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Abstract. In this paper we describe the application of a so called “Self-Generating” Memetic Algorithm to the
Maximum Contact Map Overlap problem (MAX-CMO). The maximum overlap of contact maps is emerging as a
leading modeling technique to obtain structural alignment among pairs of protein structures. Identifying structural
alignments (and hence similarity among proteins) is essential to the correct assessment of the relation between
proteins structure and function. A robust methodology for structural comparison could have impact on the process
of rational drug design.

The Self-Generating Memetic Algorithm we present in this work evolves concurrently both the solutions (i.e.
proteins alignments) and the local search move operators that it needs to solve the problem instance at hand. The
concurrent generation of local search strategies and solutions allows the Memetic Algorithm to produce better
results than those given by a Genetic Algorithm and a Memetic Algorithm with human-designed local searchers.
The approach has been tried in four different data sets (1 data set composed of randomly generated proteins and
the other 3 data sets with real world proteins) with encouraging results.
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1. The comparison of protein structures

The comparison of proteins structures is at the core of today’s biomedical research. Although
a variety of structure comparison methods have been proposed and used in classification
servers, such as SCOP [38], DALI [19], LGA [52, 53], structure comparison is still consid-
ered an open problem. Identifying structural similarities is essential to the correct assessment
of the relation between structure and function in proteins. Without the ability to perform
reliable and efficient structural matchings rational drug design becomes a more difficult task.

When sequence similarities cannot be used to infer relationships among proteins, distant
evolutionary membership to protein families can still be assessed with structural measures.
Researchers interested in comparing and evaluating function, structures and sequences have
at their fingertips more than 30 genomes fully sequenced and available through the Internet.1

To understand a protein’s biological function, biologists usually resort to the comparison
of a target protein with known ones. That comparison, if the sequences are more than
25% identical, can be made at the sequence level. Below that 25% similarity threshold,
relationships between proteins are made based on structure. This approach takes the name of
structural genomics. There is yet another important role for structural matching algorithms:
the evaluation of ab-initio, threading or homology modeling structure predictions. In the
words of Zemla et al. [53]:
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“With the significant expansion of activity in the structure prediction field, processing
and subsequent analysis of predictions has become increasingly complex. . . One of the
lessons learned from CASP is that analyzing the effectiveness of prediction methods
is not a trivial matter. . . To evaluate predictions, first we need an analytical approach
to identify what in a prediction worked and what failed. Second we need a comparative
approach, using both general and specialized techniques, to identify which methods work
best, and which address a specific aspect of prediction most successfully.”

To assess the quality of a prediction, a target structure must be compared with the predicted
structure (the model) in order to determine which regions of the later closely resemble the
former. Hence, any advancement in structural matching will also have an impact on structure
prediction and its evaluation methodologies.

Several researchers proposed different methodologies to assess structure similarities.
Those methodologies range from dynamic programming [49], comparisons of distance
matrices [19], maximal common sub-graph detection [1] and geometrical matching [51],
to name a few. There are, however, several problems associated with the most common
approaches. These problems are often related to the fact that methods implicitly accept
that a suitable scoring function can be defined for which optimum values correspond to
the best possible structural match between two structures. Also, approaches that employ
root-mean-square-distances, e.g., [7, 34], and differences of distance matrices, e.g., [20],
present numerical instabilities problems; other algorithms cannot produce a proper ranking
due to an ambiguous definition of structural similarity or the fact that they neglect alternative
(different) solutions. More recent approaches that partially address these problems can be
found in [21, 31, 53].

In [17] Goldman et al. present the following list of desirable properties for a structural
similarity metric:

– it should not penalize too heavily insertions and deletions,
– it should be reasonably robust, in that small perturbations of the definition should not

make too much difference in the measure,
– it should be easy to compute (or at least rigorously approximated),
– it should be able to discover both local and global alignments,
– it should be able to discover hydrophilic-hydrophobic alignments,
– it should take into account the self-avoiding nature of a protein,
– it should be subject to empirical studies on Protein Data Base (PDB) data to validate its

success in capturing structural similarity, and
– even if one comes up, from a theoretical standpoint, with a “perfect” measure, it will be

difficult to displace entrenched measures, used for years by protein scientists. Acceptance
in the field is thus a further desideratum.

The authors go on to argue that contact map overlap is the only measure that comes close
to realizing the mentioned list of desirable properties. Thus, one of the emerging techniques
for solving this problem is the Alignment of Contact Maps.

1.1. The maximum contact map overlap problem

In its simplest form, a contact map is a matrix of all pairwise distances within a protein[6,
33, 36]. It is a minimalist representation of a protein’s native three dimensional structure.
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In its most abstract formulation, it takes the form of:

Si, j =
{

1 if residue i and j are in contact
0 otherwise

(1)

Residues i and j are said to be in contact if they are closer than a threshold of, for instance,
R Angstroms. In this version of the contact map, distances are not explicitly represented
(usual values for R are between 2 and 9 Angstroms), rather a Boolean value is assigned to
a matrix cell specifying whether two residues are considered neighbors or not.

