrichment analysis

To understand the biological information captured
by the generated networks we conducted an enrich-
ment analysis. This is a statistical method of check-
ing whether a set of genes have common character-
istics. In our study, the set is defined by the nodes
of the generated functional network and is analysed
with PANTHER [42]. Because many statistical tests
are performed (one for each term) at the same time,
PATHER uses Bonferroni correction for multiple test-
ing with o = 0.05. We searched for two categories of
biological knowledge: Gene Ontology (GO) terms and
PANTHER pathways (176 primarily signalling path-
ways). From the set of GO term, we selected only the
manually curated annotations that were supported by
experimental evidence.

Disease association analysis

To evaluate the predictive power of the generated net-
works, and to assess their relevance within a cancer-
related context, we analysed the relationships be-
tween known disease-associated genes. We used two
sources for the disease associations: Malacards (a
meta-database of human maladies consolidated from
64 independent sources) [43] and the union of several
manually curated databases (OMIM [44], Orphanet
[45], Uniprot [46] and CTD [47]). We looked at two
properties: (1) the proximity of the disease-associated
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Table 3 FuNel success rate in identification of disease-predicting SNPs. The datasets differed with respect to heritability, number of
SNPs and detection difficulty (L-EDM models were the hardest, H-EDM the easiest).

5 SNP 10 SNP 15 SNP 20 SNP 25 SNP
Her. L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM
0.001 6 % 16 % 8 % 18 % 4% 10 % 4% 12 % 12 % 16 %
0.005 8 % 82 % 0% 86 % 6 % 80 % 2% 82 % 8 % 72 %
0.01 8 % 96 % 8 % 100 % 8 % 100 % 12 % 100 % 14 % 100 %
0.05 14 % 100 % 60 % 100 % 42 % 100 % 34 % 100 % 34 % 100 %
0.1 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
0.2 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
0.3 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
0.4 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

genes within a network and (2) the number of tri-
angles in a network, containing one or more disease-
associated genes.

Higher proximity represents stronger functional rela-
tionship between genes involved in the disease. Trian-
gles represent groups of attributes used together across
different prediction rules, and therefore indicate strong
mutual relationship between the genes (useful in the
discovery of potential new disease associations). Tri-
angles are also the smallest non-trivial motifs that can
be found in a complex network and over-represented
motifs usually identify functional units of biological
processes in cells [48].

The proximity of disease-associated genes was mea-
sured using the average shortest path length (SPL).
The proximity was defined as a ratio of two distances:
average SPL between all pairs of the non-associated
genes and average SPL between all pairs of disease-
associated genes A:

|CCil

1 2": SPL(CC; \ A)

, where w; =

SPL(A)
As the generated networks often were disconnected
(had more than 1 connected component), we intro-
duced a weight w; that represents the relative size of a
connected component C'C;. Components with less than
3 nodes or disease-associated genes were not used in
the calculation.

Results

The main results described in this section are based
on the analysis of 8 real-world datasets. The only ex-
ception is the subsection below, which reports the test
results on synthetic datasets.

Identification of predefined relationships in synthetic
datasets

To verify how well FuNeL is able to identify func-
tional relationships, we tested it first on synthetic

datasets generated using GAMETES. We used 80 dif-
ferent model configurations that varied in heritability,
number of SNPs and ease of detection, and tested the
success rate on 50 datasets per model. Given the small
number of attributes in the synthetic datasets, we used
only the Cy protocol configuration in the tests (no fea-
ture selection, single learning phase). The percentage
of successfully identified relationships for each model
is reported in Table 3. We counted as success the pres-
ence of an edge between the interacting pair of SNPs
in the inferred network.

As expected, a higher success rate was obtained for
models where relationships were easy to detect (H-
EDM). The performance increased with higher values
of heritability and 100% success rate was obtained for
heritability values above 0.05 regardless of model diffi-
culty. The overall results are similar to those reported
in [28], or even slightly better, as FuNeL’s success rate
was unaffected by the increase in the number of SNPs.

Complementarity of the enriched terms

To test how unique are the biological terms (GO terms
and pathways) over-represented in the inferred Fu-
NeL networks, we measured an overlap between terms
found for each type of network. We defined the over-
lap between terms enriched for networks inferred using
configurations C, and C} as:

c

O ) = e

where ¢ is the number of common terms, u, is the
number of unique terms for C, and w; is the number
of unique terms for Cj.

Table 4 summaries the pair-wise overlap between the
4 different FuNeL configurations. For GO terms we re-
ported the average overlap between the biological pro-
cess, cellular component and molecular function cat-
egories. Although configurations that operate on the
same dataset (Cy/C3 and C3/C,) shared the most
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terms/pathways, the overlap is quite far from 100%.
The observed difference is a result of the second train-
ing stage. Configurations used on different datasets
(i.e. different set of attributes) resulted in networks
sharing less than 40% GO terms and 20% pathways.

Table 4 Average overlap of enriched GO terms and pathways
between different FuNelL configurations. The overlap was
averaged across all 8 datasets.

Gene Ontology
C, Cz C3 C4 Cl C2 Cs Ca

Pathways

C1 — 0.353 0.749 0.405 — 0.186 0.513 0.183
C2 — 0.321 0.701 — 0.095 0.591
Cs — 0.364 — 0.104
Ca — —

Similarly, we analysed the term overlap between co-
prediction and co-expression by comparing the C; net-
works with their co-expression counterparts SE(C;)
and SN (C;) generated with different approaches (see
Table 5). We found the percentage of overlap to be sim-
ilar across the different inference methods. The over-
lap in enriched terms was never higher than 62% (still
leading to a difference around 40%) and was the largest
for configuration not using feature selection (Cy and
C4). In general the percentages were lower for biolog-
ical pathways with a minimum of only 10% of shared
terms. Low values of terms overlap indicate that the
co-prediction and the co-expression approaches can be
seen as complementary. Despite starting from the same
dataset, they generate networks expressing different
biological information.

Table 5 Average overlap of enriched GO terms and pathways
between the co-prediction and co-expression networks. Each
co-expression network C; was compared to the corresponding
co-expression networks SE(C;) and SN(C;). The overlap was
averaged across all 8 datasets.

Co-expression (SE)
Method Cat. C; C2 C3 Ci4 Cp Cz2 C3 C4

Co-expression (SN)

GO 0.280 0.414 0.297 0.432 0.315 0.576 0.367 0.488

pcc path. 0.223 0.260 0.258 0.190 0.264 0.400 0.175 0.287
ARACNE GO 0.348 0.621 0.272 0.565 0.333 0.612 0.277 0.535

path. 0.126 0.463 0.139 0.479 0.085 0.423 0.016 0.356
MIC GO 0.316 0.513 0.283 0.487 0.300 0.614 0.289 0.527

path. 0.097 0.339 0.142 0.315 0.112 0.469 0.080 0.352

Quantifying the amount of captured biological
knowledge

The amount of biological knowledge (number of en-
riched terms) captured by a network is related to its
size (number of nodes). To fairly compare the networks
of different sizes we used the normalised Enrichment
Score (ES):

BS — number of enriched terms

number of nodes
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The score assesses if a network contains biologically
related nodes. The higher it is, the larger is a biological
similarity between the nodes of a network.

To have a global view of the performances of each in-
ference method in term of ES, we performed a two-step
analysis for each enrichment category. First, using the
ES, we ranked the networks generated by each method
in order to identify the best performing one. See Sec-
tion 4 of the Supplementary Material for the complete
analysis.

Once we identified the best network for each method,
we ranked them together by ES and calculated their
average rank across the datasets. The results of this
analysis are reported in Table 6. MIC performed best
when ES was calculated using the GO terms (it was
ranked first in each of those categories). When ES
was calculated using the biological pathways, C; and
ARACNE SE(Ch) shared the highest rank.

Table 6 Average ranks based on the Enrichment Score for the
best performing networks of each inference method. For each
category and for each method, we report the network used in the
analysis. The ranks (in brackets) were averaged across all 8
datasets, and the highest ranks are shown with bold font. The last
row reports the average ranks across all the biological categories.
The following abbreviations were used for GO categories:
biological process (BP), molecular function (MF) and cellular
component (CC).

