
Speeding Up the Evaluation of Evolutionary Learning
Systems using GPGPUs

María A. Franco
ASAP Research Group

School of Computer Science
University of Nottingham,

Jubilee Campus
Nottingham NG8 1BB
mxf@cs.nott.ac.uk

Natalio Krasnogor
ASAP Research Group

School of Computer Science
University of Nottingham,

Jubilee Campus
Nottingham NG8 1BB
nxk@cs.nott.ac.uk

Jaume Bacardit
ASAP Research Group

School of Computer Science
University of Nottingham,

Jubilee Campus
Nottingham NG8 1BB
jqb@cs.nott.ac.uk

ABSTRACT
In this paper we introduce a method for computing fitness
in evolutionary learning systems based on NVIDIA’s mas-
sive parallel technology using the CUDA library. Both the
match process of a population of classifiers against a training
set and the computation of the fitness of each classifier from
its matches have been parallelized. This method has been
integrated within the BioHEL evolutionary learning system.
The methodology presented in this paper can be easily ex-
tended to any evolutionary learning system. The method
has been tested using a broad set of problems with varying
number of attributes and instances. The evaluation function
by itself achieves speedups up to 52.4X while its integra-
tion with the entire learning process achieves speedups up
to 58.1X. Moreover, the speedup increases when the CUDA-
based fitness computation is combined with other efficiency
enhancement mechanisms.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing, Induction; D.1.3 [Programming Techniques]: Con-
current Programming—Parallel programming

General Terms
Algorithms, Experimentation, Performance

Keywords
Evolutionary Algorithms, Learning Classifier Systems, Rule
Induction, Large-scale Datasets, GPGPUs

1. INTRODUCTION
The match process is the stage that takes most of the ex-

ecution time in most evolutionary learning systems. More-
over, this situation gets aggravated when trying to handle
large-scale datasets. Consequently, there is a need to develop
more powerful tools to successfully perform data mining over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

these datasets. There is extensive efficiency-enhancement
work in the evolutionary computation context [18]. For in-
stance, speedups in the match process have been achieved
by using processor vector instructions[12] or by using alter-
native rule encodings[9].

Recently, the usage of general-purpose graphics process-
ing units (GPGPU) has become a popular practice in high
performance computing. By exploiting hardware originally
designed to render 3D graphics at high speed it is possi-
ble to perform highly parallel general purpose computations.
GPGPUs have been used already to speed up the evaluation
process in genetic algorithms[14], genetic programming[11]
and learning classifier systems (LCS)[13].

In this work we present an efficient CUDA-based fitness
computation process for the BioHEL system[3], an evolu-
tionary learning system which was conceived to improve the
scalability of LCS in large scale bioinformatic datasets[6, 21].
Specifically, we use NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA)[1]. Our implementation calculates the
matching between all the rules in the population and all the
examples in the training set in parallel. Afterwards we also
compute in parallel the accuracy and coverage metrics of the
whole population which are the base of the BioHEL fitness
function.

The methodology presented in this paper can be easily
extended to speedup the match or the evaluation process∗

in other evolutionary learning systems. Since BioHEL uses
supervised learning approach, we will refer to the match
process as the evaluation process for the rest of the paper.

We tested our parallel implementation against the serial
version using eleven different problems representing a broad
set of characteristics. To determine the impact of the new
evaluation process first we tested it independently and then
we tested it incorporated in the learning system. We also
evaluated the combination between the CUDA implementa-
tion and the ILAS windowing scheme[4], another efficiency
enhancement mechanism already introduced in BioHEL. This
comparison determines whether the speedup obtained by
both methods is complementary and thus can be success-
fully combined, or whether there is a trade off that might
constraint their integration.

∗For Pittsburgh-like LCS and Iterative Rule Learning sys-
tems the evaluation process involves the match process and
the fitness calculation of the classifiers while for Michigan
LCS it only involves the creation of the match set

1039

nxk


nxk
Please download latest version
from ACM digital Library.
Thank you.
Nat Krasnogor




The rest of the paper is organised as follows. Section 2 de-
scribes the related work along with the architecture used and
the BioHEL system. Section 3 describes the methodology
and implementation of the new evaluation process. Section 4
explains the experimental design followed. Section 5 shows
the results of the evaluation process independently and the
results of the evaluation process integrated with BioHEL
and Section 6 presents the final remarks and further work.

2. BACKGROUND MATERIAL
2.1 Efficiency enhancements in evolutionary

learning systems
The rule matching is the stage that takes the majority of

the execution time in most evolutionary learning systems[9,
12]. Reducing this cost has been an important research topic
for several years. For instance, Llorà and Sastry[12] used the
bitset encoding to paralellize the rule matching in XCS[23].
They used vector operations that have been widely imple-
mented in different processors architectures. In this work
they analysed only the evaluation process and obtained up
to 90X speedup for binary attributes. Afterwards, Butz et
al. [9] presented an extension of the previous work consider-
ing that the specificity and the generality of the rules varies
during the learning process. They analysed a “specificity
encoding” which consists in expressing only the attributes
with a value different to “don’t care” to reduce the number
of comparisons. They compared this encoding with the bit-
set encoding used in [12] during the entire execution of XCS.
They achieved speedups up to 10X with the bitset approach
and up to 2X with the specificity encoding.