Contact maps are used in two main flavors;2 either the distance considered to specify R
is that of the Cα atoms of the residues involved, or the minimum distance between any two
atoms belonging to those residues. In more specific formulations, the entries in Si, j will be
positive real numbers specifying the interresidue distances. Several combinatorial problems
associated with the alignment of distance matrices were reported in the literature. See [19,
22, 39] and references therein for a thorough discussion.

As mentioned before, the contact map captures the three dimensional structure of proteins;
for example, in matrix Si, j , α-helices are represented by wide bands on its main diagonal,
while β-sheets manifest themselves as bands parallel or perpendicular to it. Figure 1(a)
shows the three dimensional structure of protein 1C7W while Figure 1(b) shows the matrix
representation of Si, j for this protein. Several software packages, some of them in the public
domain, permit the user to compute and display contact maps3 (see [43, 48] and references
therein). A contact map can also be represented as an undirected graph. In this graph, each
residue is a node and there exists an edge between two nodes if they are neighbors in the
sense described before. The graph representation, rather than the matrix one, is exploited
in the Maximum Contact Map Overlap Problem (MAX-CMO). An alignment between
two contact maps is an assignment of residues in the first contact map to residues on the
second contact map. Residues that are thus aligned are considered equivalent. The value of
an alignment between two contact maps is the number of contacts in the first map whose
end-points are aligned with residues in the second map that, in turn, are in contact (i.e. the

Figure 1. Protein structure and its contact map (binary) graphical representation for protein 1C7W which mainly
contains alpha-helix features.
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Figure 2. Three dimensional native structures for proteins 1AA9 (a) and 1HNF (b).

Figure 3. Two snapshots of our code to plot the contact map of 3d structures. Proteins 1AA9 (a) and 1HNF (b)
from the PDB are shown.

number of size 4 undirected cycles that are made between the two contact maps and the
alignment edges). This number is called the overlap of the contact maps and the goal is to
maximize this value. The Max CMO problem was introduced in [15] and proved NP-hard
in [17] and later in [25].

Figure 2 presents the native structures for two proteins and in Figure 3 we can see their
respective contact maps. Note the long range interactions of residues induced by the beta-
sheet features. These residues are far away in the sequence but close in the three dimensional
structure. A candidate alignment for the two contact maps is shown in Figure 4 (equivalent
residues are identified by (slanted) vertical alignments). Note that although some residues
are considered to be equivalent by this alignment, they do not necessarily present identical
local contact maps. An alignment cannot always satisfy all the constraints that the two
contact maps induce, hence a solution is a compromise isomorphism between sub-graphs
of the global contact maps.

Once the contact maps of two proteins are computed the task that remains, automatically
comparing them,4 is the most difficult. Eidhammer in [12] said:

“In structure comparison, we do not even have an algorithm that guarantees an optimal
answer for pairs of structures. . . ”

However, after recent work in [5, 32], the optimal comparison of structures is possible
by means of the overlap of contact maps. The first rigorous approach to contact maps
overlap was introduced by Lancia et al. [32]. This approach is based on an effective
integer programming (IP) formulation of protein structures contact map overlaps and the
development of a branch and cut strategy that uses lower bounding heuristics at the branch
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Figure 4. A candidate alignment of value 42 for the contact maps of proteins 1A99 and 1HNF.

nodes. Also, a linear programming (LP) formulation exists that provides upper bounds on
the value of the optimal alignments. These upper bounds allow us to compare the results
produced by our algorithms (lower bounds) with those of the LP formulation. Having the
upper and the lower bounds for the value of the resulting structural overlap of two proteins
is a strong certificate of quality for the alignment, and an indication of how similar two
protein structures really are.

2. Self-generating memetic algorithms

Several of the most successful metaheuristics for hard combinatorial problems are rooted
in the appropriate coordination of low level heuristics (e.g. local search operators, con-
structive methods, genetic operators, etc) to produce one or more solutions to a specific
problem instance. Among the most popular examples of metaheuristics for hard combi-
natorial problems are Variable Neighborhood Search (VNS) [18], Memetic Algorithms
(MAs) [35], Tabu Search [14], GRASP [42], Ant Colony Optimization (ACO) [10], Simu-
lated Annealing [23] and various forms of Evolutionary Algorithms [2]. One of the simplest
of these is VNS where at any one time during the optimization process only one solution
to the problem instance is produced. The low level heuristics (LLHs), also called move
operators, are applied in a well defined fixed schedule one after the other to improve the
current solution. On the other hand, MAs,5 employ a population of solutions and a variety
of low level heuristics (also called in this context genetic and local search operators). The
idea behind using a population of solutions, instead of just one (as used in VNS, GRASP
or Tabu Search), is to produce a more accurate sampling of the solution space, rendering
the learning and optimization process more robust.