Category FuNelL PCC ARACNE MIC

GO BP C4 (3) SE(C3) (1.5) SN(C3) (4) SN(C3) (1.5)
GO MF C3(3.5) SN(C3) (3.5) SN(C3) (2) SN(C3) (1)
GO CC C3 (4) SN(C1) (3) SN(C3) (2) SN(C3) (1)
Patwhays C4 (1.5) SN(C2) (3.5) SE(C1) (1.5) SE(C3) (3.5)
Average 3 2.88 2.38 1.75

Table 6 shows that the best performing networks for
each method were mostly C3 co-expression counter-
parts, in particular SN(C3). This is consistent with
the result of the topological analysis in Section 3 of
the Supplementary Material were these networks were
found to have the lowest number of nodes, and suggests
that smallest networks tend to be more enriched. The
difference in performance between the FuNeL configu-
rations is mainly a result of the application of the sec-
ond machine learning phase (the best networks were
C3 and Cy).

In Supplementary Table 6 we reported the results of
a similar analysis where we compared the similarity-
based inference methods against FuNeL (ranks in there
range from 1 to 12: 4 C; + 4 SE(C;) + 4 SN(C;). In
this pairwise analysis, FuNeL networks performed sim-
ilarly to PCC and ARACNE. We did not observe any
consistent winner across all the enrichment categories.
MIC seems to have better results than FuNeL only for
GO categories, as emerged from Table 6, while FuNeL
networks tend to be more enriched for biological path-
ways.
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Evaluation of the networks in a disease context

To verify if the topology of the inferred networks is
biologically meaningful, we analysed how it defines
the relationships between genes that are known to be
associated with a disease targeted by each dataset.
We expected the disease-associated genes to be more
closely connected than other genes and to be present
in functional units, such as triangle motifs. We mea-
sured the proximity of the disease-associated genes
(i.e. how closely connected they are compared with
non-disease-associated genes) and counted the num-
ber of triangular relationships present in each network
(i.e. the percentage of triangles containing one, two or
three disease-associated genes). We repeated the two-
step analysis as presented in Section Quantifying the
amount of captured biological knowledge by using the
gene-disease metrics for the ranking. The results are
reported in Table 7. The detailed results for each in-
ference method are available in Section 5 of the Sup-
plementary Material.

Table 7 Average ranks based on the disease-associations for
the best performing networks of each inference method. For
each category and for each method we report the network used
for the analysis. The ranks (in brackets) were averaged across all
8 datasets, and the highest ranks are shown with bold font. The
last row reports the average ranks across all the categories. The
number of disease-associated genes participating in a triangle is
denoted as 1A, 2A and 3A.

Source Cat. FuNeL PCC ARACNE MiIC
1A C2 (1) SN(C2) (4) SN(C3) (2.5) SN(C2) (2.5)
2A C3 (1) SN(C3)(2) SE(C2)(3) SN(C2) (4)
Curated 3A C1(2) SN(C1)(3) SE(C4)(4) SE(C2)(1)
Proximity C2 (1) SN(C3) (2.5) SE(C4) (2.5) SE(C2) (4)
Average 1.25 2.88 3 2.88
1A C2 (1) SN(C2) (4) SN(C4) (3) SE(C4) (2)
2A C2 (1.5) SN(C4) (4) SE(C4) (1.5) SN(C2) (3)
Malacards 3A C3(2) SN(C4) (3) SE(C2)(4) SN(C2) (1)
Proximity C2 (1) SE(C4) (4) SE(C4) (3) SE(C2) (2)
Average 1.78 3.75 2.88 2

The average ranks, for both sources of disease associa-
tions, suggest that co-prediction outperforms the other
inference paradigms. The proximity of the disease-
associated genes was in general higher in Cs network.
Therefore, the co-prediction paradigm has identified
the core elements of the network more accurately. This
result highlights the benefits of including functional in-
formation, whenever these are available, in the network
inference process (FuNeL is using the class labels as-
signed to the samples of the dataset), in contrast to
the co-expression approach solely based on gene ex-
pression similarity (unsupervised).

There is also a clear difference in the number of
disease-associated genes participating in the triangles;
co-prediction networks were ranked higher than the co-
expression networks. The only category in which MIC
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had a higher rank was 3A. However, considering that
there were not many triangles with disease-associated
genes, many ties affected the ranks in this category.
Overall, these results demonstrate the higher predic-
tive potential of the FuNeL networks in identifying new
disease associations.

Prostate cancer case study: enriched terms

To compare in detail the difference in biological knowl-
edge captured by the co-prediction and co-expression
networks, we followed our global analysis with a case
study focused on a dataset targeting a single disease
— prostate cancer [35]. We were especially interested
in specific knowledge captured by one paradigm but
not the other.

In Figures 4 and 5 we compared the co-prediction and
PCC co-expression networks inferred from the prostate
cancer dataset. We focused on unique GO terms and
pathways, enriched only in one type of networks. For
the sake of readability we filtered out the generic GO
terms (with depth < 9 in the GO hierarchical struc-
ture). C'y was the network with the largest number of
unique terms, followed by Cy and SN(C5). We found
16 GO terms and 21 pathways unique to co-prediction
networks and only 3 GO terms and 4 pathways unique
to co-expression networks. A similar disproportion in
favour of the co-prediction networks was found in com-
parison with MIC and ARACNE networks (see Sup-
plementary Figures 2 and 3).

We found several of the unique GO terms enriched
in the co-prediction networks to be related to prostate
cancer. The role of the Protein ubiquination in prostate
cancer was recently analysed and showed an impact for
its treatments [49]. ERK pathway is involved in the
motility of prostate cancer cells [50]. Prostate cancer
cells seems to alter the nature of their calcium influx
to promote growth and acquire apoptotic resistance
[61]. Furthermore, the role of calcium homeostasis in
the majority of the cell-signaling pathways involved
in carcinogenesis has been well established, prostate
cancer included [52].

A number of enriched pathways specific to co-prediction
networks are also highly relevant to the prostate can-
cer. Several studies demonstrated the involvement of
the JAK/STAT pathway in the prostate cancer devel-
opment [53, 54]. There is multiple evidence suggest-
ing that one of the major aging-associated influences
on prostate carcinogenesis is oxidative stress and its
cumulative impact on DNA damage [55, 56]. Finally,
FAS (also called Apol or CD95) plays a central role in
the physiological regulation of programmed cell death
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Fig 4 Number of unique enriched GO terms (biological process) for each network configuration (generated from the prostate
cancer dataset). On the x-axis we show the 12 investigated networks. On the y-axis we show the names of enriched terms unique to
co-prediction or PCC co-expression networks. Red terms are associated with co-expression networks, blue with co-prediction. Empty
columns indicate networks with no unique terms.
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Fig 5 Number of unique enriched biological pathways for each network configuration (generated from the prostate cancer
dataset). On the x-axis we show the 12 investigated networks. On the y-axis we show the names of enriched pathways unique to
co-prediction or PCC co-expression networks. Red terms are associated with co-expression networks, blue with co-prediction. Empty
columns indicate networks with no unique pathways.
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Fig 6 Overlap of enriched terms between the best performing networks in the disease-association analysis (curated databases).
On the left the overlap of GO terms (including all 3 categories: BP, CC and MF), on the right the overlap of pathways.
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and has been implicated in the pathogenesis of vari-
ous malignancies and diseases of the immune system
including prostate cancer [57].

We also performed an additional analysis of the bi-
ological terms related to the hubs (highly connected
nodes) of the inferred networks. A node v was consid-
ered to be a hub if its degree was at least one standard
deviation above the mean network degree. To compare
the networks, we used the 10 most frequent Gene On-
tology terms (biological processes with at least depth
10) shared among each network’s hubs. We found 16
unique terms for co-prediction networks, 19 unique
terms for PCC co-expression networks and 11 com-
mon terms. These results further highlight that some
biological terms are exclusively associated either with
co-prediction or co-expression networks. The complete
analysis (method by method) is available in the Sup-
plementary Material (Supplementary Figures 4, 5 and
6).