Mellor and Nicklin[15] presented a population-based ap-
proach to find the matchset in XCS. This approach indexes
the binary rules (using the 3-ary alphabet {0,1,#}) in a
tree structure that allows matching several rules at the same
time. The results showed that the number of comparisons
made using this technique is between 13% and 37% of the
comparisons made with standard matching.

2.2 The BioHEL evolutionary learning system
BioHEL[3] is an evolutionary learning system that uses

the Iterative Rule Learning approach[22]. It was designed
to deal with large scale bioinformatics datasets. The system
inherited most of its components from a previous Pittsburgh
Learning Classifier System called GAssist[2]. BioHEL gen-
erates sets of rules, each of them learnt sequentially using
a standard genetic algorithm. Each time the system learns
a new rule, it is added to the rule set and all the examples
covered by the rule are removed from the training set.

BioHEL includes a windowing system to improve its ef-
ficiency called incremental learning with alternating strata
(ILAS)[2]. In ILAS, the training set is divided into a num-
ber of non-overlapping strata. Afterwards, each GA iter-
ation uses only one stratum for its fitness computations.
These strata are selected using a simple round robin policy.
The usage of ILAS redefines the way elitism works within
BioHEL. Instead of inserting into the population the best
individual from the previous iterations, BioHEL inserts the
best individual of the generation where the current stratum
was used for the last time. Please see [3] for a complete
description of BioHEL.

2.3 GPGPUs and CUDA
The efficiency enhancement method for BioHEL presented

in this paper uses CUDA (Computer Unified Device Ar-

chitecture)[1], a parallel computing architecture developed
by NVIDIA. CUDA allows the user to exploit in a general
purpose manner the computing capacity inside the NVIDIA
GPGPUs (General Purpose Graphic Processor Units).

GPGPUs have been widely used in the last few years for
high performance computations. For instance, they have
been already used to speedup self organising maps for pat-
tern classification[17], decision trees[19] , neural networks[20],
and support vector classification[10]. Genetic Programming
and Genetic Algorithms have also benefited from the avail-
ability of GPGPU hardware. For instance, Langdon et al.[11]
implemented the evaluation process of GP trees for bioinfor-
matic purposes using GPGPUs achieving an speedup around
8X. Moreover, Maitre et al. presented an implementation of
a genetic algorithm which performs the evaluation function
using CUDA[14]. The major difference between that work
and ours is that they do not have a training set but a func-
tion instead, which they run in parallel over the different
individuals. Our fitness computation is based on managing
a training set within the device which implies memory occu-
pancy, while they use a compact mathematical (algorithmic)
representation as the fitness function.

CUDA follows the SIMD (Single Instruction Multiple Data)
paradigm which consists in running the same operations in
each one of threads over different data. The thread is the
most granular processing unit inside a GPGPU. Each one
of the threads runs within a block. A block is the mini-
mum unit processed by a single multiprocessor inside the
GPGPU. All the threads inside the same block are able to
share information without global synchronisation through
the shared memory. CUDA provides an extension of the
C language to implement the kernel functions, which is the
code that will be run by the threads.

The wise usage of the memory in CUDA is crucial for
the performance of the algorithms. There are five types of
memory in CUDA, each of them with a different aim. If any
of these types is not properly used, the performance drops
dramatically.

• Shared memory: is the memory shared by all threads
in one block. The maximum amount of shared mem-
ory per block is 16Kb. If the access to this memory
is coalesced† then the access speed will be as fast as
accessing registers.

• Device memory: is the part of the memory where all
the structures passed as parameters are stored. This
memory is readable and writable from the device and
from the host, and depends on the amount of memory
the video card has.

• Global memory: is a part of the device memory vis-
ible by all the blocks. It is not cached so it is writable
by the host and by all the threads. Coalescense is also
important when accessing global memory.

• Constant memory: is a part of the device mem-
ory visible by all the blocks but not writable by the
threads. This part of the memory can only be written
by the host. The maximum amount of constant mem-
ory is 64Kb. This type of memory should only be used
to store information that is accessed constantly and
does not change during the execution of the program.

†Consecutive threads in a block accessing consecutive posi-
tion in memory

1040



• Local thread memory: is the part of the memory
only visible by the thread itself, also known as regis-
ters. The variables created inside the thread code are
stored in this memory.

3. DESIGN OF A CUDA-BASED EFFICIENT
FITNESS COMPUTATION PROCESS

As it was mentioned in the introduction, the fitness calcu-
lation is one of the major bottlenecks in terms of execution
time for an evolutionary learning system; within the fitness
calculation computing the accuracy and recall of each rule
is the most expensive code[3]. To compute these two values
we need three metrics:

1. The number of instances in the training set that match
the condition of the rule.

2. The number of instances in the training set that match
the class of the rule.

3. The number of instances in the training set that match
the class and the condition at the same time.

The evaluation process of this system involves a huge com-
putational cost, because it involves comparing all the rules
with all the examples in the instance set or strata (if using
ILAS). Our goal is to parallelize the match of all the rules
in the population with each one of the examples and then
to calculate the results for each classifier in parallel.

Considering that the population size is n and the training
set size is m, we intend to make n×m operations in parallel.
The most naive way to do this is to perform the match op-
erations in the GPGPU, then copy back the results of each
match to the host and sum up everything here to avoid syn-
chronisations. This approach would be very slow because
every time we calculate the fitness it will be necessary to
copy a structure of size O(n × m) from device memory to
host memory. This is very undesirable because the execution
time of the copy operations is proportional to the structure
size. Therefore, the most feasible way to solve this is to cal-
culate the final result for each classifier inside the GPGPU
(and in parallel). By doing this, we will only need to copy
a structure of size O(n) containing the final results.

