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Abstract. This paper introduces the Tree-String problem for genetic
programming and related search and optimisation methods. To improve
the understanding of optimisation and search methods, we aim to capture
the complex dynamic created by the interdependencies of solution struc-
ture and content. Thus, we created an artificial domain that is amenable
for analysis, yet representative of a wide-range of real-world applications.
The Tree-String problem provides several benefits, including: the direct
control of both structure and content objectives, the production of a rich
and representative search space, the ability to create tunably difficult and
random instances and the flexibility for specialisation.

1 Introduction

The behaviour of heuristic search algorithms in artificial intelligence domains
(and other complex scenarios like operations research) is difficult to pin-down
by conventional analytical methods. More specifically, as heuristic search al-
gorithms are often stochastic in nature, they frequently result in incomplete
searches, re-sample previously-visited states, oscillate between states and be-
come trapped in local optimum. The fixed points of heuristics are usually hard
to determine, making their run time average and worst case complexity diffi-
cult to assess [1]. Consequently, the design and application of heuristic methods
for real-world problems typically proceeds by trial-and-error. However, artificial
domains can provide insight into the search abilities of various algorithms, allow-
ing future research to better apply these methods. Improving understanding of
these methods is a step toward more general search and optimisation methods.
This paper introduces a new artificial domain to improve the understanding of
solution structure and content in heuristic methods.

Many real-world problems contain two key overlapping and often conflicting
objectives: solutions must have a structure (e.g. topology), and the structure
must be “filled” with the appropriate content. Examples of these objectives can
be seen in planning, classification using decision trees and symbolic regression.
Planning typically requires hierarchical solutions that encapsulate key low-level
behaviours. An example in mobile robot planning is the issue of localisation [2]:
robots have a difficult time maintaining a good approximation of their location



during moving and sensing. Localisation is a key low-level behaviour that needs
to be carried out during a high-level strategy to allow for effective planning.
The induction of decision trees for classification constructs solution structure
simultaneously with data set features at each tree location. Higher level nodes
typically encode more important features, while lower level nodes are used to
make finer class distinctions. A classic example of such a method is Quinlan’s ID3
algorithm [3]. Finally, structure and content issues can be found in the induction
of mathematical expressions from data. In this case we look for both a functional
form and its ideal operators and coefficients.

The above examples emphasise the interdependencies between solution struc-
ture and content. As these types of problems rarely contain features that can be
optimised independent of the whole, artificial domains that allow direct manip-
ulation of structure and content also need to ensure that the richness of the in-
terdependencies is maintained. Genetic programming is the prototypical method
that must deal with solution structure and content issues during its search for
algorithmic solutions. Genetic programming handles structure and content is-
sues implicitly in its search process. While genetic programming is shown to
be competent in overcoming these conflicts in several real-world domains, it is
not known whether the way it deals with structure and content is optimal or
particularly good.

Genetic programming is an evolutionary algorithm that represents solutions
as computer programs[4]. Artificial domains are frequently used as testbed prob-
lems: the most popular being the Artificial Ant problem, the family of Boolean
problems (e.g. even-parity), and symbolic regression problems. These problems
provide testbeds that represent problems such as planning, digital design, clas-
sification and mathematical regression. However, these domains typically lack
random instance generation, the ability to easily create tunably difficult and
large instances for studying asymptotic behaviour, and a clear distinction be-
tween the issues of solution structure and content conflicts.

Previous work has highlighted the desire of the community to address these
issues. To improve solution generalisation, a random trail generator was created
for the Artificial Ant problem to complement the existing use of the the Santa
Fe trail [5]. While investigating hardness in genetic programming, tunably diffi-
cult instances of the Binomial-3 regression problem were found [6]. In this case,
genetic programming was shown to have a harder time dealing with ill-suited
constants. Also in the regression domain, tunably difficult random polynomials
were created by considering the increased precision required by an approximation
using the same search space (i.e. primitive constant ranges) [7]. This allowed the
study of code growth under varied levels of difficulty for genetic programming.
The aforementioned problems place emphasis on solution content, which is not
independent from solution structure. The following problems direct attention
back toward solution structure.