A further analysis of term overlap was conducted us-
ing only the best performing networks in the curated
disease-association analysis (namely Cy for FuNeL,
SN(Cj5) for PCC, SE(Cy) for ARACNE and SE(Cs)
for MIC, see Section 5 of the Supplementary Mate-
rial for details). In Figure 6 we show the overlap of
GO terms (including all three GO categories) and
pathways across networks from different inference al-
gorithms. In both categories FuNeL. had much larger
number of unique terms than the co-expression meth-
ods and it shared the largest number of terms with
ARACNE. In total 122 common GO terms were found
between all the methods, while there was only 1 com-

mon pathway. Figure 6 further highlights the comple-
mentarity between the co-prediction and co-expression
approaches in terms of captured biological knowledge.

Prostate cancer case study: disease associations

We searched the literature and the public cancer
databases (not used in the inference process), to verify
if key nodes in the generated networks are associated
with prostate cancer. As a measure of node importance
we used the node degree (number of connections) and
the betweenness centrality (number of shortest paths
between all pair of nodes pass through a given node).

Literature analysis We picked the top 3 most con-
nected nodes (hubs) for each of the four co-prediction
networks. The set contained six genes: GSTM2, NELL?2,
CFD, PTGDS, PAGE4 and LMOS3. All the genes from
this set, except LMOS3, were also found to be the most
central nodes (with highest betweenness centrality).

Almost all these genes are related with prostate cancer:

e NELL2 contributes to alterations in epithelial-
stromal homeostasis in benign prostatic hyperpla-
sia and codes for a novel prostatic growth factor
[58], and is also an indicator of expression changes
in cancer samples [59],

e CFD (adipsin gene) is over expressed in PP
periprostatic adipose tissue of prostate cancer pa-
tients [60],
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e PTGDS (and other 2 genes) are expressed at con-
sistently lower levels in clinical prostate cancer tis-
sues and form a signature that predicts biochem-
ical relapse [61],

e PAGE/ modulates androgen receptor signaling,
promoting the progression to advanced lethal
prostate cancer [62], and has a significantly lower
expression level in patients with prostate recur-
rent disease [63],

e LMOS interacts with p53, a well known gene tu-
mour suppressor in prostate cancer [64].

The only gene without literature support was GSTM2.
It might represent a good target for further experimen-
tal verification.

Validation on independent data To further validate
the biological significance of the inferred networks,
we used an independent prostate cancer dataset [65]
from the cBioPortal for Cancer Genomics [66]. We
analysed the top 10 hubs (nodes with highest degree)
and the top 10 central nodes (with highest between-
ness centrality) in the co-prediction network that bet-
ter performed in the gene-disease association analy-
sis using the curated databases: Co (see Supplemen-
tary Table 8a). The genes with highest degree were:
PTGDS, PAGE4, NELL2, GSTM2, PARMI1, MAF,
LMOS3, COL4A6, RBP1 and ABLI. For the between-
ness centrality, the set was almost identical, only RBP1
was replaced by MYHI11. On average the expression
in samples was altered in 31.8% cases for hubs and
in 35.6% cases for central nodes. The most altered
genes were found to be downregulated at the mRNA
level: COL4A6 (65%), MYH11 (58%), PARM1 (53%)
and GSTM2 (52%). In addition, genomic alterations
in several key genes have been found to be strongly co-
occurent (e.g. PTGDS — GSTM2, PAGE) — COL/AG,
PAGE4 — RBP1I, etc.).

When we repeated this analysis for the co-expression
networks that were best ranked in the gene-disease
analysis using the curated databases (SN(Cj) for
PCC, SE(C,) for ARACNE and SE(C3) for MIC),
we found that on average the alteration level was con-
sistently lower, at most half of the co-prediction key
genes. The percentages of alterations are represented
as boxplots in Figure 7, while the average alterations
are reported in Table 8. As Figure 7 shows, our method
is able to identify many more genes with higher per-
centage of alteration than other methods. Therefore,
the topologically important nodes in the best co-
prediction network represent genes more strongly re-
lated to the prostate cancer, with over two times more
frequent genomic alterations.
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Fig 7 Distribution of the percentage genomic alteration in
the samples of an independent dataset for top 10 hubs and
central nodes. The topologically important genes were
selected from the best performing networks in the
disease-association analysis on curated datasets.

Table 8 Average percentage of genomic alteration for top hubs
and central nodes in the independent dataset.

Genes FulNelL PCC ARACNE MIC
Hubs 31.8 % 14.2 % 12.3 % 152 %
Central nodes 356 % 147 % 12.2 % 17.1 %

The detailed list of genomic alterations for top 10 hubs
and top 10 central nodes for each analysed network
is shown in Section 6 of the Supplementary Material
(Figures 7-14).

Discussion

We proposed FuNeL, a protocol to infer functional
networks based on the co-prediction paradigm where
the structure of a rule-based machine learning model
(in this paper the rules of a classification algorithm
called BioHEL) is used to identify relationships be-
tween genes. We tested FuNel. on synthetic datasets
and obtained a high success rate in identifying pair-
wise relationships between attributes. Encouraged by
this result, we hypothesised that a rule-based machine
learning model, with its complex knowledge represen-
tation, might be used to identify biologically mean-
ingful relationships that escape the standard inference
methods.

To test this hypothesis, we evaluated 4 different con-
figurations of the inference protocol using 8 cancer-
related transcriptomics datasets. We compared Fu-
NelL with other 3 co-expression inference methods
by using networks of matching size generated from
the same data. We looked at the differences, between
co-prediction and co-expression, from three points of
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view: basic topological properties, enriched biologi-
cal terms and relationships between known disease-
associated genes.

The comparison of networks topology (see Section 3 of
the Supplementary Material) revealed the influence of
the protocol options. Not surprisingly, both the feature
selection and the second training phase reduced the
size of the networks, but at the same time, increased
the clustering coefficient and the number of connec-
tions. The clustering coefficient was found to be lower
in almost all the ARACNE networks, probably due
to the pruning procedure, it was also lower in many
MIC networks. Moreover, when feature selection was
applied, the resulting networks had higher clustering
coefficient than PCC co-expression networks with the
same number of edges. Interestingly, all co-expression
networks were less compact, with up to 3 times higher
diameter for PCC and ARACNE and up to 7 times
higher for MIC.

The differences in networks topology translated to dif-
ferences in contained biological information. The over-
lap between enriched GO terms and pathways across
protocol configurations was generally low, indicating
that different configurations infer networks that cap-
ture different biological knowledge. The same terms
overlap between the co-prediction networks and their
equivalent co-expression counterparts was even lower,
never exceeding 62%. We interpret that as evidence,
that the biological knowledge captured by the two
paradigms is not completely redundant, but in a large
part complementary.

The most apparent differences between the networks
were observed during the analysis of the connections
between genes known to be related to a specific dis-
ease. The disease-associated genes were more closely
connected (higher proximity) in the co-prediction net-
works, which means that the disease-related nodes of
the network were closer to its core. We also found that
the number of functional units (triangle motifs), that
can identify new gene-disease associations, was higher
in the co-prediction networks. Therefore, we conclude
that the co-prediction networks better capture the ab-
stract concept of functional relationship.

The prostate cancer case study further confirmed this
conclusion. We found enriched GO terms and biologi-
cal pathways, unique to the co-prediction networks, to
be reported in the literature as related to prostate can-
cer. Furthermore, FuNeLs generated networks enriched
with knowledge totally missed by all the co-expression
networks when using the prostate cancer dataset. We
also found that genes corresponding to the topologi-
cally important nodes in the co-prediction networks:
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(1) were altered in a high percentage of tumour sam-
ples in an independent cancer transcriptomic study,
and (2) were already associated with prostate can-
cer according to the specialised literature. Therefore,
the co-prediction networks not only capture biologi-
cal knowledge complementary to the co-expression net-
works, but also highlights better the important genes
involved in the disease process.