At this point our calculation involves two steps which cor-
respond to the main task of each kernel:

1. Calculating the match between all the classifiers and
all the instances

2. Reducing‡ the results for each classifier

Implementing this parallelism involves a greater challenge
than the one presented in [14], because it involves not only
individuals (rules in this case) but the training set. More-
over, this data does not stay constant during the execu-
tion of the algorithm. This makes the implementation even
more complex because data will need to be copied multi-
ple times into device memory and these operations are very
slow. However, this scheme has potentially a higher degree
of parallelism. Our implementation address this problem by
attempting to make full usage of the global memory. Con-
sidering that in each GA the instances remain constant, and
the algorithm will only use a subset of the instances in each
iteration, our implementation tries to store in device mem-
ory all the instances at the beginning of each GA. Then the
windowing is handled inside the device passing the window
offset as a parameter of the fitness function. If the global

‡Add all the elements within an array in parallel

memory is not big enough to store all the instances then
further memory calculations are performed as shown in Sec-
tion 3.1. On the other hand, the classifiers need to be copied
into device memory in each iteration. However, this does not
involve a considerable computational cost because in most
cases the populations are relatively small (i.e. ≤ 500).

The CUDA evaluation is integrated inside BioHEL in two
different stages: during the evaluation process and during
the elitism. Even though the latter only involves few classi-
fiers, preliminary experiments showed improvements in the
performance when this part of the code was parallelized.

The CUDA fitness calculation involves five stages as shown
in Figure 1. The following subsections explains in greater de-
tail the strategies followed in the memory calculation stage
and evaluation stage.

Figure 1: Stages of the CUDA evaluation in each
iteration of the GA inside BioHEL

3.1 Memory calculations
Both at the beginning and at each iteration of the GA it

is necessary to calculate how many classifiers and instances
fit in memory. This allows us to determine whether it is
possible to copy all the instances at once. On the other
hand, if all the instances do not fit in memory, we calculate
if it is possible to fit all the classifiers at once and revisit the
instances in several iterations. If none of this is possible, the
algorithm calculates the number of classifiers and instances
that minimise the memory copy operations.

The heuristic we used to do this consist in assigning half of
the memory for storing classifier information and the other
half for storing instance information. To calculate this we
solve a simple quadratic formula. So considering MI the
memory occupied by each instance, MC the memory oc-
cupied by each classifier, A the size of the largest output
structure used (See Section 3.2.1) and MD the global de-
vice memory available, we try to calculate x the number of
classifiers and y the number of instances to fit in memory.
Given the memory occupancy formula

MD = xMC + yMI + x# y
512

$A (1)

we assume the following

xMC = yMI (2)

and eliminate the ceiling by assuming the worst case.

# y
512

$ <
y

512
+ 1 (3)

Substituting both equations in the equation (1) we find
out the we need to solve the following quadratic equation.

MD = x(2MC + A) +
x2AMC
512 MI

(4)

The memory calculation function also computes the grid
size based on the global amount of device memory. The

1041



amount of threads per block remains constant (512) as it
is the maximum possible number of threads inside a grid.
Considering that our CUDA program is memory bound, us-
ing this number of threads will allow maximising the num-
ber of instances that are reduced in a kernel, and minimise
the amount of data that we copy back into global memory.
Thus, each block will have 512 instances and 1 classifier and
the grid size can be easily calculated as (#y/512$, x).

3.2 Evaluation process
To perform all the calculations CUDA uses two kernel

functions. The first kernel is in charge of performing the
match operations between the rules and the examples. Each
thread will carry out a single match operation. The second
kernel is in charge of counting the matches and mismatches
(as specified at the beginning of this section) of a rule. That
is, counting (in a general sense, reducing) the results calcu-
lated in the previous kernel.

The instances are spread among several blocks, and threads
between different blocks do not share high speed access mem-
ory. Therefore, it takes more than one step and global syn-
chronisation to reduce the information of all the instances.
The most intuitive way to do it is to perform all the re-
ductions in the second kernel. However, this means copying
back to global memory a large amount of data at the end of
the first kernel, which has a large impact in the run-time. To
minimise the volume of data the first stage of the reduction
is already done in the first kernel, because this avoids copy-
ing back a very large structure into global memory. This
first reduction is slower because it reduces three values at
the same time. Then the subsequent reductions (for each of
the three metrics to be computed) are performed indepen-
dently in the second kernel in a more efficient way. At the
end of the execution of the second kernel we will have three
values per classifier to copy to host memory. Also, at the
end of each kernel the information is reorganized in order to
minimise the run-time of subsequent kernels and the mem-
ory copy operations from device to host. In the following
subsections will explain more deeply how each one of the
kernel functions work.

3.2.1 Kernel 1
The first kernel is in charge of performing, in parallel, the

match operations between all the rules and all the examples.
Algorithm 1 shows the pseudo-code for this function. After
calculating the three match values in each thread it is pos-
sible to store these values directly into global memory and
continue to the execution of second kernel. But this struc-
ture is too big and preliminary experiments showed that
storing it in global memory was very slow. This is why
these values are stored in a shared memory structure over
which a one-level parallel reduction will be performed. This
reduction algorithm is based on the parallel reduction algo-
rithm proposed by NVIDIA[16] but instead of reducing only
one value it reduces three values at the same time. Now
instead of having an output structure of size O(n × m) we
have one of size O(b × n) where b is the number of blocks.
This reduces the amount of time spent in writing in global
memory as well as the amount of global memory needed.