The Lid problem [8] focused only on the search for structure by using fixed
arity primitives with no meaning themselves, other than for creating tree shapes.
Instances in this problem, using a canonical representation and operator, were



tunably difficult and allowed a more direct examination of structure mechanisms
and representation issues during search. The Max problem [9, 10] and the Royal
Tree problem [11] were created to contain a singular goal state to allow analysis
of how structure acquires appropriate content. These problems define an ideal
solution that requires specific primitives at specific structure locations. Although
these problems do have intermediate reward states, they can appear to be like
needle-in-the-haystack problems that may not accurately reflect real-world prob-
lems and are somewhat limited in their flexibility for producing random instances
that are tunable. A more complex Royal-Tree-like problem was defined in [12]
that consisted of finding the correct proportions of subprograms using multi-
arity nodes. This problem, along with the ORDER and MAJORITY problems
[13, 14], investigated the relationship between content and structure, where the
latter two were mainly concerned with the occurrence and location of primitives
in solutions. Again, while these problems address particular issues in understand-
ing difficulty with the canonical representation and operators, it is less clear as
to how they are representative of real-world problems.

The Tree-String problem attempts to bridge the gap between simple and
highly-specific problems to real-world problems by providing instance tunabil-
ity, random instance generation, and a rich and complex search space, while still
being amenable to analysis. This last point, amenability to analysis, is gained
from the use of simple and clear methods and the ability to use small population
sizes while maintaining complex behaviour. The paper proceeds by first defining
the Tree-String problem. We then provide an empirical study to further demon-
strate the tunability of instances and the complex search space attained using
the Tree-String problem.

2 The Tree-String Problem Definition

The Tree-String problem was originally intended to be an artificial domain for
genetic programming, but the domain also has possible applications in other
areas of artificial intelligence. The goal of the Tree-String problem is to derive
specific structure and content elements simultaneously. Instances are defined
using a target solution consisting of a tree shape and content. Candidate solutions
are then measured for their similarity to the target solution with respect to both
tree shape and content objectives.

The Tree-String problem is defined as a tuple Π :

Π = (Ψ, Ξ, t, α, γ, δ),

where an instance is represented by a target solution t, composed of content
elements from the set Ψ and has a tree shape defined by elements from the set
Ξ. For example, binary tree structures which have internal nodes n and leaf
nodes l would have Ξ = {n, l}. The functions α and γ map the instance t to two
linear string representations, such that:

For structure: α(t) 7→ Ξ∗, and for content: γ(t) 7→ Ψ∗.



Finally, the function δ provides a measure of similarity that will represent fit-
ness objectives, i.e. similarity, between two strings representing tree shape and
the similarity between two strings representing tree content. That is, given a
candidate solution tc and target solution tt:

δ(α(tt), α(tc)) 7→ i ∈ ℵ, and δ(γ(tt), γ(tc)) 7→ j ∈ ℵ,

where i and j represent the heuristic solution quality of tc compared to instance
tt. The fitness function of the genetic programming system, or other heuristic
search method, can then use these quality measures in a multiobjective selection
method or linear combination, where the former is used in this paper. While the
implementations of α, γ and δ can vary, to represent more closely the particulars
of a given problem domain, in this paper we propose to fix them as follows:

– α : depth-first, in-order, tree traversal for solution content,
– γ : breadth-first tree traversal for solution structure,
– δ : longest common substring (LCS).

To further illustrate the Tree-String problem, let us consider an example
using binary trees Ξ = {n, l} with content using two symbols, Ψ = {A, B}. Note
that the symbol A can either be a node or a leaf. Next, consider an instance tt

which has the following properties:

– the γ function makes a breadth-first tree traversal over the shape elements
in tt to produce γ(tt) = nnnllnlll, and

– the α function makes a depth-first tree traversal over the content of tt to
produce α(tt) = AAAABBBBB.

Now, let us imagine that a search method generated a candidate solution tc

such that γ(tc) = nnnnlllll and α(tc) = BBBAABBAA. We then compute the
measure of solution quality using δ (i.e. the longest common substring between
the components of tt and tc), where the common substrings are underlined:

– δ(α(tt), α(tc)) =LCS(nnnllnlll, nnnnlllll) = 5 and
– δ(γ(tt), γ(tc)) =LCS(AAAABBBBB, BBBAABBAA) = 4.