The superior performance of FuNeL networks in identi-
fying the disease-associated genes is likely a result of ef-
fective use of the class labels of the samples, which the
similarity-based methods ignore. Although it would be
tempting to attribute this performance difference en-
tirely to the use of supervised learning in FuNeL, it
would be an overstatement, as the knowledge of ex-
plicit links between genes and diseases is not available
to it in training. Our hypothesis is that this is rather a
result of differences in expression values of the disease-
associated genes, which taken together are able to dis-
criminate between sample phenotypes.

Given that our co-prediction networks were found to
be not only biologically meaningful, but also comple-
mentary to similarity-based functional networks, we
believe that network inference based on machine learn-
ing models deserves to be studied in more detail in the
future. In here we only touched the subject of feature
selection and network post-processing, and although
we now know they indeed influence the network topol-
ogy and its biological interpretation, there are many
strategies to choose from in that respect.

At the same time, the machine learning step in the
FuNeL. protocol does not have to be limited to the
rule-based machine learning methods. We can imagine
unsupervised methods, such as the Apriori algorithm
for association rule learning, or other supervised meth-
ods, such as decision tree algorithms (e.g. C4.5 or ran-
dom forest), replacing BioHEL in the FuNeL protocol.
Some adjustment would be necessary to extract the
knowledge from a different model representation, but
the rest of the protocol could remain unchanged. For
example in the case of the decision trees, relationships
could be inferred between attributes that share the
same path from the root to the leaves of a tree. This
potential flexibility in the choice of a learning algo-
rithm, together with the ability to apply the protocol
to different types of data, becomes important in the
context of results correctness. As has been discussed
to a great length in [67], when methods or data used
in the network inference process are tightly controlled,
some results will replicate more easily than others not
because they are correct, but due to a replicable bias.
Therefore a diversity in methods and data is a neces-
sary condition to be able to converge on the scientific
truth.
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Finally, in terms of testing new functional networks,
there is a limit of how thorough and complete a man-
ual literature analysis can be, which leads to a great
need of synthetic or experimentally validated bench-
marks, similar to those proposed for protein-protein
interaction networks or gene regulatory networks. Al-
though we understand that this would be a difficult
and challenging task, we see this as a necessary step
on the way to refining the functional inference meth-
ods.

Conclusions

We presented FuNeL: a protocol for the inference of
functional networks from rule-based machine learning
models. FuNeL is based on the co-prediction paradigm,
which hypothesises that genes used together with a
rule-based machine learning model, are more likely to
be functionally related. We verified that FuNeL cor-
rectly identifies relationships in synthetic datasets and
we thoroughly compared FulNeL to three co-expression
inference methods: PCC, ARACNE and MIC, on 8
real-world datasets. We contrasted the different ap-
proaches by looking at the inferred networks topol-
ogy, enriched biological terms and the relationships
between genes associated with cancer. We found that
FulNeL networks capture relevant biological knowledge
that is complementary to what is captured by the
co-expression approaches, and demonstrated that Fu-
NeL networks are better at identifying relationships
between genes with known disease associations.

Availability of data and material

The datasets used for the analysis were collected from the following public
domain resources:

Dlbcl http://ico2s.org/datasets/microarray.html
CNS http://datam.i2r.a-star.edu.sg/datasets/krbd/NervousSystem/NervousSystem.html
Leukemia http://datam.i2r.a-star.edu.sg/datasets/krbd/Leukemia/ALLAML. html

Lung-Michigan http://datam.i2r.a-star.edu.sg/datasets/krbd/LungCancer/LungCancer-Michigan.html
Lung-Harvard  http://datam.i2r.a-star.edu.sg/datasets/krbd/LungCancer/LungCancer-Harvard2.html
Prostate http://datam.i2r.a-star.edu.sg/datasets/krbd/ProstateCancer/ProstateCancer.html

AML http://www.biolab.si/supp/bi-cancer/projections/info/AMLGSE2191.html

Colon-Breast  http://www.biolab.si/supp/bi-cancer/projections/info/BC_CCGSE3726_frozen.html

The FuNeL source code is publicly available:

Project name: FuNeL

Project home page: http://ico2s.org/software/funel.html
Operating system(s): GNU/Linux

Programming language: Python, R

License: GNU GPLv3
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Functional networks inference from machine learning models
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1 Classification accuracy under feature selection

To choose the default percentage of attributes retained in the feature selection procedure, we performed a
preliminary analysis using all 8 transcriptomic datasets from the main article. We evaluated how the Bio-
HEL classification accuracy changes with the number of selected features (using linear SVM-RFE). The ac-
curacy was measured using a standard 10 cross-fold validation. The full experiment (not reported here) used
100%, 90%, 80%, ..., 10% of the original dataset attributes.

We found that even when only 10% of the attributes are retained, the classification accuracy remains almost
unchanged. Specifically, with 10% of the original attributes the accuracy increased for 2 datasets, slightly
decreased for 3 datasets and remained unaltered for the other datasets. The exact results are reported in
Supplementary Table [1] below:

Supplementary Table 1: BioHEL classification accuracy for each dataset, in 10-fold cross-validation experiments on
the original and reduced set of attributes (before and after the feature selection). Linear SVM-RFE was used to select
best 10% of the attributes.

dataset all attributes 10% attributes
Dlbcl 0.871 0.886
CNS 0.473 0.451
Leukemia 0.945 0.945
Lung-Michigan 0.980 0.980
Lung-Harvard 0.978 0.964
Prostate 0.892 0.892
AML 0.637 0.592
Colon-Breast 0.903 0.940

Given that we were able to maintain good classification accuracy despite large reduction in number of used
attributes, we decided to use 10% attributes as a default setting for the FuNeL feature selection procedure.
However, this FuNeL. parameter is under the user control and the default setting can be changed.

2 Time complexity

The FuNeL protocol has four stages (see Figure 2 in the main article): (1) feature selection (optional), (2)
rule-based network generation, (3) permutation test and (4) second rule-based network generation (optional).

The running time for the whole pipeline depends on the rule set generation time (execution time of BioHEL),
as the optional feature selection stage can be seen as running in constant time. Two main factors that influence
the rule set generation time are: (1) the number of attributes and (2) the number of samples.

We performed an execution time analysis of BioHEL using the largest (in terms of number of attributes) Colon-
Breast dataset (Chowdary et al.l 2006). In the feature selection stage we retained: 20, 200, 2000, 10 000 and
20 000 attributes. From each of these 5 datasets we generated 100 random subsets of 50, 40, 30, 20 and 10
samples. Finally, we ran BioHEL 1000 times to obtain 1000 rule sets for each dataset.

Supplementary Figure [1| shows the running times averaged across 100 000 runs (1000 runs for each of the 100
datasets).
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Supplementary Figure 1: Average execution times of a single BioHEL run for a given number of samples and
attributes.

The total execution time of FuNeL: configurations C; and Cj is calculated as:
T, = (rule_sets x t(attsy, samples)) + (permutation_runs x t(attsy, samples)) (1)

where rule__sets is the number of inferred rule sets, permutation_runs is the number of randomised datasets
used in the permutation test and t(atts;, samples) represents execution time of a single BioHEL run, that
linearly depends on the size of a dataset measured in number of attributes and samples.

Configurations C3 and Cj require an additional run of BioHEL (step 4), and their total execution time is:
Ty =T + (rule__sets X t(attse, samples)) (2)

where attsy is the number of attributes after the permutation test (atts; < attss).

It is important to notice that each run of BioHEL is independent, thus the generation of the rule sets can be
trivially parallelised without any extra overhead. Given n computational cores, the total execution times could

be reduced to: T T
1 2
Treall = Z Treal2 = g (3)



3 Comparison of networks topological properties

The network topology refers to the spatial arrangements of its elements. The analysis of topological properties
tells us how different nodes are connected to each other and how their communication paths look like. There
are many aspects and characteristics that can be evaluated in a network. For simplicity we report just four
metrics: number of nodes, number of edges, clustering coefficient and diameter.