At the end of the execution of this kernel, the result values
are copied back into three separate blocks as shown in Fig-
ure 2. This allows having three separate areas over which we
can perform an efficient reduction with the second kernel.

Algorithm 1 Kernel 1: Compute match

Require: Number of instances numIns, number of classifiers
numClass, array of classifiers class, array of instances ins

1: Determine the thread index Ti, the instance index Ii and the
classifier index Ci regarding the global memory.

2: Declare cond, action and match arrays as shared memory
3: if Ii < numIns ∧ Ci < numClass then
4: cond[Ti]← 1
5: for att in class[Ci].atts ∧ match do
6: cond[Ti]←!match(ins[Ii].atts[att], class[Ci].atts[att])
7: end for
8: action[Ti]← ins[Ii].action = class[Ci].action ? 1 : 0
9: match[Ti]← action[Ti] ∧ cond[Ti]
10: else
11: match[Ti]← action[Ti]← cond[Ti]← 0
12: end if
13: Perform reduction over match[Ti], action[Ti], cond[Ti]
14: if Ti = T0 then {Only the first thread of a block copies the

final value into global memory}
15: Write match[Ti], action[Ti] and cond[Ti] into global mem-

ory
16: end if

Figure 2: Distribution of the global memory by
the end of the first kernel function. C = condition
counter, A = action counter, M = match counter.

3.2.2 Kernel 2
The second kernel is in charge of reducing iteratively the

information that was previously calculated in the first kernel.
This kernel will perform the CUDA parallel reduction algo-
rithm[16] without any major modification. Figure 3 shows
an example of the reduction process for the match infor-
mation of one classifier. This reduction is applied indepen-
dently over each one of the three memory areas created by
the previous kernel. Preliminary experimentation showed
that performing reduction of only one value at the same
time is faster than performing reduction over three values.

Figure 3: CUDA parallel reduction algorithm.

This kernel is called iteratively until the number of blocks
used is equal to one. In the last iteration the kernel will re-
order again the data in memory copying all the information
of each classifier next to each other. After that, the informa-
tion of the classifiers will be pack together to make possible
copying it back to host memory using a single memory copy
operation.

1042



3.3 Handling the ILAS Windowing system
In this paper we also study the integration of the CUDA-

based fitness computation and the ILAS windowing scheme,
to verify if both efficiency-enhancement techniques can be
combined efficiently. As we explained before, if all the in-
stances left in the training set fit in global memory we copy
them into global memory at the beginning of each GA. In
case the window system is activated, the CUDA fitness com-
putation is called passing the offset of the window as an extra
parameter. This is possible because the windows are created
at the beginning of the GA and all the windows are stored
continuously in memory. It is just necessary to specify the
offset to know which window the system is using.

Since the instances tend to be much bigger than the clas-
sifiers, we save a lot of computational effort by copying them
into global memory once per GA and handling the window-
ing. However, when the GA finishes the instances that are
covered by the new rule are removed from the training set
and the windows are created again. At this point it is nec-
essary to copy the instances again into global memory.

3.4 Mixed attributes representation
In order to work with a mix of continuous and nominal

attributes at the same time we implemented a slightly dif-
ferent match function. In [5] an efficient CPU-based match
process for mixed attributes was proposed, which worked
by separating the match of both kinds of attributes in two
separate loops. We evaluated that approach in our CUDA
implementation. Our preliminary experiments showed that
in CUDA we can achieve more speedup by using only one
loop that checks the attributes sequentially with a condition
inside that checks if the attribute is nominal o real instead of
using two loops. This is because the divergent code performs
better than the non-coalesced memory access produced by
the two loops. In CUDA, the patterns we use to access the
memory affect directly the execution time of the kernel func-
tions[16]. When we access memory in a non-coalesced way
the performance drops dramatically.

4. EXPERIMENTAL DESIGN
To test the performance of our implementation we decided

to perform two stages of experiments. First we evaluate
the speedup in the evaluation process independently. After-
wards, we evaluate the speedup of the overall system after
incorporating the CUDA evaluation process inside BioHEL.
For the first stage, we ran the evaluation process indepen-
dently of one GA run of 50 iterations (with the rest of the
learning mechanisms disabled). We ran a complete GA per
execution to test the advantage of copying the instances once
at the beginning of each GA and use this information during
the subsequent iterations. We test this against the indepen-
dent evaluation process inside BioHEL.

We compared the speedup over eleven different problems.
Table 1 contain a detailed list of relevant characteristics of
the datasets regarding our analysis along with the cover-
age break which is a problem-dependent parameter of Bio-
HEL. The adult (adu), kddcup (kdd), waveform (wav) and
connect-4 (c-4) datasets were taken from the UCI repository
of machine learning datasets[7]. The CN, SS and SA are
protein structure prediction benchmarks already used in [3].
The ParMX (par) dataset is an hybrid parity-multiplexer
dataset already used in [8]. The FARS - Fatality Analysis
Reporting System dataset (far) was taken from the U.S Na-

Name |T| #Att #Dis #Con #Cl Cov

C
on

t.

sat 5790 36 0 36 6 0.1
wav 4539 40 0 40 3 0.1
pen 9892 16 0 16 10 0.1
SS 75583 300 0 300 3 0.0025
CN 234638 180 0 180 2 0.001

