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Abstract—Data mining is the analysis of experimental
datasets to extract trends and relationships that can be mean-
ingful for the user. In genetic studies these techniques have
revealed interesting findings, especially in the heritable predis-
position to contract specific diseases. One of these diseases which
is still under extensive analysis is pre-eclampsia, a progressive
disorder which occurs during pregnancy and soon after the
birth, affecting both the mothers and their babies. There are
many choices to be made in the application of the various data
mining techniques that may be used to study general genotype-
phenotype associations. The aim of this paper is to describe
the general framework that we adopted in the application of
decision tree algorithms to the analysis of SNPs data related
to cases of pre-eclampsia. The results show the validity of this
methodology to detect a subset of attributes associated with the
predictable variable, providing a reduction in the size of the
dataset. Moreover, from the clinical point of view, it confirmed
the medical interpretation of the ‘corrected birth-weight centile’
(CBC) value of 10 being a meaningful cut-off and confirmed
association between an infant’s CBC and the ‘week of delivery’
parameter. We hope that the generic framework described here
will be of use to other researchers analysing such data.

I. INTRODUCTION

Data mining is an analytic process designed to explore
(often large amounts of) data in search of consistent patterns
or systematic relationships between variables; the findings
may then be validated by applying the detected patterns to
new subsets of data. The ultimate goal of data mining is
prediction. The initial exploration of the data involves data
cleaning, data integration, data transformation and record
subsets selection. Following this, advanced computational
and statistical methods are applied in order to extract the
most interesting, novel, useful and valid data patterns from
the given datasets. Finally, visualization and knowledge
representation techniques are used to present the extracted
knowledge to the user [1], [2], [3].

Data mining has been commonly applied to the field of
genetic analysis [4]. The study of the human genome has
become one of the most challenging goals for scientists. All
the biological information needed to build and maintain a
living example of an organism are contained in a double-
stranded molecule consisting of two chains running in oppo-
site directions and called deoxyribonucleic acid (DNA) [5].
DNA is essentially a sequence of four types of molecules
called ‘bases’, labeled ‘C’, ‘G’, ‘A’ and ‘T’, which join
into complementary ‘base-pairs’ (‘C’ with ‘G’, and ‘A’ with
‘T’). Human DNA is estimated to comprise around 3 billion
base-pairs, of which around 99.9% are the same — there is
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only a small percentage that makes the difference between
individuals [6]. While at most positions in human DNA the
same base is found, approximately once every 100 to 300
bases a different base may be found. Such an alteration
is called a Single Nucleotide Polymorphism (SNP). The
majority of these changes have no effect or at least not yet
known; but others can cause subtle differences in physical
or psychological characteristics. Some of them may actually
affect a person’s response to drug therapy and even confer
a personal susceptibility or resistance to a certain disease,
determining then the severity or progression of it. For this
reason, analysis of SNPs has become the subject of extensive
research [7], [8], [9]. Within the diseases considered to be
related to genetic causes, there is one called pre-eclampsia
(PE) which is currently under genetic analysis for any
heritable association [10], [11], [12], [12], [13], [14], [15].
PE is a progressive disorder which occurs during pregnancy
and in the period soon after the birth and it affects both the
mother and the baby. The major symptoms are high blood
pressure, swelling, proteins in the urine and problems with
vision. It occurs in around 5-8% of all pregnancies and,
together with other disorders of high blood pressure during
pregnancy, it is responsible globally for an estimated 76,000
maternal and 500,000 infant deaths each year [16].