The clustering coefficient is a measure of degree to which nodes in a network tend to cluster together. It
expresses the likelihood that any two nodes with a common neighbour are themselves connected. The diameter
indicates the maximum distance between two nodes in the network.

We compared the topology of the networks built with two different approaches: co-prediction and co-expression.
For each generated network we calculated the topological properties described above. We compare the FuNeL
networks with co-expression networks inferred with different methods. The Supplementary Tables [2] to [d] below
show the results for the PCC, ARACNE and MIC networks.

Supplementary Table 2: Topological properties for co-prediction and PCC co-expression networks generated for all
8 datasets.

Co-prediction Co-expression (SE) Co-expression (SN)
Dataset  Cat. G Cs C. SE(C,) SE(C.) SE(Cs) SE(C)) SN(Ci) SN(C2) SN(Cs) SN(Ci)
Nodes 421 1480 294 988 683 873 843 941 422 1482 203 979
Leukemia Fdges 1520 2294 2154 2646 1529 2294 2154 2646 680 7145 409 2870
CuUKemla - clust.Coef. 0712 0.155 0.589  0.33  0.333 0.348 0.354 0.341 0.323 0.388 0.303 0.344
Diameter 5 6 4 6 24 18 19 22 16 18 9 20
Nodes 429 1419 382 1030 578 930 955 1214 432 1413 384 1027
LuneH Edges 1068 2317 2398 3410 1068 2317 2398 3410 617 4302 476 2650
g€ Clust.Coef. 0344 0298 043 0404  0.356 0.373 0.376 0.372 0.341 0.386 0.296 0.376
Diameter 5 8 5 7 10 23 23 21 6 22 6 23
Nodes 91 919 48 247 76 280 59 119 90 915 50 248
Luney  Edges 134 1858 78 410 134 1858 78 410 224 13574 64 1510
g Clust.Coef. 0379 0262 0418 0457  0.465 0.525 0.446 0.514 0.539 0.523 0.493 0.511
Diameter 3 5 3 3 6 11 6 6 5 14 6 12
Nodes 501 4257 494 3538 945 2152 1616 2607 501 4261 488 3532
CNS Edges 4302 25069 12769 40840 4302 25069 12760 40840 1553 171052 1502 90395
Clust.Coef. 0.743 0255 0521 0302  0.354 0.389 0.367 0.400 0.346 0.427 0.35 0.421
Diameter 4 7 4 6 21 15 23 13 12 13 14 12
Nodes 201 1699 201 1617 207 1411 1238 1790 200 1699 200 1614
Dlbel Edges 848 10471 7351 33170 848 10471 7351 33170 832 24280 832 17865
Clust.Coef. 0.872 0574 0642 0453  0.508 0.438 0.411 0.51 0.501 0.504 0.501 0.481
Diameter 3 5 3 5 2 16 17 14 2 14 2 15
Nodes 890 4802 846 3561 837 1848 1239 1750 897 4799 839 3553
GsEz191  Edges 3200 13424 6469 12074 3290 13424 6469 12074 3711 90410 3202 47806
Clust.Coef. 0488 0.082 0317 0201  0.377 0.409 0.394 0.4 0.382 0.415 0.377 0.417
Diameter 5 9 5 9 25 23 19 21 21 13 25 15
Nodes 668 2077 524 1170 879 1300 992 1367 759 2300 1739 3440
Gs3rag  Edges 1761 3255 2051 3502 1761 3255 2051 3502 1471 9808 5479 26761
Clust.Coef. 0.134 0.0077 0307 0.109  0.226 0.23 0.223 0.233 0.213 0.287 0.254 0.346
Diameter 8 10 7 8 20 26 20 25 26 15 19 15
Nodes 938 4200 704 2277 356 543 322 448 920 4298 702 2287
Prostate  Fdges 3796 10175 3090 6546 3796 10175 3090 6546 33250 914829 16934 24427
Clust.Coef. 0328 0245 029 025  0.565 0.607 0.541 0.584 0.655 0.703 0.641 0.711
Diameter 7 10 6 8 6 9 5 8 8 11 7 12




Supplementary Table 3: Topological properties for co-prediction and ARACNE co-expression networks generated for
all 8 datasets.

Co-prediction Co-expression (SE) Co-expression (SN)

Dataset  Cat. c; C, Cs Ci SE(C)) SE(C,;) SE(Cs) SE(C;) SN(Ci) SN(C») SN(Cs) SN(Ci)
Nodes 421 1480 204 988 1024 1426 1356 1577 422 1480 204 989

Leukemia Edges 1520 2294 2154 2646 1529 2294 2154 2646 512 2416 327 1479
CUKEMIA  Cjust.Coef. 0712 0.155 0.589  0.330  0.002 0.002 0.002 0.002 0.000 0.002 0.000 0.002
Diameter 5 6 4 6 17 19 22 19 9 17 11 19

Nodes 429 1419 382 1030 907 1614 1653 2066 429 1419 382 1030

LuneH Edges 1068 2317 2398 3410 1068 2317 2398 3410 435 1924 375 1250
ung Clust.Coef. 0.344 0.298 0.430 0404  0.007 0.006 0.006 0.005 0.013 0.006 0.012 0.007
Diameter 5 8 5 7 23 16 15 13 14 18 10 18

Nodes 91 919 48 247 143 1321 96 370 91 920 48 247

Luney  Pdges 134 1858 78 410 134 1858 78 410 72 1127 34 259
ung Clust.Coef. 0.379 0.262 0.418 0475  0.000 0.002 0.000 0.009 0.000 0.005 0.000 0.014
Diameter 3 5 3 3 13 17 11 18 11 17 5 11

Nodes 501 4257 494 3538 2002 4509 3581 5342 502 4957 494 3538

CNS Edges 4302 25069 12760 40840 4302 25069 12769 41661 513 20409 505 12358
Clust.Coef. 0.743 0.255 0521 0302  0.004 0.005 0.006 0.026 0.004 0.005 0.004 0.005
Diameter 4 7 4 6 12 8 12 7 20 9 20 12

Nodes 201 1699 201 1617 380 1452 1191 2236 201 1699 201 1617

Dlbel Edges 848 10471 7351 33170 848 10471 7351 33890 269 14149 269 12903
¢ Clust.Coef. 0.872 0574 0.642 0453  0.136 0.126 0.140 0.176 0.113 0.110 0.113 0.115
Diameter 3 5 3 5 13 9 11 5 12 8 12 9

Nodes 800 4802 846 3561 2574 5226 3846 5027 890 4802 846 3561

GsEale;  Edses 3200 13424 6469 12074 3290 13424 6469 12076 846 10671 794 5564
Clust.Coef. 0.488 0.082 0.317 0291  0.002 0.002 0.002 0.002 0.004 0.002 0.004 0.002
Diameter 5 9 5 9 19 13 16 13 30 15 30 17

Nodes 668 2077 524 1170 1362 2167 1546 2279 668 2166 524 1170

Gs3rag  Pdees 1761 3255 2051 3502 1761 3255 2051 3502 787 3250 597 1455
Clust.Coef. 0.134 0.077 0.307 0109  0.024 0.053 0.029 0.050 0.014 0.053 0.016 0.021
Diameter 8 10 7 8 20 20 19 18 15 20 13 19

Nodes 938 4200 704 2277 2760 6805 2268 4575 939 4290 704 2277

Prostate  Edges 3796 10175 3000 6546 3796 10175 3090 6546 1300 6095 1017 3102
rostate  Clust.Coef. 0.328 0.245 0.290 0.250  0.005 0.003 0.006 0.003 0.001 0.003 0.002 0.005
Diameter 7 10 6 8 13 13 15 13 12 13 9 15




Supplementary Table 4: Topological properties for co-prediction and MIC co-expression networks generated for all 8
datasets.