The elements of the candidate solution tc that contributed to solution quality
are shown below. The tree on the left shows the target tree instance tt. The
tree on the right shows the candidate solution tc. The structure components
in tc that contribute toward fitness are denoted in parentheses (e.g. (A)), and
the content components that contribute toward fitness are emphasized in bold
italics (e.g. A):

A B

AA B B

BB

A B

(A) (A)

A(B)(A)(B)

BB

t t = tc =



The above example demonstrates the conflicting nature of structure and con-
tent objectives, where the portion of the solution that contributes to the struc-
ture objective is different from the part that contributes toward the content
objective. This property is likely to make it difficult for transformation opera-
tors to effect either content or structure objectives alone, making the two features
interdependent.

The choices of breadth-first and depth-first traversals for γ and α was pur-
posefully done to exploit the hierarchical nature of solution structure and element
juxtaposition of solution content, respectively. These functions also allow the
search to focus on key features of target solutions. By features, we refer to more
general properties (e.g. for structure: balanced, sparse or bushy trees). While
an instance of the Tree-String problem would use a pre-selected structure and
content, these do not necessarily define one unique goal state that would achieve
maximal fitness. This is different from other domains like the Royal Tree or Max
problems. However, the use of the longest common substring measure guarantees
that strings are compared with their order preserved. Other measures like edit
distance would provide the same value if two strings match every-other sym-
bol or the same number of consecutive symbols. The longest common substring
function complements the flexibility in the depth/breadth-first traversals with
the more strict requirement of contiguous matching elements. It is our goal that
these definitions allow for suitably complex behaviour representing real-world
domains, but that is well-defined and amenable to analysis.

To further illustrate the Tree-String problem, we report preliminary work to-
ward furthering the understanding of problem difficulty in genetic programming.

3 A Preliminary Study of Difficulty

In [15], the Tree-String problem was used to represent key properties of other
common testbed domains (Artificial Ant, Parity, Regression) to study dissimilar-
ity. A single instance of the problem using a binary tree shape and four content
symbols was randomly produced. The tree shape was selected from those found
to be more easily encountered by genetic programming [8]. The use of four sym-
bols was an approximation to the typical size of function and primitive sets used
in other testbeds. Random trials were carried out on this instance. A subsequent
analysis over the three common testbed problems suggested that their specific
behaviours were captured by the Tree-String problem. That is, the instance of
the Tree-String problem represented the general behaviour of the other problems,
see Chapter 7 of [15]. However, the full potential of the Tree-String problem was
not used in that study, which is now being extended using a range of tunable
instances. We report on that progress next.

3.1 Experimental Methodology

The genetic programming algorithm is generational with a population size of 50.
Two-parent subtree crossover is used to transform existing solutions into new
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Fig. 1. The best fitness of four runs, using the same target tree shape and four different
content strings, is plotted in the left graph. The first and last generation best fitness
values are shown in solid symbols (�, •, N, H), where the first generation of each run
is located in the upper right of the plot. The average tree size of each population is
shown in the right graph.

ones. Two parent crossover selects a subtree (where non-leaf nodes are selected
90% of the time) from each parent and swaps them. All children are valid pro-
vided they are within a predefined depth limit. To select parents for crossover,
tournament selection with tournament size of 3 is used. The initial population
is created by producing random trees using the Full and Grow methods equally
between depths 2 and 4. A maximum depth for new trees is 17, and a stopping
criterion of 50 generations is used. Ignoring the small population size, the system
used here is a canonical system. A multiobjective pareto criterion is used for fit-
ness evaluation with the objectives of structure and content, using the functions
described in Section 2. A pareto optimal, or best fit solution is one which is
better in at least one objective and no worse in the other compared to the rest
of the population.

3.2 Single Structure, Multiple Content Behaviour

Initially, we look at the behaviour of four runs with the above system using one
pre-selected tree shape (tree shape #2 in Figure 2 with depth 9 and 51 nodes)
with four randomly created content strings (each with an increasing number
of symbols, from 1 to 4). Figure 1 shows the evolution of the best fitness in
each generation for each of the four runs. Here the fitness objectives report the
size of the target strings (51 symbols) minus the longest common substring: a
minimisation problem.