There are different models that have been used by re-
searchers for studying general genotype-phenotype associa-
tions depending on the kind of application. Population-based,
family-based strategies and their numerous extensions are
all widely used to detect genes associated with complex
diseases. This paper is exclusively focused on association
studies, defined as “a gene-discovery strategy that com-
pares allele frequencies in cases and controls to assess the
contribution of genetic variants to phenotypes in specific
populations” [17]. This kind of study implies the creation
of two different groups among the population. One of the
groups is composed of ‘cases’ (people with a disease or
a condition) and the other one is composed of ‘controls’
(individuals without this condition). Extracting features from
these two different groups and comparing them with each
other gives the possibility to detect classification rules in a
straight forward way. In PE, for instance, a population of
mothers can be considered and they can be split into sick
mothers and healthy ones. However, the problem can also be
studied by considering different prediction variables, like for
instance a clinical feature of the disease.

Within the general data mining tools, there is a sub-class
of algorithm widely used for case-control analysis in SNPs
studies: the decision tree algorithms [18], [19], [20]. These



are based on classification trees to predict membership of
cases in the classes of a categorical dependent variable. In
the study shown in this paper, three of these algorithms are
taken in consideration: ID3, ADTree and C4.5 [21], [22],
[23], [24], [25]. The aim of this paper is to compare or
contrast the results obtained from a variety of decision tree
algorithms in order to identify commonality between trees.
A full comparison of a wide variety of approaches, while
interesting, is outside the scope of this paper.

ADTree is a natural generalization of decision trees in
which rules are usually smaller in size and easier to interpret
compared to the other boosted decision tree algorithms. ID3
searches through the attributes of the training instances and
extracts the attribute that best separates the given examples
using the concept of information entropy. If the attribute
perfectly classifies the training sets then ID3 stops; otherwise
it recursively operates on the n partitioned subsets (where n
is the number of possible values of an attribute) to get their
‘best’ attribute. The attributes must have a fixed number of
values and the class must be discrete as well. C4.5 improves
on ID3 as it can handle with both continuous and discrete
attributes and training data with missing attribute values.
Moreover C4.5 goes back through the tree once it’s been
created and attempts to remove branches that do not help by
replacing them with leaf nodes.

Before applying these algorithms, a complex pre-
processing stage of the initial database is performed in order
to encode attributes (where necessary), explore the data, treat
missing and unbalanced data, and set parameters. In the
following Section of this paper the proposed methodology
is shown through the two main streams of action: pre-
processing and proper analysis of the dataset. The application
of this technique to an example of a medical database
containing heterogeneous information about a list of patients
affected by pre-eclampsia is described and the results are
shown. The features of each individual comprise both genetic
and clinical data. The final goal of this research is both to
propose a valid method for SNPs analysis and, from the
medical point of view, to discover any possible association,
either genetic or phenotypic, with the specific disease.

II. METHODOLOGY

This is a kind of progressive analysis through which
significant results are detected in the first stage then deepened
and possibly confirmed in the subsequent steps. All the stages
are explained in this paragraph step by step in order to allow
the methodology to be fully described, as shown in Figure 1.

A. Database Pre-processing

In this paper we will show the analysis related only to a
specific dataset. From now on, we refer to a database (DB)
as a specific subset of records obtained from the original
(entire) set of records. In general, we consider the original
set of data to consist of one or more attributes of SNPs and
one or more attributes of phenotypic information.
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Fig. 1. Sequence of steps to follow in the pre-processing of a general
dataset composed of medical and SNPs attributes.

1) Choice of Attributes: Every time a new DB is created
there are attributes that may be deleted as considered useless
or not informative for that specific population. In the first
stage, all the remaining attributes can be kept in order
to detect any possible features that are significant in this
analysis. The results which are further obtained will remove
the less informative attributes. Considering the final DB,
different kind of analysis can be performed in this study:
some of them are over the whole attributes, other are only
over the SNPs and others over phenotypic attributes.

Sometimes within SNPs analysis, the set of data may
include information about families. In this case, there can be
some features coming from the relatives of the individuals
under analysis (mothers or babies in the example of this
paper). This information can be easily transferred from the
columns of one row to additional columns of a given indi-
vidual, and hence analyzed as a new attribute. For instance,
if we consider a dataset of only babies, we could add new
columns with the genetic information about their parents.