Co-prediction Co-expression (SE) Co-expression (SN)

Dataset  Cat. c; C, Cs Ci SE(C)) SE(C,;) SE(Cs) SE(C;) SN(Ci) SN(C») SN(Cs) SN(Ci)
Nodes 421 1480 204 988 640 807 780 396 421 1480 204 989

Leukemia Pdges 1520 2204 2154 2646 1529 2294 2155 2647 749 6173 432 3096
CUKEMIA  Cjust.Coef. 0712 0.155 0.589  0.330  0.162 0.182 0.180 0.179 0.138 0.180 0.127 0.175
Diameter 5 6 4 6 18 29 27 29 10 17 8 18

Nodes 429 1419 382 1030 384 685 703 944 429 1419 382 1030

LuneH Edges 1068 2317 2398 3410 1068 2317 2399 3410 1264 5867 1045 3841
g Clust.Coef. 0.344 0298 0430 0404  0.349 0.308 0.305 0.302 0.339 0.282 0.343 0.305
Diameter 5 8 5 7 9 13 13 17 7 18 9 19

Nodes 91 919 48 247 118 626 79 219 91 919 48 247

LuneM  Edges 134 1858 78 410 134 1858 78 410 93 3109 38 484
g Clust.Coef. 0.379 0262 0418 0475  0.212 0.272 0.213 0.306 0.208 0.235 0.153 0.302
Diameter 3 5 3 3 8 18 7 8 6 14 3 7

Nodes 501 4257 494 3538 1424 3104 2357 3725 501 4957 495 3538

CNS Edges 4302 25069 12760 40840 4305 25131 12771 40850 704 62208 694 36027
Clust.Coef. 0.743 0255 0.521 0302  0.124 0.154 0.144 0.159 0.089 0.162 0.091 0.161

Diameter 4 7 4 6 17 11 12 10 11 10 11 10

Nodes 201 1699 201 1617 475 1140 1047 1453 203 1699 203 1617

Dlbel Edges 848 10471 7351 33170 848 10471 7362 33172 196 TATT3 196 59307
Clust.Coef. 0.872 0574 0.642 0453  0.111 0.240 0.219 0.319 0.082 0.381 0.082 0.366

Diameter 3 5 3 5 21 13 16 15 11 11 11 11

Nodes 800 4802 846 3561 1700 4129 2617 3883 890 4803 846 3563

GsE219;  Edges 3200 13424 6469 12074 3299 13433 6469 12207 1380 17797 1271 10540
Clust.Coef. 0488 0.082 0317 0291  0.109 0.095 0.098 0.098 0.120 0.095 0.118 0.099

Diameter 5 9 5 9 22 15 18 16 19 15 21 15

Nodes 668 2077 524 1170 1271 1921 1357 1996 672 2152 526 1172

Gs3rag  Pdees 1761 3255 2051 3502 1890 3261 2056 3524 852 3921 538 1705
Clust.Coef. 0.134 0.077 0.307 0.109  0.110 0.100 0.104 0.100 0.126 0.099 0.121 0.117

Diameter 8 10 7 8 23 29 23 28 14 24 14 24

Nodes 938 4200 704 2277 687 839 667 773 964 4290 712 2277

Prostate  Edges 3796 10175 3000 6546 3981 10186 3777 8257 15928 1763794 5254 308709
Clust.Coef. 0.328 0245 0290 0250  0.167 0.278 0.169 0.265 0.313 0.758 0.218 0.661

Diameter 7 10 6 8 7 8 7 8 7 8 7 9

When analysing FuNeL networks we observed, as expected, that configurations having feature selection (Cy and
C3) lead to networks with a smaller number of nodes than when the original set of attributes is used (C2 and
Cy). Furthermore, the second phase of machine learning modeling (C3 and Cy) tends to reduce the number of
nodes as it uses a reduced set of attributes as input (only significant nodes and their neighbours from the first
training phase), while increasing both clustering coefficient and number of edges.

When comparing FuNeL. and co-expression networks we notice that the ARACNE SE counterparts have in
general more nodes. The same patter can be found in SE(Cy and SE(C4) counterparts generated with PCC
and MIC, while it’s not true for the SE-networks based on configurations that use feature selection (C; and
C5). Conversely, SN-networks differ according to the inference method used. In fact ARACNE generated SN
counterparts with less edges, while this is true only for SN(Cy) and SN(C3) inferred with MIC and PCC.
The clustering coefficient is constantly lower in ARACNE networks than in FuNeL, this is probably due to the
pruning phase operated by the method. A similar trend can be noticed for MIC networks with some exceptions
(e.g Prostate SN(C3) and SN(Cy)). A more balanced situation occurs when FuNeL is contrasted with PCC,
in fact networks generated with feature selection (C; and C35) have a lower coefficient than their co-expression
counterparts. Finally a clear pattern emerge when analysing the diameter of the networks. Co-prediction
networks are always more compact than co-expression counterparts having up to 3 time lower diameter for MIC
and PCC and up to 7 time lower for ARACNE.



4 Enrichment Score analysis

In this section we report the network average rankings, based on the Enrichment Score, across the 8 datasets
for each inferring method. The networks are ranked between 1 and N (where N = 4 for FuNeL and N = 8
for PCC, ARACNE and MIC: 4 SE(C;) + 4 SN(C;)). We considered Gene Ontology terms (biological process
(BP), molecular function (MF) and cellular component (CC)) and biological pathways. The last row of each
table represents the average rank across different biological categories.

Supplementary Table 5: Average network ranks for each method across the 8 datasets (based on ES).

Cat. c1 Cc2 C3 c4 PCC (SE) PCC (SN)
Cat. C]_ Cg Cg C4 Cl C2 Cg C4
GO BP 3 4 2 ! GO BP 2 4 1 3 6 7 5 8
GO MF 4 2.5 1 2.5 ©
GO OO 0 1 GO MF 8 35 5 6 7 35 1 2
1 3 Gocc 2 5 4 6 1 8 3 71
Pathways 4 2 3 1 Pathways 6 5 4 3 7 1 8 2
Average 325 3.125 1.75 1.88 Average 45 4.38 3.5 45 525 488 425 475
(a) FuNeL networks (b) PCC networks
ARACNE (SE) ARACNE (SN) MIC (SE) MIC (SN)
Cat . Cl C2 CS C4 Cl C2 CB C 4 Cat. Cl C2 C 3 C 4 C 1 C2 C 3 C 4
GO BP 4 7 55 8 2 55 1 3 GO BP 2 6 4 5 3 8 1 7
GO MF 4 8 4 7 2 6 1 4 GO MF 1 6 4 73 8 2 5
GO CC 3 7 5 8 2 6 1 4 GO CC 3 55 4 55 2 8 1 7
Pathways 1 4 2 6 7 5 8 3 Pathways 2.5 4 1 5.5 8 5.5 7 2.5
Average 3 65 413 725 325 563 2.75 3.5 Average  2.13 538 325 575 4 738 275 5.38

(c) ARACNE networks

(d) MIC networks

We also compared the generated networks against FuNeL. The networks are ranked from 1 to 12: 4 C; + 4
SE(C;) + 4 SN(C;). The ranks in Supplementary Table@are averaged across the 8 datasets, for each biological
category and for each network. The row-wise rank is given in brackets and the highest ranks are shown with
bold font. The following abbreviations were used for GO categories: biological process (BP), molecular function
(MF) and cellular component (CC).

Supplementary Table 6: Average network ranks (co-prediction vs. co-expression).