As the No Free Lunch theorem shows [50], no one metaheuristic is best across all instances
and all problems. Moreover, a sort of conservation of competence applies, in the sense that
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the better one algorithm is solving a specific instance (class) the worst it is solving a different
instance (class) [44]. Hence, it is simply incorrect to a priori assume that the most complex
(or for that purpose the simplest) metaheuristic is best suited for all possible situations.

A vast number of very successful applications of Memetic algorithms (MAs) have been
reported in the literature in the last years for a wide range of problem domains. See Moscato’s
web-based bibliography on Memetic Algorithms for an up-to-date overview of the field [37].
The majority of the papers dealing with MAs are the result of the combination of highly
specialized pre-existing local searchers and usually purpose-specific genetic operators.

In order to have greater applicability, robustness and re-use, variants of current meta-
heuristics are needed that do not require a priori detailed knowledge of the instances to be
solved or a subtle understanding of the interplay between the different low level operators.
What it is needed are metaheuristics that can self-generate [25] the specific kind of local
search, constructive method, genetic operator, etc., which are best suited to the classes of
instances the metaheuristic is being presented with.

In [25, 27, 46, 47] it was proposed and demonstrated that the concept of Self-Generating
Memetic algorithms (called Co-evolutionary Memetic Algorithms in [46])can be imple-
mented by following more closely the dual inheritance dynamics of a coupled gene-meme
evolutionary system [11, pp. 186] where two-replicators (i.e. genes and memes) co-exist.
Gabora [13] mentions three phenomena that are unique to cultural (i.e. memetic) evolution,
namely, Knowledge-based operators, imitation and mental simulation. It is these three phe-
nomena that our Self-Generating Memetic Algorithm implements, and by virtue of which,
can produce its own local searchers.

3. Self-generating memetic algorithms for MAX-CMO

In [32] Lancia et al. used a standard GA with specially tailored genetic operators to pro-
vide solutions and lower bounds for the pairs of proteins that were bench-marked. Later a
Multimeme algorithm was proposed that, while using the same representation and genetic
operators as the GA [32], also included a set of local searchers that were shown to improve
the quality of the alignments (i.e. better overlap values) [5]. In this paper we will use the
same representation and genetic operators as were used in the mentioned papers and we
will compare our results with those in [5].

In an evolutionary algorithm for Max CMO a chromosome is represented by a vector
c ∈ [0, . . . , m]n , where m is the size of the longer protein and n the size of the shorter.
A position j in c, c[ j], specifies that the j th residue in the longer protein is aligned to the
c[ j]th residue in the shorter. A value of −1 in that position will signify that residue j is
not aligned to any of the residues in the other protein (i.e., a structural alignment gap).
Unfeasible configurations are not allowed. That is, if i < j and c[i] > c[ j] or i > j and
c[i] < c[ j] (e.g., a crossing alignment) then the chromosome is discarded. It is simple to
define genetic operators that preserve feasibility based on this representation. Two-point
crossover with boundary checks was used to mate individuals and create one offspring.
Although both parents are valid alignments, the newly created offspring can result in invalid
(crossed) alignments. After constructing the offspring, feasibility is restored by deleting any
alignment that crosses other alignments. The mutation move employed in the experiments
is called a sliding mutation. It selects a consecutive region of the chromosome vector and
adds (slides right) or subtracts (slides left) a small number. The phenotypic effect produced
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is the tilting of the alignments. Due to space limitations we invite the reader to consult [5]
and [32] for details on these genetic operators. In our previous work [5] we employed a
multimeme algorithm that also had a set of 6 human-designed local search operators. Four
of the local searchers implemented were parameterized variations of the sliding operator.
The direction of movement, left or right sliding, and the tilting factor, i.e., the number added
or subtracted, were chosen at random in each local search stage. The size of the window
was taken from the set {2, 4, 8, 16}. Two new operators were defined: a “wiper” move and
a “split” move. At every iteration of a wiper move operator, two alignments are chosen
and re-aligned onto various different residues, keeping two (of the four) anchoring points
fixed. The best alignment was chosen as the next solution. The split operator was used
to redistribute consecutive alignments by introducing gaps in the (partial) isomorphism
encoded by a solution. Details of these human-designed local searchers can be found in [5].

3.1. Memes description

As mentioned in previous sections, we seek to produce a metaheuristic that creates from
scratch the appropriate local searcher to use under different circumstances. The embodiment
of a local searcher is performed by memeplexes [4]. A memeplex is a co-adapted complex
of memes. A meme represents one particular way of doing local search. Memes can adapt
through changes in their parameter set or through changes in the actions they perform. The
local search involved can be very complex and composed of several phases and processes.
In the most general case we want to be able to explore the space of all possible memes.
One can achieve this by using a formal grammar that describes memeplexes and by letting
a Genetic Programming [24] based system evolve sentences in the language induced by
that grammar [25]. Sentences represent syntactically valid complex local searchers that are
the instructions used to implement specific search behaviors and strategies. The grammar
below characterizes the space of potential memeplexes that the Self-Generating Memetic
Algorithm in this paper explores:

– Memeplex = < Meme > | < Meme >:< Memeplex >

– Meme = (< Where >, < When >, < How >, < Frequency >)
– Where = < Location > Crossover | < Location > Mutation | < Location >

Update Function
– Location = After | Before
– When = < BooleanCondition > | < Probability >

– How = GeneralHillClimber’ < Move >→< Move > ‘ < Strategy ><

Iterations > |
BoltzmannAdaptiveHillClimber < Move > < Strategy > < Iterations >

– Frequency = Always|For < Iterations > |Never|. . .
– Move = < Num > | < Num > − < Move >

– Strategy = FirstAscent < Size > |SteepestAscent < Size > |MiniMax
< Size > |MaxiMin < Size > |XAware|MAware

– Size = < Num >

– Iterations = < Num >
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In this grammar for memeplexes, < Num > and > Probability > are assumed to be
integer and real numbers respectively (with the later within the [0, 1] interval). An example
of a sentence in the language induced by the previous grammar, i.e. a particular local search
strategy, is the following:

memeplex’ = (Before Crossover, 1.0, BoltzmannAdaptiveHillClimber ‘2 → 2‘ FirstAscent
50 3, Always): (After Mutation, If Not Feasible, GenerallHillClimber ‘1 − 2 − 3 →
2 − 4 − 6‘ SteepestAscent 100 1, Always)

This example specifies a memeplex for local search with the following characteristics:
Two local search processes (memes) are scheduled to occur, one of them just before
crossover takes place and the other immediately after mutation takes place.6 These two
local searchers are of a different nature. The local searcher associated with crossover is
executed with a probability of 1.0 (i.e. every individual goes through a process of local
search improvement) by using a Boltzmann adaptive hill-climber [29]. The hill-climber’s
move operator is defined by ‘2 → 2‘. This representation is explained in detail later on. The
best of the sampled points are accepted following a first ascent strategy (i.e. the first solution
that improves the current one is accepted). The acceptance strategy can sample, using move
operator ‘2 → 2‘, at most 50 points and the process is repeated 3 times. The local search
represented by this meme is always applied, meaning in this context, in every generation of
the memetic algorithm. On the other hand, the meme for the local search associated with
mutation specifies that it should only be applied if the current solution is unfeasible. In
that case, it will use a general hill climber with move operator ‘1 − 2 − 3 → 2 − 4 − 6‘,
using a steepest ascent strategy that samples at most 100 candidate points. This process is
repeated only once for each candidate structure. The meme is activated always, that is, in
each generation.

To understand the representation used to evolve the move operator itself we resort to a few
examples. In Figure 5 we can see two contact map alignments produced by our algorithm.
All the contact maps represented in the figure have a very specific pattern of contacts among
their residues, in the present example, with a certain probability a residue is connected to

Figure 5. Two contact map alignment snapshots. In (a) the two randomly generated proteins have 10 residues,
while in (b) the patterns of contacts are maintained but the protein is 50 residues long.
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its neighbor, to a residue that is 7 residues away in the protein sequence or to both. In
Figure 5(a) a protein 10 residues long is aligned with itself, while in 5(b) this is done for a
50 residues long protein.

This contact pattern can be represented by the string 1–7, meaning that the residue which
occupies the i th position in the protein sequence is in contact in the native state with residues
(i + 1)th and (i + 7)th. An appropriate move operator for a local searcher acting in any of
the contact maps on Figures 5(a) and (b) would be one that iterates through every residue
in one of the contact maps, checking which residues on the lower contact map fulfills the
pattern of connectivity, and makes a list of them. The same procedure would be applied to
the top contact map producing a second list of residues. The local searcher would then pair
residues of one list with residues of the second list, and thus producing a new and correct
alignment. The number of residues that verifies the pattern in each list puts an upper bound
on how expensive the local search move operator can be. If the size of the first list is L1,
and that of the second L2, and without loss of generality we assume that L1 ≤ L2 then
there are at most

∑i=L1
i=1 ( L1!

(L1−i)!∗i!
L2!

(L2−i)!∗i! ) pairings. That is, each L1 taken by i residues
in the shortest list can be paired with L2 taken by i residues of the second (and longest)
list.7 Clearly this number is too big to be searched exhaustively, this is why the previous
grammar allows for the adaptation of the sample size. Moreover, although it is well known
that real proteins present these contact patterns [8, 41], it is impossible to know a priori
which of these patterns will provide the best fitness improvement for a particular pair of
protein structures. Hence, the Self-Generating MA needs to discover this by itself. As a
further example consider the contact maps in Figure 6.

In this figure the contact maps to be aligned have the same number of residues as before
but the contact patterns are different. In this case, each residue could be in contact only
with one other residue 5 positions away. The representation of the move operator for our
first example is ‘1 – 7 → 1 – 7‘, while for the second example it is ‘5 → 5‘. If the contact
maps of the two proteins to be aligned were different (in the previous cases a protein was
aligned with itself for the sake of clarity), then a move operator able to account for that
variation in patterns must be evolved. In the examples that appear in Figure 7 one possible
move operator would be ‘1 – 3 → 1 – 4‘.