2) Choice of Predictive Class: In general it is interesting
to analyze the data considering different predictive variables
for the same population. Many decision tree algorithms
require the prediction class to be a categorical attribute and,
more specifically, a Boolean one. If this is not the case, a
threshold needs to be found in order to transform the variable
into a Boolean one. As this analysis is a case-control one,
we consider only Boolean prediction variables.

3) Consideration of Missing values: Some decision tree
algorithms can deal directly with attributes containing miss-
ing values, but others cannot. It may be necessary to elim-
inate the missing values or to adopt another strategy such
as imputation of missing data. It may not be appropriate
to simply remove rows with missing values, in case there
are many missing values and their deletion could therefore
affect significantly the size of the DB. Attributes containing
many missing values may still be dropped at a later stage.
On the other hand, in the specific application in this paper
it is possible to keep the missing values as the algorithms
chosen can deal with a codification for them.

4) Balancing of Data: The balancing of the DB is quite
an important issue to be considered before performing the
analysis. Often, the ideal situation is to have approximately
half of the individuals belonging to the cases and half to the
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Fig. 2. Sequence of steps to follow in the analysis of a genetic and
clinical DB with the CBC as predictable variable. The applied algorithms
are: ADTree, Id3 and C4.5.
controls in order to have the least biased performance. If this
is not the case, it is possible to create a new DB by selecting
randomly a fixed number of people from both the groups.
5) Medical remarks: As we are analyzing clinical data it
is useful to have feedback from the medical side throughout
the whole process of analysis. There are attributes and
prediction classes that have more relevance than others for
the user, the doctor in this case. The final thresholds found
for the prediction variable need to be considered from the
medical point of view before defining them to be interesting.
In general, any finding that can be significant from the
statistical point of view it is not always meaningful for the
medical community.

B. Database Analysis

There are different kinds of algorithms for data mining that
can be used but the essential idea is to perform repeated case-
control analysis, each time defining the class and determining
the subset of the original database to use. In this paper, three
decision tree algorithms which all work with a nominal class
were used: ADTree [26], ID3 and C4.5.

The steps for the data analysis process are shown in
Figure 2. For this paper, the Weka software [21] was used to
perform the analysis of the DB (note that in Weka the C4.5
algorithm is known as J48).

1) ADTree Analysis - Kappa value: In the first step the
DB is analyzed with one of the three mentioned algorithms,
arbitrarily chosen. In this paper, for instance we will start
with the ADTree algorithm. If the chosen predictive variable
is a continuous one, it needs to be converted to a Boolean
attribute. Therefore, a range of thresholds has to be chosen
for this class in order to detect the ones which give the most
significant results. It is possible to select a fixed number of

different thresholds, for instance 10, within the range of the
variable and check for the reliability of the results.

All algorithm parameters are set to their default value (in
Weka), as an exhaustive examination of the effects of varying
parameters is outside the scope of this paper.

The validity of the analysis has been calculated through
the use of the Kappa statistic, defined as the proportion of
agreement corrected for chance between two judges assign-
ing cases to a set of categories [27]. Although boundaries
are arbitrary, we consider K > 0.20 a fair agreement in
accordance with [28].

From the results it is easy to establish which thresholds
provide a statistically significant result according to a Kappa
value greater than 0.2. Then a further selection can be done
by means of clinical feedback; there may be thresholds which
don’t have any particular medical meaning and other ones
which correspond to medically accepted values.

In this analysis ten-fold cross-validation is used and re-
peated ten times with different seeds to create different
random partitions of the data. The seeds can be chosen either
arbitrarily or randomly. An average of the obtained results is
then calculated.

2) Validation - C4.5 and ID3 analysis: In order to confirm
(or not) these findings, the DB is processed with two other
decision tree algorithms, C4.5 and ID3, with the same
thresholds used in the previous analysis. These algorithms
are also run with a ten-fold cross-validation using different
seeds and the average of the Kappa value obtained from each
result is calculated.