In Figure 1, the left graph shows that the more symbols in the content set
Ψ , the more the search process optimises for tree shape. With one symbol in
the content set, the search process can easily find a solution with the correct
content (the size of the target tree in this case). However, as the number of



content symbols is increased to four, the search process makes very little progress
improving the content objective, but focuses instead on the tree shape. The right
graph of Figure 1 shows the evolution of the average solution size in each of the
four runs. We can see that at generation 10, the easiest instance (Ψ = A), had
the largest average tree size. However, the average size in this instance also
reduced the most toward the end of the run when the structure objective is
being improved. However, in the harder instances (3 and 4 symbols in Ψ) a
larger average tree size is produced at the end of the run. The behaviour of more
difficult instances producing larger solutions is similar to previous results for
tunably difficult instance in genetic programming [6, 7].

This typical instance demonstrates that the search for both structure and
content are conflicting in the Tree-String problem. While a population of size
of only 50 individuals was used, the problem induces a complex search space.
The remainder of the paper describes a much larger study of hardness in genetic
programming, which is the subject of our future research. We show the generation
of tunable instances and how genetic programming has a more difficult time
improving both objectives when either one becomes more difficult.

3.3 Tree-String Instances

We create instances in the Tree-String problem with an increasing number of
nodes and increasing content alphabet size. These two features, tree size and
content size, are likely to lead to increased difficulty for the genetic programming
algorithm. To avoid the pitfall of selecting tree shapes which are in themselves
difficult for genetic programming, and duplicating aspects of [8], we will use the
method of creating tree shapes from [8] but select shapes that are the most
commonly visited (also seen in other empirical studies in [10]). We are then
ignoring two other ways of tuning instances: fixing content and tree size and
choosing more difficult shapes – or – for a particular tree shape and content,
using different generation of target content (e.g. non-random ways).

To create the set of tree shapes on which to place random content, forming an
instance, we generate a tree shape using the iterative tree growth method from
[8], similar to the hill-climbing method in [16]. The method iteratively adds two
child nodes to a probabilistically chosen leaf node, starting with the root. The
probability of selecting leaf nodes can be altered to restrict trees to be less than
a particular depth. We produce 500 random trees with depths between 5 and
15, and with 15 and 272 nodes. We first randomly pick a tree size from the
latter range. A tree shape is then grown with a limit of depth 15. Figure 2 shows
the distribution of the depth and size of the 500 random trees. We select a tree
shape from depths 7, 9, 11, and 13 that are close to the mean size for that depth,
ensuring that tree shape alone will not effect difficulty. These trees are shown in
Figure 2 using a circular lattice visualisation1 [8]. The root node lies at the very
center, and each two child nodes lie at the intersection of subsequent lines.

1 Code to produce this visualisation is available at http://www.cs.nott.ac.uk/∼ smg/
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Fig. 2. Trees constructed by an iterative growth method, with bounds on maximum
depth and randomly chosen size. The top graph shows the median and mode size for
tree at each depth. A tree near to the median size was selected as a target tree from
depths 7, 9, 11 and 13 in the empirical study. The bottom row of this Figure shows
those four tree shapes.

The second step to define our instances is selecting which symbols from Ψ

to use. We will create four random strings. The first using one symbol from Ψ ,
the second two, and so on. That is, one random string has |Ψ | = 1, another
|Ψ | = 2, another |Ψ | = 3, and the last |Ψ | = 4. Each random string will be the
same size as the tree shape under consideration - producing 4×4 instances. The
genetic programming system will then use the same content set as used to create
the current instance under consideration. That is, genetic programming will not
need to address the additional potential problem of filtering out unnecessary
elements from the content set.

The ability of genetic programming to search for tree content as well as
tree shape can now be tested. By using tree shapes near the median of the
distribution, we can assume with some confidence that they represent those
shapes which genetic programming should be able to find more easily [8, 10].
However, by increasing the size of the instances, we hope to increase the difficulty
of finding the correct tree shape. Also, by generating four random strings for
each shape with an increasing content set size, we expect to control difficulty for
finding correct content.



3.4 Experimental Study

The genetic programming method is run for 30 runs on each instance, creating
480 runs. We report the improvement of solution quality as the total size of the
tree minus the longest common substring for structure and the total size minus
the longest common substring for content. These values are then normalised
by dividing them by the target tree size. We report the best (pareto optimal)
candidate solution quality found in each population during the run. A similar
study using a linear combination of the structure and content objectives (instead
of a pareto criterion) was not seen to be significantly different.