M
ix

ed

adu 43960 14 8 6 2 0.01
far 90868 29 24 5 8 0.1
kdd 444619 41 15 26 23 0.1
SA 493788 270 26 244 2 0.0025
Par 235929 18 18 0 2 0.001
c-4 60803 42 42 0 3 0.0025

Table 1: Characteristics of the datasets.
|T| = Training set size, #Att = Number of atts.,
#Dis = Number of discrete atts., #Con = Number
of continuous atts., #Cl = Number of classes,
Cov = Coverage breakpoint

tional Highway Traffic Safety Administration. For each type
of problem, we partitioned it using ten-fold cross validation.
Over each training set we ran the evaluation process with 25
different seeds. To determine the impact of using different
number of windows for the ILAS windowing scheme we did
experiments with 1 2 4 6 8 10 15 20 25 30 35 40 45 and 50
windows. The rest of BioHEL’s parameters remain the same
as the ones used in [5].

For the second stage of experiments we compare the new
version of BioHEL using CUDA with the approach presented
in [5]. We used the same problems as in the previous stage
and we performed experiments with 1 5 10 25 20 25 30 35
40 45 and 50 windows. Because of the computational cost
of each experiment, we ran each one of the ten-fold cross
validation training sets only once in this stage.

For the CUDA experiments we used Pentium 4 of 3.6GHz
with hyperthreading, 2GB of RAM and a Tesla C1060 with
4GB of global memory and 30 multiprocessors. For the serial
experiments we used the High Performance Computing facil-
ity of the University of Nottingham each node with 2 quad-
core processors (Intel Xeon E5472 3.0GHz), as we wanted
to compare our implementation against the most likely ar-
chitecture a user would use if they do not have access to
the GPGPU technology. All the code and datasets used
for these experiments are public for replication purposes at
http://www.infobiotics.org/software/.

5. RESULTS
The following subsections present the results of both stages

of experiments. The speed up of the CUDA evaluation pro-
cess over the serial algorithm is reported in order to deter-
mine the advantage of using this parallel architecture. For
interpretation and replication purposes we also report the
execution time of the two baseline cases (1 window) in Ta-
ble 2. This table shows that the variance in the execution
time of the CUDA algorithm is always smaller than the se-
rial one, which indicates that the average speedup reported
is statistically significant. The accuracy of the system is not
reported since both implementations behave identical and
obtain the same accuracy under similar circumstances.

5.1 Performance of the evaluation process
In Table 3 we present the net speedup (speedup of the

CUDA evaluation against the serial version using the same
window size) and the total speedup (speedup of the CUDA
evaluation against the serial version without using window-

1043



Evaluation Integration

Prob. Serial CUDA Serial CUDA

C
o
n
t.

sat 3.6± 0.2 1.9±0.0 95.7± 19.9 25.9± 2.5
wav 2.6± 0.1 1.6±0.0 75.5± 9.4 24.7± 0.8
pen 4.9± 0.2 2.2±0.0 149.7± 19.9 40.0± 2.9
CN 1555.9± 452.8 42.4±0.6 821464.7±167542.0 18644.3±944.0
SS 770.6± 119.5 14.7±0.2 347979.8± 60982.7 5992.3±247.5

M
ix

ed

adu 147.9± 30.9 10.4±0.1 5422.8± 1410.7 271.7± 26.0
Par 863.7± 163.1 60.0±0.6 524706.7± 98949.5 19559.8±671.7
kdd 1715.7± 632.4 95.9±1.4 76442.3± 23533.2 2102.4±191.3
far 420.8± 90.6 23.1±1.0 2471.3± 701.8 95.0± 41.5
c-4 343.8± 71.9 17.9±0.2 52917.9± 8059.6 2417.8±170.2
SA 3776.4±1212.8 90.5±1.2 1252976.8±203186.6 28759.7±552.0

Table 2: Execution time (s) of the evaluation and
the integration of both versions in each one of the
problems using 1 window

ing) for all the problems. In this table we can notice that
the CUDA-based evaluation process achieves speedups for
all the problems without using windowing (using 1 win-
dow). Moreover, the speedup gets considerably higher in the
problems with more than 40000 instances. The highest net
speedup achieved was 52.4X in the SS problem. Combined
with the ILAS windowing scheme the highest total speedup
is 637X in the SA problem. We also observe that the speedup
varies with the number of windows and for a higher number
of windows the speedup tend to decrease. This is because
the CUDA evaluation gets advantage of using large training
sets since it does all the example comparisons in parallel.
The same happens with the problems that are very small
from the start (pen, sat and wav). In these datasets, the
overhead of parallelising the fitness function is greater that
the advantage obtained.

 0

 10

 20

 30

 40

 50

 60

 100  1000  10000  100000  1e+06

S
p

e
e

d
 U

p

Training set size

 Speed Up according to the training set size

adu - 14atts
pen - 16atts
Par - 18atts
far - 29atts
sat - 36atts

wav - 40atts
kdd - 41atts
c-4 - 42atts

CN - 180atts
SA - 270atts
SS - 300atts

Figure 4: Speed up against the training set size.
Problems: Black = Continuous, Red = Mixed,
Blue = Discrete.