3) Determining Threshold for the Predictive Variable:
In the next stage the focus is only on the subsets whose
thresholds give significant results (the ones for which Kappa
is greater than 0.2) in order to check the Kappa trend. The
algorithms that give us the best results are run again and
this time with the subsets of data whose class thresholds is
included in the range previously found, choosing a number
of different threshold values, for instance 10 or 20. From the
results it is possible to detect the subset whose thresholds
give a Kappa greater than 0.2.

Once that the thresholds have been chosen it is important
to check the number of individuals involved in each test and
the ratio of cases to controls in order to deal with a reliable
test. If one of the final subsets has a case-control ratio above
or below 50%, it cannot be taken in consideration for further
analysis. Lots of studies have been published about the
optimal case-control ratio and size of the dataset depending
on the kind of application used in the analysis [29], [30],
[31], [32]. In this case, it is reasonable to consider a limit for
the cases-controls ratio around one-third to be an acceptable
one, as far as the amount of cases and controls don’t fall
below an arbitrary threshold of around 100 individuals.

4) ADTree Results Analysis: Focusing on those DBs
which give the best Kappa, it is now possible to analyze the
results of the tests in order to determine whether they can be
considered reliable. The first step consists of the comparison
of the decision trees obtained from the DBs processed with
ADTree, each one with a different class threshold. It can



happen that, comparing the different trees, they have different
shape and therefore different rules of classification but it is
still possible to list the attributes which are present in all the
trees obtained. The attributes can be detected from each node
of the final classification tree.

5) Results Comparison - C4.5 and ID3: The same proce-
dure is applied also to the second and the third algorithm, as
far as they provide reliable results. For instance, for the set
of trees obtained with ID3, each one with a different class
threshold, we make a list of the attributes which are present
in all the obtained trees. In the end we will get three lists of
the attributes common to different class thresholds, each one
from a different algorithm. Comparing these lists, we can find
the SNPs which are detected from different algorithms and
therefore which are present in all the results of this analysis.

6) Cross analysis: A cross analysis can now be performed
between the decision trees obtained with the best algorithms,
considering each time the same thresholds. For instance
we can consider the ADTree trees obtained with specific
class threshold and compare them with the respective ones
obtained from the ID3 algorithm. As before, we can make
a list of the attributes present in the results from different
algorithms but with the same threshold. If there is a SNP
which appears in all the lists created, it is more likely to
have a reliable association with the predictable variable.

III. EXPERIMENTAL RESULTS

In this section an example of the application of this
methodology to a real dataset related to PE is described.

A. Experimental Data

The DB under analysis contains 4529 instances and 105
attributes. The original dataset is composed of mothers,
babies, fathers, grandparents and other relatives of the baby;
there are fifty-two genetic attributes (SNPs) split across
seven genes and fifty-three phenotypic (clinical) attributes,
as follows:

(1) Genotype: 52 attributes:

o AGT gene: SNPs 1-8, alleles 1 and 2

o« AGTRI1 gene: SNPs 9-12, alleles 1 and 2

o TNF gene: SNPs 13-16, alleles 1 and 2

o F5 gene: SNP 17, alleles 1 and 2

o NOS3 gene: SNPs 18-22 and 24, alleles 1 and 2

« MTHFR gene: SNPs 25, 26, alleles 1 and 2

o AGTR2 gene: SNP 27

(2) Phenotype: 53 clinical attributes

e 5 concerning the individual’s identity;

o 34 concerning maternal data, such as physical and
physiological parameters, pregnancy details and
current treatments;

e 6 concerning fetal data, such as the weight and
gestational age at birth;

o 8 concerning the medical history of parents, part-
ners or siblings of affected mothers.