We first examine the fitness distributions for the runs with different sizes of
the set Ψ . The left column of Figure 3 shows the best fitness in each generation of
each of the runs. From top to bottom in the left column of Figure 3 the alphabet
Ψ size is increased. We can see how it is initially very easy to find good content
(top). However, as Ψ size increases to 4 (bottom), the search gradually shifts
toward improving tree shape. Thus, over all the random instances consisting of
different target tree sizes, shapes and depths, increasing alphabet size increases
the difficulty in the algorithm, causing the search to shift from improving content
toward improving structure.

We now examine the effect of target tree size and fitness improvement for the
same experiments, but now the instances are grouped by target tree size from
smallest to largest. Again, we normalise both fitness objectives by the size of the
target tree. The right column of Figure 3 shows the best fitness improvement in
both objectives as target tree size increases (from top to bottom). Note that the
amount of computation given to all experiments is equal, i.e. the same population
size and generations. With a content alphabet of size 1 (as seen in the left
column of this figure), genetic programming is still capable of finding trees large
enough to match the target content string, seen with all tree sizes. However, the
algorithm is unable to find similar improvements with regard to structure. That
is, overall improvement is not in proportion to size when content complexity is
greater than one symbol.

The empirical results demonstrate the creation of random instances for the
Tree-String problem that are tunably difficult. Instance difficulty was achieved
by increasing either the content complexity or the size of the size complexity of
the instance. When one aspect of the instance (content or size) is easy enough

(i.e. a content alphabet of size one or small tree shape), genetic programming can
improve solution quality. Adding complexity to one objective, however, greatly
effects the ability to improve that objective, and sometimes both objectives. More
content complexity (more symbols in the content set) makes it harder to improve
the content objective (left column of Figure 3), and larger tree shapes make it
harder to improve either objective in proportion to the size (right column of
Figure 3). A similar behaviour was also seen in the context of the multiobjective
optimisation of size and quality [17], where it was easier to reduce tree size than
improve quality. Runs converged toward improving the easier objective of size
rather than equally improving size and quality simultaneously.
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Fig. 3. The improvement of the content and structure objectives. Improvement is nor-
malised by instance (target tree) size. The left column groups runs according to the
size of the content set Ψ , increasing complexity from top to bottom. The right column
groups runs according to the target tree shape, increasing size from top to bottom.



4 Conclusions

Analytical work for genetic programming has always encountered difficulty due
to large population sizes, variable sized solutions and expensive fitness evalu-
ation. The Tree-String problem offers the ability to simulate complex solution
behaviour (content and structure dependencies) using variable length strings.
That is, we do not need to compile new individuals or use precompiled elements
for calculating fitness. All the functions used to convert Tree-String elements to
strings representing structural and content features are generic (i.e. breadth-first,
depth-first tree traversals and longest common substring). We are currently de-
veloping a very simple genetic programming system for the Tree-String problem
that incorporates efficiency improvements described in [18] for the iTree data
structure. It is our goal that the Tree-String problem allows for efficient research
to take place on a complex problem, ultimately making significant contributions
to the scientific community. We feel that for such a problem to be useful, it must
be relevant to realistic genetic programming applications. It is for this reason
that the Tree-String problem requires explicit focus on solution structure and
content.

Capturing elements of real-world problems in artificial domains can be dif-
ficult. Artificial domains are intended to allow precise and efficient analytical
work but often focus on singular aspects of solutions (structure or content).
Additionally, testbed domains typically handle properties of solution structure
and content implicitly, making it difficult to glean their effects. The Tree-String
problem is proposed to make a stronger bridge between testbed functions and
real-world applications. Toward this goal, we have seen the following properties
of the Tree-String problem:

1. Control over both structure and content issues,
2. Clear and simple methods defining fitness and representation,
3. A complex and behaviour-rich search space,
4. The ability to create tunably difficult and random instances,
5. Substantial room for specialisation toward specific research goals.

Our future work is examining problem hardness in genetic programming. We
are also examining variants of the Tree-String problem to carry-out efficient al-
gorithmic analysis with respect to other problems. While we have hypothesised
that the Tree-String problem is representative of other genetic programming
domains, our current work is attempting to create mappings between these do-
mains or between important domain features. Acknowledgements: This work
was supported by EPSRC grant GR/S70197/01. SG thanks Jano van Hemert and the
reviewers for their comments.
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