The move operator induces a neighborhood for every feasible alignment. If an alignment
s is represented as above and L1, L2 are the list of vertices that matches the move operator,

Figure 6. Two contact map alignment snapshots. In (a) the two randomly generated proteins have 10 residues,
while in (b) the patterns of contacts are maintained but the protein is 50 residues long.
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Figure 7. Two contact map alignment snapshots. In (a) the two randomly generated proteins have 10 residues,
while in (b) the patterns of contacts are maintained but the protein is 50 residues long.

then every feasible solution that can be obtained by adding to s one or more alignments
of vertices in L1 with vertices on L2 is a neighbor of s. The other components of a meme
will then decide how to sample this neighborhood and which solutions to accept as the next
one. As this paper is an account of the initial investigations we performed on the use of
SGMA, we fixed several aspects of the memes that could otherwise be evolved. That is, in
this paper all memes employ first improvement ascent strategy and they are applied after
crossover. In addition, the evolved local searcher used a sample size of either 50 or 500 and
it was iterated 2 times.

As we mentioned previously, there were three memetic processes: imitation, innovation
and mental simulation. Upon reproduction, a newly created offsprings inherited the meme
of one of its parents accordingly to the simple inheritance mechanism described in [30]. In
addition to this mechanism, and with a certain probability (called “imitation probability”),
an individual could choose to override its parental meme by copying the meme of some
successful individual in the population to which it was not (necessarily) genetically related.
In order to select from which individual to imitate a search behavior, a tournament selection
of size 4 was used among individuals in the population and the winner of the tournament
was used as role model and its meme copied. Innovation was a random process of mutating
a meme’s specification by either extending, modifying or shortening the pattern in a meme
(either before or after the →). If during 10 consecutive generations no improvement was
produced by either the local search or the evolutionary algorithm a stage of mental simula-
tion was started. During mental simulation, each individual (with certain probability) will
intensively mutate its current meme, try it in the solution it currently holds, and if the mutant
meme produces an improvement, both the newly created solution and the meme will be
accepted as the next state for that individual. That is, mental simulation can be considered
as a guided hill-climbing on the memetic space. If ten mental simulation cycles finished
without improvements, then metal simulation was terminated and the standard memetic
cycle resumed.

4. Experimental settings

The following sections describe several experiments to investigate whether Self-Generating
Memetic Algorithms are at least as competent as human-designed ones. That is, is the
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co-evolution of local searchers within MAs at least as productive in terms of quality of
solutions as hand-made local searchers?. With this goal in mind we conducted two family
of experiments, one based on randomly generated contact maps and the other with contact
maps obtained from real proteins.

4.1. Experiments with random contact maps

We designed a random instance generator with the purpose of parameterizing the complexity
of the contact map overlap problems to be solved. The input to the random instance generator
is a list of the form:

r d n p1 pr1 p2 pr2 . . . pn prn,

where r is the number of residues in the randomly generated contact map, d is the density
of random edges (i.e. noise) and n is the number of patterns in the contact map. For each
of the n patterns two numbers are available, pi and pri . Pi specifies that a residue j is
connected to residue j + pi with probability pri for all i ∈ [1, n]. Every pattern occurs
with certain probability in each residue, thus an upper bound on the expected number
of contacts is given by r ∗ d + r ∗ ∑i=n

i=1 pri ≤ r ∗ (n + d). In our experiments r ∈
{10, 50, 100, 150, 200, 250}, d = 0.01 and n ∈ {1, 2, 3, 4}. Contact maps as short as
10 residues and as long as 250 residues were considered. For each contact map length,
every possible number of patterns was used, which gives rise to 24 pairs of (r, n) values. For
each pair, 5 random instances were generated spanning from low density contact maps to
high density contact maps.8 A total of 120 instances were generated. From all the possible
parings of contact maps, we randomly choose a total of 96 pairs to be aligned by means of
10 runs each.

We present next comparisons of the performance of a Genetic Algorithm versus that of the
SGMA. We were able to reproduce the results of [5, 32] and consider our implementations
as equivalent to the earlier ones.

In Figures 8(a) and (b) and 9(a) and (b) we compare the overlap values9 against the first
hitting times. First hitting time (FHT) is the time (in number of fitness evaluations) at which
the best value of a run was encountered. Each graphs presents the results for 1, 2, 3 and 4
patterns respectively and for a range of contact maps sizes. The particular parameters used
in the GA and the SGMA for these experiments are shown in Table 1.

The Figures in 8 and 9 are representative of the results obtained with these two types of
algorithms. Under a variety of changes to the values in Table 1 the results remain equivalent
to those shown here.