The individuals of most interest for this disease are the
mothers and the babies. There are actually four different

TABLE I
PREDICTION ATTRIBUTES FOR THE BABIES

Attributes for the Babies Type Range
CBC Percentage 1—100
Delivery gestation week Integer 22 — 42 weeks
TABLE II

PREDICTION ATTRIBUTES FOR THE MOTHERS

Attributes for the mothers Type Range
CBC Percentage 1—100
Delivery gestation week Integer 22 — 42 weeks
Sys/Dias Pressure Post Partum Integer 87 — 178
Highest Systolic Integer 101 — 200
Highest Diastolic Integer 65 — 150
Highest Proteinuria Real 0.24 — 32.03
Highest ALT Integer 2 — 875
Highest Urate Integer 50 — 812
Highest Creatinine Integer 49 — 990
Highest Urea Real 1.6 —33.8
Lowest Platelets Integer 12 — 443

conditions present in the original database: pre-eclampsia,
eclampsia, other hypertensive diseases and normotensive
(normal blood pressure). The only condition which is in-
vestigated in this paper is pre-eclampsia.

B. Data Base Pre-processing

From the initial Database a subset is created containing
only babies born from mothers with pre-eclampsia.

1) Attributes: In the first stage most of the attributes are
kept. There are only a few attributes which are not meaning-
ful when we consider a database composed of babies. These
are the mothers features, such as blood pressure and blood
test results.

2) Predictive Class: The idea is to analyse the data
considering different prediction variables as shown in Table I
and in Table II.

One of the most interesting variables listed in these tables
is the ‘corrected birth-weight centile’ (CBC). This is the
value of the weight of the baby at birth (as a percentage of
the population) corrected for gestational age at birth, baby
sex, ethnicity, mother’s height, mother’s weight and number
of pregnancies. Hence, a CBC of 50 is the normal weight at
birth, below this threshold it is considered underweight and a
CBC exceeding this threshold is considered overweight. For
each of these outputs we can decide different thresholds to
define the cases and the controls in the dataset in order to
perform a case control analysis. For instance we could choose
the following values: CBC = 50, Delivery gestation = 35,
Systolic Pressure post partum < 140, or Diastolic Pressure
post partum > 90

The results shown in this paper are from a DB consisting
only of babies, created from the original one by deleting
the attributes considered not informative for a population
of babies. The CBC attribute has been chosen as the pre-
dictive class and the final DB consists of 372 babies and
58 attributes. Beside the 53 SNPs listed above, there are
six clinical variables for the babies: ‘Fetal disease status’,
‘Gestation at birth (weeks)’, ‘Gestation at birth (days)’,
‘Weight of the infant’, ‘Live at birth’ and CBC.



3) Missing values: Different trials were performed in
order to understand if it is informative to retain the missing
values or if their removal could have improved the study. We
applied the algorithms to a dataset cleaned from the missing
values and to a dataset with the missing values retained. The
results obtained were the essentially unaltered, indicating that
(for this data set) we can retain the missing values using the
appropriate codification for the chosen algorithm.

4) Balancing of the data: As the CBC class is not
Boolean, at this point it is not possible to balance the data
because it is not yet clear the amount of cases and controls.
Balancing of the data can be performed later, when a fixed
CBC threshold is chosen and therefore the babies with a
CBC greater than that threshold are considered as controls
and these with CBC below that threshold considered as cases.

C. Data Base Analysis: Babies with pre-eclampsia

1) ADTree Analysis: In the first stage the DB is analyzed
with the ADTree software from Weka. A range of thresholds
has been chosen for the CBC class in order to detect the
ones which give the significant results. There are 9 different
thresholds, from a CBC of 10 to a CBC of 90, and for each
the Kappa value is calculated as shown in Table III.

From Table III it is clear that the first three thresholds
(CBC of 10, 20, and 30) provide a statistically significant
result (Kappa > 0.2) whereas the others have a quite low
Kappa value. The ADTree algorithm is then run again with
a set of 9 different seeds and the average of the result has
been calculated as shown in Table IV.