Co-prediction

Co-expression (SE)

Co-expression (SN)

Method  Cat. [ Cs Cs Ca SE(Cy) SE(C,;) SE(Cs) SE(Ci) SN(C;) SN(C:) SN(Cs) SN(Ci)
GO BP 6.06 (6)  7.00 (7.5 7.00(7.5) 5838 (3.5 5.88(35) 588 (35) 5.12 (1) 588 (3.5) 7.06(9) 775 (12) 7.2 (10) 7.38 (11)
PCC GOMF 781 (11) 538(2)  619(5)  562(3) 912(12) 650 (7.5) 650 (7.5) 7.38(10) 7.19(9)  6.25(6) 4.31 (1) 575 (4)
GO cC 4.31(5) 1100 (12)  4.19(4)  9.00(10) 3.88(2) 6.25(6.5) 6.25(6.5) 8.12(8) 3.19 (1) 9.38(11) 4.06 (3)  8.38 (9)
Pathways 812 (10.5) 4.75 (2) 812 (10.5) 4.38 (1) 6.94(8) 650 (6) 6.69(7) 58 (5)  7.62(9) 500 (3) 850 (12) 550 (4)
GO BP 6.69 (7)  6.25(5.5) 6.94(10) 4.75 (1) 625 (55) 812 (11) 6.8%(8.5) 9.25(12) 519 (3) 6.8 (8.5) 506 (2) 575 (4)
ARACNE GOMF  744(10) 650 (8)  619(65) 569(3)  600(5) 875(12) 562(2) 862(11) 581(4)  7.00(9) 419 (1) 619 (6.5)
GO CC 431 (4) 1075 (12) 344 (3)  825(8) 550 (5) 9.38(10) 6.75(7) 1012 (11) 244 (2) 888(9) 2.31 (1) 588 (6)
Pathways 7.88 (10.5) 5.38 (3) 7.88 (10.5) 5.25(2) 4.88 (1) 6.25(6) 550(4) 7.00(8)  7.56(9)  6.50(7) 838 (12) 556 (5)
GO BP 744 (85) 7.88(11) 744 (85) 6.38(55) 412(2) 7.00(7) 600 (4) 638 (55) 481 (3) 9.12(12) 3.94 (1) 7.50 (10)
MIC GO MF 806 (10) 850 (12) 719(8)  7.75(9) 3.62 (1) 650 (55) 512(3)  6.75(7) 531 (4) 812(11) 456 (2) 6.50 (5.5)
GO CC 519 (6) 1162 (12) 444 (4)  1012(10) 425 (3) 7.12(7.5) 5.12(5) 7.12(7.5) 3.19(2) 1038 (11) 1.69 (1) 7.75 (9)
Pathways 875 (12)  4.75 (1)  7.50 (10) 550 (3)  6.00 (5) 650 (6)  5.00(2)  6.62(7) 7.56 (11) 7.00 (9)  6.94(8)  5.88 (4)




5 Disease association analysis

In this section we report the network average rankings across the 8 datasets for every inferring method based
on the gene-disease association properties: participation in triangular relationship and proximity. We used two
sources for the disease associations: Malacards (Rappaport et al., [2013) (a meta-database of human maladies
consolidated from 64 independent sources) and manually curated databases (OMIM (Hamosh et al., [2005),

Orphanet (INSERM] [1997), Uniprot (Magrane and Consortium, 2011) and CTD (Davis et al., 2015)).

The

networks are ranked between 1 and N (where N = 4 for FuNeL and N = 8 for PCC, ARACNE and MIC: 4
SE(C;) + 4 SN(C;)). The number of disease-associated genes participating in a triangle is denoted as 1A, 2A
and 3A. The last row of each table represents the average rank across different metrics.

Supplementary Table 7: Average network ranks for each method across the 8 datasets (based on disease

associations from Malacards).

Cat. c1 Cc2 ©3 cC4 PCC (SE) PCC (SN)
Cat. C 1 C2 C3 C 4 Cl C2 C3 C4
1A 3 1 1 1A 8 5 6 3 4 1 2 7
2i 4 L 2 2A 7 4 5 3 8 2 6 1
3A 33 1 3A 65 65 65 65 3 2 4 1
Proximity 3 1 4 Proximity 1.5 5 3 15 7 6 8 4
Average 325 1.5 275 25 Average 5.75 5.13 513 35 55 275 5 3.25
(a) FuNeL networks (b) PCC networks
ARACNE (SE) ARACNE (SN) MIC (SE) MIC (SN)
Cat. Cl Cz Cg C4 Cl C2 C3 C4 Cat. Cl Cg Cg C4 Cl 02 Ca C4
1A 4 8 7 55 25 25 55 1 1A 6 3 7.5 1 5 2 7.5 4
2A 7 6 8 1 4 3 2 5 2A 8 3 5 2 7 1 6 4
3A 5.5 1 5.5 2 55 55 b5 5.5 3A 7 2 8 6 5 1 3 4
Proximity 7 3 5 1 6 2 8 4 Proximity 6 1 2 5 7 4 8 3
Average 588 45 6.38 2.38 45 325 525 388 Average 6.75 225 563 35 6 2 6.13 3.75

(c) ARACNE networks

(d) MIC networks

Supplementary Table 8: Average network ranks for each method across the 8 datasets (based on disease

associations from curated databases).

PCC (SE PCC (SN
Cat. cT c2 O3 cC4 (SE) (SN)
Cat. Cl Cg Cg C4 Cl Cz C3 C4
1A 3 1 4 2 1A 8 4 6.5 1.5 6.5 1.5 3 5
2A 3 4 1 2 : : O
A 1 25 25 4 2A 2 7 5.5 3 4 5.5 1 8
A ' : 3A 5 7 4 8 1 6 3 2
Proximity 4 1 3 2 Proximity 4 8 25 7 5 25 1 6
Average 2.75 213 267 25 Average 45 6.5 463 488 513 388 2 525
(a) FuNeL networks (b) PCC networks
ARACNE (SE) ARACNE (SN) MIC (SE) MIC (SN)
Cat. C; Cy Cs Cy C; Cy C3 Cy Cat. Cy Co Cs Cy C; Cy; Cz3 C4
1A 3 5 8 6 2 4 1 7 1A 6 2 4 3 8 1 7 5
2A 5 1 2 3 75 6 75 4 2A 7 3 8 1.5 55 15 55 4
3A 45 45 45 45 45 45 45 45 3A 4 1 8 2 6 5 7 3
Proximity 6 5 4 1 7.5 3 7.5 2 Proximity 5.5 1 3 4 7 2 8 5.5
Average  4.63 3.88 4.63 3.63 538 438 5.13 4.38 Average  5.63 1.75 575 263 6.63 238 683 4.38

(c) ARACNE networks

(d) MIC networks



6 Case study: prostate cancer dataset

In this section we report the additional results from the analysis performed using the prostate dataset (
- ) as a case study. In particular we show: 1) the overlap of enriched terms between co-prediction and
co-expression networks, 2) the overlap between GO terms associated to the hubs of the networks generated with
different methods and FuNeL and 3) the average percentages of alteration for key nodes of both co-prediction
and co-expression networks in an independent dataset.

6.1 Overlap of the enriched terms

We performed an analysis on the enriched terms of each network to highlight the complementary nature of the
co-prediction and the co-expression paradigm. We generated heatmaps showing the unique terms associated
only to co-prediction or co-expression networks. The main manuscript includes the comparison between FuNeL,
and PCC networks, in here we report the analysis performed considering ARACNE (Supplementary Figure [2)
and MIC (Supplementary Figure [3]) networks. For the sake of readability we filtered out the generic GO terms
(with depth < 9 in the GO hierarchical structure).