It is important also to analyse the relation between the
speedup and the number of attributes and instances of the
problem. Figure 4 shows the relation between training set
size and speedup. For the different number of windows x
we consider the training set size Tx to be equal to the size
of the strata (Tx = |T |/x). We observe that the relation-
ship between the speedup and the training set is not linear
and the behaviour between both implementations (for mixed
and real problems) is slightly different. Between 25000 and
50000 the speedup gets its maximum value for most of the
problems and then it gets steady or decreases. A possible ex-
planation for the decrease in the speed up when the training
set gets bigger is that the number of blocks needed in kernel
1 increase. The size of the structure copied into global mem-
ory at the end of this kernel is dependant on the number of

blocks, and using more blocks might increase the execution
time in this kernel. More experimentation needs to be car-
ried out to validate this hypothesis. Moreover, the decrease
in the speed up when the training set is less than 25000 ex-
amples is because up to this point the serial algorithm can
fit the examples in cache memory. Also the usage of CUDA
when the training set is small is less beneficial, because the
overhead produced by the memory copy operations is not
compensated by the speed up gained.

Also the speedup seems to depend on the number of at-
tributes in the problem. The problems with more attributes
get more speedup than the problems with few attributes.
Also the large continuous problems (SS and CN) achieve
more speedup than the large mixed problems (SA) despite
the number of attributes. This is a consequence of the us-
age of a divergent code to handle mixed attributes. Thus, it
makes sense to have an independent CUDA fitness function
to handle real problems as simple as possible and handle the
rest of problems with a different function.

Even though the speedup varies depending on the win-
dow size, the number of attributes of the problem and other
problems parameters such as number of iterations per GA,
we have shown that the methodology presented improves the
performance of the evaluation process when the training set
is sufficiently big. In the next section we are going to present
the results of the performance of BioHEL after integrating
the CUDA-based fitness function.

5.2 BioHEL using CUDA-based evaluation
In Table 4 we present the speedup of the BioHEL system

using the CUDA evaluation over the serial version. In this
table we can notice that the speedup increases compared to
the results of the raw evaluation. The reason for this is that
the CUDA evaluation only copies the instance set once for
each rule learned. BioHEL runs a GA n times with the same
set of instances and learns a rule out of each GA. Then, it se-
lects the best of these rules and incorporates it into the rule
set, removes the covered instances from the training set and
starts again. Instances do not need to be copied back into
the graphics card for each of these GA runs. In the evalua-
tion of the fitness function we were simulating only a single
GA run, but is this stage of experiments n = 2. Hence, the
increase in speedup is expected. However, in all datasets the
speedup obtained is less than twice. This is due to the use
of the iterative rule learning approach because each time we
learn one rule the training set size decreases, while in the
evaluation all experiments were done with the full training
set. When the training set is too small the overhead of per-
forming the necessary memory copy operations overcomes
the advantage obtained by using a GPU. This aspect is not
considered in the experiments of the previous stage. Using
a large number of strata amplifies this problem because the
system performs less calculations in parallel but the memory
copy overhead remains constant as the whole training set is
copied.

The SS dataset obtained the best results, both using CUDA
only (with a maximum speedup of 58.1X) and in combina-
tion with ILAS (with a maximum speedup of 765.3X). In
most datasets, specially the large ones, we can observe that
as the number of windows increases, the total speedup (com-
pared to the serial non-windowed BioHEL) also increases.
Thus, we have shown that both efficiency-enhancement mech-
anisms can be successfully combined.

1044



Number of Windows
1 2 4 6 8 10 15 20 25 30 35 40 45 50

C
o
n
t.

p
ro

b
le

m
s

sat 1.9 1.3 0.8 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1
1.9 2.5 2.8 2.9 2.9 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1

wav 1.6 1.1 0.6 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1
1.6 1.9 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

pen 2.2 1.7 1.1 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2
2.2 3.1 3.7 3.6 3.5 3.6 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2

CN 36.7 43.1 40.3 39.8 37.3 36.1 31.6 27.3 22.7 18.7 16.7 14.7 13.4 12.8
36.7 69.9 128.4 178.3 220.7 258.4 327.8 389.3 432.9 463.3 488.7 506.8 522.3 536.7

SS 52.4 52.5 50.0 46.1 38.6 30.3 15.2 12.1 10.2 8.4 8.2 8.3 8.5 8.6
52.4 96.9 168.0 222.7 264.1 293.7 344.7 374.8 394.3 406.9 416.8 424.4 430.0 435.2

M
ix

ed
p
ro

b
le

m
s

adu 14.2 15.8 7.7 3.5 3.0 2.9 2.6 2.4 2.4 2.3 2.2 2.1 2.1 2.0
14.2 25.3 41.6 52.9 61.5 68.0 78.4 84.3 88.0 90.8 92.2 93.2 94.5 95.1

Par 14.4 18.3 22.5 23.1 22.9 21.8 16.6 10.2 7.6 6.9 6.5 6.4 6.2 6.0
14.4 27.8 51.7 72.7 91.0 107.2 141.1 168.4 189.5 208.3 222.9 235.1 245.1 255.6

kdd 17.9 23.1 26.3 27.6 27.9 28.2 27.0 26.4 24.6 22.4 19.7 16.7 14.8 13.1
17.9 34.9 65.3 91.9 115.1 138.3 182.5 218.9 248.1 272.7 291.7 311.4 324.8 339.7

far 18.2 23.4 24.0 18.9 12.8 8.6 5.2 4.8 4.7 4.9 5.0 5.0 4.9 4.9
18.2 33.7 60.4 81.3 99.6 115.8 144.6 164.5 176.0 186.4 191.2 197.0 200.9 203.5

c-4 19.2 24.1 24.8 18.1 9.7 6.6 5.0 4.5 4.4 4.3 4.5 4.7 4.7 4.4
19.2 35.6 63.3 86.4 104.5 120.0 146.5 162.7 173.1 180.6 184.9 189.4 192.1 194.1