From the figures we can see that the Self-Generating Memetic Algorithm produces a
much better amortized overlap value than the simple GA. If enough time is given to the
SGMA, it will sooner or later discover an appropriate local searcher move that will supply
new building blocks. In turn, this will deliver an order of magnitude better overlaps than the
Genetic Algorithm. Also, it seems that the GA is oblivious to the size (i.e. residues number)
of the contact maps as it seems to produce mediocre local optima solutions even when given
the maximum CPU time allocation (in these experiments 2 × 105 fitness evaluations) for
the whole range of 10 to 250 residues. The GA converges very soon into local optima, this
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Figure 8. Comparison of the first hitting times and the quality of overlaps obtained for GA and SGMA on
increasingly difficult randomly generated instances. Complexity increases as a function of residues number.
Contact maps present one pattern (a) and two patterns (b).

Figure 9. Comparison of the first hitting times and the quality of overlaps obtained for GA and SGMA on
increasingly difficult randomly generated instances. Complexity increases as a function of residues number.
Contact maps present three patterns (a) and four patterns (b).

is seen in the graphs by bands parallel to the x-axis over the range of energy evaluations for
low overlap values. On the contrary, as the SGMA continuously improves its solutions, it is
not until very late in the execution (i.e. to the right of the x-axis) that the best solutions are
found. In contrast to the GA, the SGMA (as expected) is sensitive to the number of residues
in the contact maps involved. Longer contact maps require larger CPU time to come up with
the best value of the run (which is seen in the graph in the clustering patterns for the different
residues number). Another important aspect to note is that both the x-axis and the y-axis are
represented in logarithmic scales. Taking this into consideration it is evident that the quality
of the overlaps produced by the SGMA are notoriously better than those produce by the
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Table 1. Value of parameters for the GA and the SGMA

Parameter GA Self-generating MA

Mutation prob. 0.15 0.15

Crossover prob. 0.75 0.75

µ 50 50

λ 75 75

Local search prob. NA 1.0

Imitation prob. NA 1.0

Imitation neigh. size NA 4

Mental sim. prob. NA 1.0

Innovation prob. NA 1.0

Iteration number NA 2

LS CPU budget NA 50

Mental effort NA 50

GA. As it is evident from the graphs, for sufficiently small instances (e.g. all the 10 residues
long and some of the 50 residues long) it is not worth using the SGMA as it requires more
CPU effort to produce the same quality of overlaps as the GA. On the other hand, as the
number of residues increases beyond 50, then the instances become sufficiently complex to
allow for the emergence of suitable local searchers in time to overtake and improve on the
GA results. Also, as the number of patterns that are present in the instances increases both
algorithms, as expected, require larger amounts of CPU to come up with the best solution
of a run. However, the GA is still insensitive to the number of residues, while the SGMA
is clustered in the upper right corner (of Figure 9(b)). This indicates that during the SGMA
execution the algorithm is making progress toward better and better solutions, the best of
which is to be found near the end of the run. Moreover, this behavior indicates that the
SGMA is not prematurely trapped in poor local optima as the GA. The ability of the SGMA
to overcome local optima comes from the fact that the evolved local searchers will introduce
good building-blocks that match the particular instance. This supply of building-blocks is
essential for a synergistic operation of both the local searcher and the genetic operators.

4.2. Real proteins

In this section we compare the performance of the Self-Generating Memetic Algorithm with
the results reported in [5] (which in turn are better than those of [32]). We used 18 pairs
of protein structures taken from the PDB [3]. These proteins represent a mix of alpha, beta
and alpha-beta types. Although in general residues equivalences will be sought for similar
(i.e. structurally related) proteins, in some cases it might be necessary to obtain alignments
(and structural similarity assessments) of proteins that are unrelated. The evaluation of
ab initio, threading or homology modeling structure predictions [9, 45] is an example of
these situations. During the assessment of structure prediction quality, a (possibly large)
collection of candidate structures are evaluated against a target structure. It is not known a
priori whether the candidate structures have or have not common features with the target one.
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Table 2. Value of parameters for the SGMA that
employs imitation, innovation and mental simula-
tion. SGMA-1 and SGMA-2 differ in the local search
probability and the CPU budget given to each local
search phase

Parameter SGMA-1 SGMA-2

Mutation prob. 0.3 0.3

Crossover prob. 0.75 0.75

µ 300 300

λ 300 300

Local search prob. 1.0 0.5

Imitation prob. 1.0 1.0

Imitation neigh. size 4 4

Mental sim. prob. 1.0 1.0

Innovation prob. 1.0 1.0

Iteration number 2 2

LS CPU budget 50 500

Mental effort 50 50

Total CPU budget 5 × 106 5 × 106

For each pair of the proteins that appear in Table 3 we executed a SGMA 10 times and
report the best overlap value obtained from the 10 runs. There were two sets of 10 runs
each. Each set employed slightly different parameters (which appear in Table 2) and the
results are shown in Table 3.