GO biological process terms Biological pathways
regulation of protein ubiguitination (GO:0031396) . | Alpha adrenergic receptor signaling pathway (P00002)
B B JAKISTAT signaling pathway (P00038)
regulation of eplthelial cell apoptotic process (G0:1904035) . || Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043)
requlation of focal adhesion assembly (GO:0051893) . B Metabotropic glutamate receptor group Il pathway (P00040)
B Oxytocin receptor mediated signaling pathway (P04391)
positive regulation of T cell proliferation (G0:0042102) . HE Beta? adrenergic receptor signaling pathway (P04378)
regulation of neuron projection development (G0:0010975) . . . . Beta3 adrenergic receptor signaling pathway (P04379)
B Cortocotropin releasing factor receptor signaling pathway (P04380)
regulation of calcium ion transport (GO:0051924) - BB Opioid proopiomelanocortin pathway (P05917)
positive regulation of ERK1 and ERK2 cascade (GO:0070374) . | Opioid prodynorphin pattway (P05916)
B Opioid proenkephalin pathway (P0S915)
activation of protein kinase activity (G0:0032147) | | SHT1 type receptor mediated signaling pathway (P04373)
regulation of cysteine type endopeptidase activity involved in apoptotic process (GO:0043281) . . | N | Enkephalin release (P05913)
H B Dopamine receptor mediated signaling pathway (P05912)
positive regulation of pepidyl tyrosine phosphorylation (GO:0050731) - . H B SHT4 type receptor mediated signaling pathway (P04376)

Axon guidance mediated by semaphorins (P00007)
regulation of MAP kinase activity (GO:0043405) Cytoskeletal regulation by Rho GTPase (P00016)
regulation of protein polymerization (GO:0032271) Alzheimer disease amyloid secretase pathway (PO0003)
Metabotropic glutamate receptor group Il pathway (P00039)
B Huntington disease (P00029)
B VEGF signaling pathway (P00056)
P38 MAPK pathway (P05918)

B Axon guidance mediated by netrin (P00009)

regulation of actin filament polymerization (GO:0030833)

regulation of cysteine type endopeptidase activity (GO:2000116)

A
o
&

cytosolic calcium ion homeostasis (GO:0051480)
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Supplementary Figure 2: Number of non-common enriched GO terms (biological process) for each
network configuration (generated from the prostate cancer dataset). On the x-axis we show the 12 investigated
networks. On the y-axis we show the names of enriched terms unique to co-prediction or ARACNE co-expression
networks. Red terms are associated with co-expression networks, blue with co-prediction. Empty columns indicate
networks with no unique terms.

GO biological process terms Biological pathways
regulation of neuron projection development (GO:0010975) . . . Alpha adrenergic receptor signaling pathway (P00002)
regulation of focal adhesion assembly (GO:0051893) B . . JAKISTAT signaling pathway (P00038)
regulation of neuron differentation (GO:0045064) | I [ | Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043)
positive regulation of neuron differentiation (GO:0045666) . . . Metabotropic glutamate receptor group If pathway (PO0040)
positive regulation of epithelial cell migration (GO:0010634) .
regulation of epithelial cell migration (G0:0010632) . [l | Oxytocin receptor mediated signaling pathway (P04391)
regulation of epithelial cell apoptotic process (G0:1904035) | [l . . Beta2 adrenergic receptor signaling pathway (P04378)
positive regulation of neurogenesis (G0:0050769) | [l [l B B Beta3 adrenergic receptor signaling pathway (P04379)
regulation of protein ubiquitination (GO:0031396) - . Cortocotropin releasing factor receptor signaling pathway (P04380)
positive regulation of ERK1 and ERK2 cascade (G0:0070374) [l B B Opioid proopiomelanocortin pathway (P05917)
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Supplementary Figure 3: Number of non-common enriched GO terms (biological process) for each
network configuration (generated from the prostate cancer dataset). On the x-axis we show the 12 investigated
networks. On the y-axis we show the names of enriched terms unique to co-prediction or MIC co-expression networks.
Red terms are associated with co-expression networks, blue with co-prediction. Empty columns indicate networks with
no unique terms.



When comparing ARACNE and FuNeL, we found 16 unique pathways for co-prediction networks and 8 for
co-expression. In terms of unique GO terms, the overlap was more balanced, 7 for co-prediction networks and
9 for co-expression networks. Cy and Cj, generated without feature selection, had the largest number of unique
pathways, while SE(Cs) had the highest number of terms for ARACNE. The comparison of FuNeL with MIC
generated many empty columns (Supplementary Figure |3 for the GO terms because several networks resulted
having no unique enriched terms. All the 15 unique GO terms related to MIC were associated to SN(C3) (and
with SN(Cy) in two cases), conversely FuNeL had more networks sharing the 12 unique terms. Finally, as
noticed for in the ARACNE comparison, FuNeL. networks are more enriched in biological pathways: 16 against
8 unique terms for MIC co-expression.

6.2 Overlap of hub-related terms

We also analysed the gene associated to the hubs of each network in order to compare the biological knowledge
associated to them. A node v was considered to be a hub if its degree was at least one standard deviation above
the mean network degree, that is if:

d(v) > pg +oq (4)

where d(v) is a degree of the node v, and ug and o4 are the mean and standard deviation of a network node
degree distribution.

To compare the networks, we used the 10 most frequent GO terms (biological processes) shared among each
network’s hubs. Supplementary Figures [4] to [6] show the terms-overlap analysis between FuNeL networks and
PCC, ARACNE and MIC respectively. To make this analysis more specific we have discarded the most generic
/ most common terms (which could be be associated with many genes), we considered only the GO terms
situated at level 10 of the GO hierarchy or lower.

Blue terms were found only in co-prediction networks, red terms were found only in co-expression networks,
and green terms were found in both. In Supplementary Table [J] we summarise the number of unique and
common terms shared between networks created with different approaches. This analysis further highlights the
complementary nature of co-prediction and co-expression approach, the terms that are paradigm-specif always
outnumber the common ones.

Supplementary Table 9: Unique and common terms from networks’ hubs

Terms PCC ARACNE MIC
Co-prediction 16 18 16
Co-expression 19 20 19
Common 11 9 11
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Supplementary Figure 4: Top 10 most frequent biological processes from Gene Ontology found in the network hubs
when comparing FuNeL and PCC co-expression networks.
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Supplementary Figure 5: Top 10 most frequent biological processes from Gene Ontology found in the network hubs
when comparing FuNeL. and ARACNE co-expression networks.
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Supplementary Figure 6: Top 10 most frequent biological processes from Gene Ontology found in the network hubs
when comparing FuNeL. and MIC co-expression networks.
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6.3 Validation on independent dataset

In this section we report additional informations about the analysis performed using data from the independent
prostate cancer study (Taylor et al.,[2010) available in the cBioPortal for Cancer Genomics (Cerami et al.,2012).
In particular we report the full list of alterations for the topologically important genes analysed in the main
article. The Supplementary Figure show the percentage of altered tumour samples for top 10 hubs (nodes
with highest degree) and top 10 central nodes (with highest betweenness centrality) in the best performing
networks according to the gene-disease association analysis (using the information from the curated databases).
The selected networks are Cy for FuNeL, SN(Cs3) for PCC, SE(Cy) for ARACNE and SE(C3) for MIC. For
all of them we report the alterations for both hubs and central nodes.
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Supplementary Figure 7: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest degree (hubs) in C2 network are shown.
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Supplementary Figure 8: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest betweenness centrality (central nodes) in C2 network are shown.

13



PCBP3

HAUSS

PSG1

LGALS9

KAT7

POUA4F1

SLC9A1

PAX8

Genetic Alteration I Amplification I Deep Deletion I] mRNA Upregulation I] Downregulation

ODF1

BCR

Supplementary Figure 9: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest degree (hubs) in PCC SN(Cs) network are shown.
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Supplementary Figure 10: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest betweenness centrality (central nodes) in PCC SN(Cs) network are shown.
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Supplementary Figure 11: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest degree (hubs) in ARACNE SE(C4) network are shown.
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Supplementary Figure 12: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest betweenness centrality (central nodes) in ARACNE SE(C4) network are shown.
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Supplementary Figure 13: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest degree (hubs) in MIC SE(C?) network are shown.
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Supplementary Figure 14: Percentage of alterations in tumour samples from an independent cancer genomic study.
Genes with highest betweenness centrality (central nodes) in MIC SE(C2) network are shown.
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7 Visualisation of the co-prediction and co-expression networks

In this section we include the layouts of co-prediction and co-expression networks for three of the datasets used
in the main article: Prostate (used in the case study) and Lung-Michigan (small networks). Only a few examples
are shown, for which the differences in the topology of the networks generated with the two approaches is the
most visible. The networks were visualised using the Organic Layout in Cytoscape (Shannon et all, [2003).
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