SA 41.8 35.9 37.0 35.8 35.5 34.7 33.3 32.1 31.0 29.6 28.6 27.5 26.0 24.5
41.8 79.5 146.2 203.7 252.8 296.3 383.7 449.0 502.3 542.7 578.0 605.8 630.4 649.9

Table 3: Speed up of the CUDA evaluation compared to the serial version using the same window (first row)
and the serial version without using windowing (second row)

Figure 5 shows the relation between the training set size
and speedup of the integrated system. We can observe sim-
ilar behaviours in the speedup as the ones explained in the
previous section. In the case of the integration the maximum
speedup for most of the problems can be found around 50000
and 100000 examples.

 0

 10

 20

 30

 40

 50

 60

 100  1000  10000  100000  1e+06

S
p

e
e

d
 U

p

Training set size

 Speed Up according to the training set size

adu - 14atts
pen - 16atts
Par - 18atts
far - 29atts
sat - 36atts

wav - 40atts
kdd - 41atts
c-4 - 42atts

CN - 180atts
SA - 270atts
SS - 300atts

Figure 5: Speed up against the training set size of
the integrated learning process. Black = Continu-
ous, Red = Mixed, Blue = Discrete.

6. CONCLUSIONS
We have successfully implemented a CUDA-based evalu-

ation process for the BioHEL evolutionary learning system
that achieves a maximum speedup of 52.4X (when evalu-
ated on its own) and up to 58.1X when integrated within
BioHEL. Even though these values are dependant on the
characteristics of the dataset, we have shown that the CUDA
architecture can be used to successfully speed up the evalu-
ation process of LCS by a considerable amount in a broad
range of problems. This implementation exploits the intrin-
sic parallelism in the evaluation process and can be easily
extended to any learning classifier system. The speedup
obtained with CUDA in the evaluation process helps the
system to handle larger problems. Moreover, the combina-
tion of the CUDA-based evaluation and the ILAS windowing
scheme also showed to be beneficial, obtaining a maximum
combined speedup of 765.3X

As further work we would like to extend this implemen-
tation so it can use more than one GPGPU at the time.
The system could schedule the matching of different groups
of classifiers and instances in different GPGPUs, if more
than one device is available. This could help handling even
much larger problems without the need of using a card with
enough global memory which could be very expensive.

Also, it would be interesting to use synthetic problems
where the training set size and the number of attributes
varies gradually to develop speedup models that can explain
in which conditions it is worth to use a CUDA-based fitness
computation. Based on these results we could automatically
switch from the serial and the CUDA mechanisms based on
the training set size and the number of attributes in the
problem. It could be also interesting to develop an imple-
mentation that copies the information only once into device
memory and synchronises the population and the instances
when there are changes. This way, the system would only
perform small memory copy operations which would be in-
teresting to compare with the current system.

Finally, the use of GPGPUs opens the door to perform
much extensive experiments that we could not afford to per-
form before. For instance, it is known that increasing the
number of strata of the ILAS windowing scheme makes the
problem more difficult to learn[4]. Nevertheless, it was not
possibly to exhaustively determine when this was creating a
significant impact in the system’s performance in large scale
domains because the experiments were too computationally
demanding. GPGPUs allow us to perform much larger ex-
periments than before, thus we are able to push forward the
boundaries of evolutionary data mining.

7. REFERENCES
[1] NVIDIA CUDA Programming Guide 2.0. 2008.
[2] J. Bacardit. Pittsburgh Genetics-Based Machine

Learning in the Data Mining era: Representations,
generalization, and run-time. PhD thesis, Ramon Llull
University, Barcelona, Spain, 2004.

[3] J. Bacardit, E. Burke, and N. Krasnogor. Improving
the scalability of rule-based evolutionary learning.
Memetic Computing, 1(1):55–67, March 2009.

1045



Number of Windows
1 5 10 15 20 25 30 35 40 45 50

C
o
n
t.

p
ro

b
le

m
s

sat 3.7 1.6 1.2 1.0 0.8 0.8 0.7 0.7 0.7 0.6 0.8
3.7 5.6 6.3 8.4 8.3 9.5 8.2 9.4 9.7 8.8 10.6

wav 3.1 1.2 0.8 0.7 0.7 0.6 0.6 0.5 0.6 0.5 0.5
3.1 4.7 6.2 8.6 8.9 9.3 9.3 9.2 9.9 9.4 9.3

pen 3.7 1.7 1.0 1.0 0.7 0.7 0.6 0.6 0.5 0.6 0.5
3.7 8.1 8.6 11.1 9.8 11.3 11.3 10.6 10.8 11.3 11.5

CN 44.1 52.4 40.0 25.3 13.8 11.9 10.4 9.0 6.7 7.0 7.6
44.1 188.9 298.8 394.1 437.0 466.4 504.2 552.5 565.8 588.0 615.5

SS 58.1 40.9 9.9 6.0 6.6 7.0 6.0 6.1 6.8 6.1 6.6
58.1 256.0 390.9 498.7 546.1 620.1 635.3 671.9 708.5 714.0 765.3

M
ix

ed
p
ro

b
le

m
s

adu 20.0 7.9 6.9 6.4 7.1 6.3 6.5 6.4 6.8 6.7 5.4
20.0 83.8 132.0 165.2 176.3 201.1 198.1 204.9 211.2 218.1 224.3