The columns named GA and MMA were produced in our previous publications [5, 25]
where both algorithms were given up to 5 × 106 function evaluations. The same budget of
function evaluations were given to the SGMAs in this paper.

The multimeme algorithm (column MMA) was able to match 4 of the optimum bounds
produced by the LP. In the four instances where the GA and the multimeme achieved similar
results, i.e., pairs 1a8o-1f22, 1avy-1bct, 1df5-1f22 and 1utr-1wdc, the values obtained are
below the LP bounds. However, we speculate that for the pairs 1a8o-1f22 and 1df5-12f22
the alignments obtained by the four methods are indeed optimal and that the LP program
is able to obtain higher values for the alignments by using fractional solutions in the linear
model that cannot possibly be of physical relevance. Also, it is important to note that the
gap between the results by all the memetic algorithms and the LP bounds is in all cases
smaller than 4 (except in the case of the pair 1c9o-1kdf for which the gap is 6) and within the
logarithmic integrality gap of the IP-LP models in [32]. If we compare the values obtained
by the Self-Generating Memetic Algorithms and the best of the values given by either the
GA or the MMA we can observe that SGMA-1 produces lower overlap values in 7 protein
pairs, better overlaps in 1 and equivalent values in 10 pairs. On the other hand, SGMA-2
produces lower overlap values in 7 protein pairs, better overlaps in 3 and equivalent values
in 8 pairs. That is, overall, the SGMAs produce comparable results in terms of the overlap
values than a human-designed local searcher for a memetic algorithm as 11 out of 18 pair
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Table 3. Maximum Contact Map Overlap values for several protein pairs.
A GA, a multimeme algorithm (MMA) as devised in [5] and two Self-
Generating Memetic Algorithms (SGMA1, SGMA2). The value of the LP
results are also displayed to the right

Instance GA MMA SGMA-1 SGMA-2 LP

1a8o-1f22 25 25 25 25 28

1avy-1bct 22 22 22 24 25

1b6w-1bw5 23 24 24 24 24

1bct-1bw5 17 20 19 18 20

1bct-1f22 16 21 20 21 22

1bct-1ilp 18 19 20 20 23

1c7v-1c7w 62 62 62 62 62

1c9o-1kdf 31 34 32 31 40

1df5-1f22 24 24 24 24 27

1hlh-1hrf 20 22 22 22 24

1hlh-1nmf 22 23 23 21 27

1kst-2new 22 23 22 21 26

1nmf-2new 23 25 25 24 27

1nmg-1wdc 18 19 19 19 23

1pfn-1svf 16 16 16 16 16

1utr-1wdc 26 26 25 27 28

1vnb-1bhb 19 23 22 21 27

2new-3mef 23 22 23 21 26

values are equal or better than the MMA for SGMA-1 and 11 out of 18 pair values are equal
or better than the MMA for SGMA-2.10

We compared the root mean square deviations (RMSD) obtained by a state of the art
software for structure alignment, LGA [52, 53], which is available as a web server in the
Protein Structure Prediction Center at Los Alamos National Laboratories. The parameters
user to run LGA were −4 −sia −o2 −d 4.0, meaning that a sequence independent alignment
was performed with a distance cutoff of 4 Angstroms. For details on how LGA works please
refer to the mentioned references. Experiments were performed on a subset of the pairs in
Table 3. The results are shown in Table 4 where the RMSDs are shown for each pair. From
the table we can see that our algorithms provides results of equivalent quality to those of
LGA.

We also ran our algorithm and the LGA on two other data sets. One of the data sets
(called “Mixed”) consisted of protein structures with alpha, beta, and alpha-beta topological
fingerprints. The second data set consisted of alpha-beta type of proteins (called “Alpha-
Beta”). We converted the alignments produced by LGA to MAX-CMO overlap values in
order to be compared with the overlap values produced by our algorithm (rather than using
RMSD as in Table 3). The results are shown in Table 5 for the Alpha-Beta data set and in
Table 6 for the Mixed data set.
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Table 4. Comparison of the RMSD obtained with the Self-
Generating Memetic Algorithms and state of the art structural
alignment sofware (LGA) for a selected subset of pairs from
Table 3

Pair LGA SGMA

1a8o-1f22 2.70 1.90

1avy-1bct 0.88 2.12

1bct-1bw5 2.01 2.11

1bct-1f22 2.40 2.20

1df5-1f22 2.35 2.04

1bct-1ilp 2.01 2.22

Table 5. Contact map overlap values for the alignments ob-
tained with LGA and SGMA on a set of Alpha-Beta proteins

Protein pair LGA SGMA

1aa9-1ct9 80 131

1gnp-1ct9 64 180

1gnp-6q21 360 132

1qra-1aa9 344 110

1qra-1ct9 91 127

1qra-6q21 369 169

5p21-1aa9 334 114

5p21-1ct9 96 133

6q21-1ct9 62 138

Table 6. Contact map overlap values for the alignments ob-
tained with LGA and SGMA on a set of Mixed proteins

Protein pair LGA SGMA

1aa9-1hnf 20 66

1cnp-1aa9 42 86

1cnp-1eca 54 120

1cnp-1hnf 18 53

1cnp-1jhg 73 82

1eca-1aa9 84 165

1eca-1hnf 20 63

1jhg-1aa9 22 100

1jhg-1eca 78 165

1jhg-1hnf 11 55
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An inspection of these two tables shows evidence that the protein structure alignments
produced by SGMA are of comparable (and in some cases better) quality to those delivered
by LGA in the two data sets.