Par 26.8 25.3 13.4 7.4 5.6 4.7 3.2 2.9 2.9 3.0 3.6
26.8 77.6 99.8 118.6 130.7 133.0 133.8 140.3 141.7 138.2 139.9

kdd 36.4 59.7 56.3 43.2 30.7 21.7 20.3 18.1 15.6 11.4 9.4
36.4 161.7 292.7 376.7 457.7 480.8 528.9 571.4 578.6 608.6 642.3

far 26.0 13.7 5.2 4.7 4.9 4.6 5.7 5.2 4.9 4.6 5.1
26.0 89.1 123.4 159.2 166.3 178.7 181.9 194.7 180.1 192.0 182.0

c-4 21.9 8.9 6.1 5.3 6.4 5.9 6.4 5.5 6.0 6.0 5.9
21.9 92.9 157.1 188.8 220.9 238.7 257.4 259.9 271.0 265.3 277.5

SA 43.6 47.3 37.9 18.8 15.0 12.6 12.4 14.7 18.1 16.0 14.7
43.6 148.9 214.2 259.6 285.3 309.1 322.8 338.1 347.6 350.2 359.3

Table 4: Speed Up of the BioHEL system using the CUDA evaluation over the serial version

[4] J. Bacardit, D. Goldberg, M. Butz, X. Llora, and
J. Garrell. Speeding-up pittsburgh learning classifier
systems: Modeling time and accuracy. 2004.

[5] J. Bacardit and N. Krasnogor. A mixed
discrete-continuous attribute list representation for
large scale classification domains. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1155–1162, New
York, NY, USA, 2009. ACM.

[6] J. Bacardit, M. Stout, J. Hirst, A. Valencia, R. Smith,
and N. Krasnogor. Automated alphabet reduction for
protein datasets. BMC Bioinformatics, 10(1):6, 2009.

[7] C. Blake, E. Keogh, and C. Merz. UCI repository of
machine learning databases. 1998.
(www.ics.uci.edu/mlearn/MLRepository.html).

[8] M.V. Butz. Rule-Based Evolutionary Online Learning
Systems: A Principled Approach to LCS Analysis and
Design, volume 109 of Studies in Fuzziness and Soft
Computing. Springer, 2006.

[9] M.V. Butz, P.L. Lanzi, X. Llorà, and D. Loiacono. An
analysis of matching in learning classifier systems. In
GECCO ’08: Proceedings of the 10th annual
conference on Genetic and evolutionary computation,
pages 1349–1356, New York, NY, USA, 2008. ACM.

[10] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast
support vector machine training and classification on
graphics processors. In Proceedings of the 25th
International Conference on Machine Learning (ICML
2008), pages 111, 104, 2008.

[11] W.B. Langdon and A.P. Harrison. GP on SPMD
parallel graphics hardware for mega bioinformatics
data mining. Soft Comput., 12(12):1169–1183, 2008.

[12] X. Llorà and K. Sastry. Fast rule matching for
learning classifier systems via vector instructions. In
GECCO ’06: Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages
1513–1520, New York, NY, USA, 2006. ACM.

[13] D. Loiacono and P. Lanzi. Speeding up matching in
XCS. In 12th International Workshop on Learning
Classifier Systems, 2009.

[14] O. Maitre, L.A. Baumes, N. Lachiche, A. Corma, and
P. Collet. Coarse grain parallelization of evolutionary
algorithms on GPGPU cards with EASEA. In
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1403–1410,
Montreal, Québec, Canada, 2009. ACM.

[15] D. Mellor and S.P. Nicklin. A population-based
approach to finding the matchset of a learning
classifier system efficiently. In Proceedings of the 11th
Annual conference on Genetic and evolutionary
computation, pages 1267–1274, Montreal, Québec,
Canada, 2009. ACM.

[16] NVIDIA. Data-Parallel algorithms.
http://developer.download.nvidia.com/compute/cuda
/sdk/website/Data-Parallel Algorithms.html#reduction,
September 2009.

[17] R. Prabhu. SOMGPU: an unsupervised pattern
classifier on graphical processing unit. In IEEE
Congress on Evolutionary Computation, pages
1011–1018, 2008.

[18] K. Sastry. Principled efficiency enhancement
techniques, 2005. Genetic and Evolutionary
Computation Conference - GECCO 2005- Tutorial.

[19] T. Sharp. Implementing decision trees and forests on a
GPU. In Computer Vision – ECCV 2008, pages
595–608. 2008.

[20] D. Steinkraus, I. Buck, and P.Y. Simard. Using GPUs
for machine learning algorithms. In Proc. of the Eighth
International Confernece on Document Analysis and
Recognition, volume 2, pages 1115–1120, 2005.

[21] M. Stout, J. Bacardit, J.D. Hirst, and N. Krasnogor.
Prediction of recursive convex hull class assignments
for protein residues. Bioinf., 24(7):916–923, 2008.

[22] G. Venturini. SIA: a supervised inductive algorithm
with genetic search for learning attributes based
concepts. In Machine Learning: ECML-93 - Proc.\ of
the European Conference on Machine Learning, pages
280–296. Springer-Verlag, 1993.

[23] S.W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, June 1995.

1046