5. Conclusion

In this paper we introduced the concept of “Self-Generating Metaheuristics” and we ex-
emplified its use in a bioinformatics domain: the comparison of protein structures. The
particular implementation of Self-Generating Metaheuristics used in this paper was based
on Memetic Algorithms. Unlike commonly held views on Memetic Algorithms and Hybrid
GAs, we do not resort here to human-designed local searchers but rather we allowed the
SGMA to discover and assemble on-the-fly the local searcher that best suits the particular
situation. The SGMA was compared to a Memetic Algorithm that used human-designed
problem specific local search operators and we found both to be of equivalent quality. One
of the reasons for the success of the SGMA is that the evolved local searchers act as a (low
and medium order) building block supplier. These continuous supply of building blocks
aids the evolutionary process to improve solutions continuously by producing a more syn-
ergistic operation of the local searchers and the genetic operators. Thus, the local searcher
as a building blocks supplier is proposed as a design principle for competent memetic algo-
rithms. An inspection of the evolved local searchers reveals that the patterns that specify the
move operator to use are tightly related to the number (i.e. density) and detail of the contact
maps in which the local searchers are used. For example, if a map had a distribution of
contacts with a large number of i + 1 followed by i + 5, for instance, and with the presence
of some i + 10 contacts then the evolved local searchers will more likely be represented
by i + 1 and i + 5 rather than by i + 10 features. These observations, which motivated
our discussion on “designability” in [26], can be related to the concepts of building blocks
scaling and cross-talk [16].

The obtained technology was tested under two different circumstances. A random prob-
lem generator was produced and the behavior of the SGMA analysed on a large set of
randomly generated instances. It was found that the SGMA was capable to evolve the
correct local searcher without incurring on computational overhead. That is, a Genetic
Algorithm that used the same number of function evaluations as the SGMA produce con-
siderably poorer results. On the other hand, the SGMA was compared to a human-design
local search based Memetic Algorithm on 18 pairs of real world protein pairs taken from
the Protein Data Bank. The former was found to produce results of equivalent quality to
the later. The SGMA was also compared to one of the state of the art in protein structure
alignment servers called LGA on two other data sets. SGMA produced alignment results
with similar root mean square deviation and overlap values to those generated with LGA.

5.1. Future research

There are several research issues that are being considered. The self-generated local
searchers produced a good supply of low and medium order building blocks (BB) which is
suitable to align proteins with a high content of α-helices. However, if β-sheets are consid-
ered they cannot be modeled using low order BB, as they are represented in contact maps
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by long edges with a regularly varying pattern (unlike α-helices which can be modeled
with fix patterns). We are extending our memes grammar to account for varying patterns.
In [28] we proposed a similarity metric for protein structures that can be harnessed to store
and retrieve newly discovered memeplexes on a behavioral database. The data mining of
such a database could be a rich source of problem domain information. Protein structural
features that are preserved across protein families and captured by the memeplexes can be
exploited by alignment and classification algorithms. We are working toward the creation
of a user-friendly graphical interface for a structure comparison web-server where contact
maps could be easily computed for a variety of conditions and their maximum overlap cal-
culated using both the SGMA and the LP model. A rigorous benchmarking of our algorithm
on a much larger set of proteins is under way and we expect to make our results public
in the near future. From a strictly memetic algorithms engineering point of view we will
be investigating whether the newly proposed design principle for memetic algorithms (i.e.
the local searcher as a building block supplier) is of use on other domains where MAs are
routinely applied.
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Notes

1. Visit the NCBI site ftp://ncbi.nlm.nih.gov/genbank/genomes
2. However, other approaches exist, e.g., R can be calculated based on the side chains’ center of mass.
3. A java based program compatible with PDB format for proteins and that produces several types of contact

maps is available from the author by request.
4. The reader should not confuse the alignment of protein structures, which is the object of study in this paper,

with that of aligning protein sequences. For details on the later see for example [40].
5. We concentrate here on MAs as they are the metaheuristic used in this paper.
6. Please consult [25] for details on scheduling local search operators in memetic algorithms.
7. This is an upper bound as many of these pairings will be crossing, and hence invalid, alignments.
8. The program to generate random contact maps was written in java 1.1:8 and is available by request from the

author.
9. A higher overlap value means a better structural alignment.

10. Other experiments were performed with different genetic operators, like DPX crossover and different mutation
moves, but the results were similar to the ones mentioned here, hence they are omitted.
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