2) Validation — C4.5 and ID3 Analysis: In order to have
a validation of these findings, the DB has been processed
with the other two decision tree algorithms. The thresholds
are the same used in the previous analysis. These algorithms
have been run nine times with different seeds and the average
of the Kappa value has been calculated as shown in Table IV.

From these results of Table IV it is clear that with C4.5 a
result similar to ADTree has been obtained with a significant
Kappa for thresholds of 10, 20 and 30. Regarding ID3, no
significant results have been obtained over the thresholds as
shown in Table IV. Thus, ID3 does not appear to be able
to detect relevant findings in this application, we did not
investigate this limitation any further.

3) Best Threshold(s) for the Predictive Variable: As the
CBC thresholds of 10, 20 and 30 have shown to be relevant,
in the next stage the interest is focused only on the CBC
range between 4 and 30, in order to detect any other threshold
with a good Kappa. The two algorithms that give us the best
results are run again and this time with 14 different thresholds
of CBC in the range 4 — 30.

From examination of Figure 3 it can be seen that the three
thresholds with the best Kappa value are 6, 10 and 28. The
fact that the trend in Kappa is not monotonic with CBC may
be due to the presence of noise in the data but could also
be due to the complex correlation between attributes such
as CBC and week of delivery (later discovered). Once we
have fixed the CBC values, we can keep into consideration
balancing of the data. The number of cases and controls

TABLE V
COMMON ATTRIBUTES TO THE THREE CBC THRESHOLDS 6,10 AND 28
FOR THE ADTREE ALGORITHM.

CBC
Gene SNP | Allele || 6 | 10 | 28 || All
AGT 1 1 y
AGT 3 2 y
AGT 6 2 y
AGTRI 10 2 Y
AGTRI 11 2 y
AGTRI 12 2 Y
F5 17 2 y |y
NOS3 19 2 y
NOS3 21 2 y |y Y Y
NOS3 24 2 y |y
MTHFR | 26 2 y
AGTR2 27 2 y |y Y Y

involved in each test results are shown in Figure 4. In
particular:

e for CBC = 6: 147 cases (39.5%) and 225 controls
o for CBC = 10: 177 cases (47.6%) and 195 controls
o for CBC = 28: 243 cases (65.3%) and 129 controls

These results are acceptable regarding both the absolute
size of the population (372) and the proportions of cases and
controls, as the case-control ratio is above 0.33 and there are
more than 100 individuals for each group.

4) ADTree Results Analysis: Focusing on these three DBs,
the next step consists of the comparison of the three decision
trees obtained from the three DBs processed with ADTree.
Comparing the three different trees it is clear that they have
different shape and therefore different rules of classification
but it is possible to list the attributes common to all of them.
Besides ‘gestational week at birth’(which is always present),
the attributes found for CBC equal to 6,10 and 28 are shown
in Table V. In the last column, the attributes common to the
first three columns are shown.

5) Results Comparison — C4.5 and ID3: The same
procedure is applied also to the C4.5 algorithm as it provided
similar results. The list of the SNPs are shown in Table VI.
Concerning the clinical variables, there is still the attribute
‘Gestational week at birth’ which is common to the algorithm
results and the variable ‘sex’ which is present only in the first
two thresholds (CBC = 6 and CBC = 10) .

6) Cross Analysis: A cross analysis can now be performed
between two decision trees obtained with the two algorithms
(ADTree and C4.5), considering each time the same thresh-
olds (CBC = 6, 10, 28). The results are shown in Table VII.

Furthermore, if we focus our attention on the results when
the CBC is 28 we can create a new dataset composed of the
common attributes found in the results from both the two
algorithms. These attributes are: ‘sex’ , ‘Gestational week
at birth’, AGT SNP3, AGTR1 SNP11 and NOS3 SNP 21.
Processing this new dataset with both the ADTree and C4.5
algorithm, we find two interesting rules which are common to
the two final trees, with a statistical significance of k = 0.38
for C4.5 and k£ = 0.41 for ADTree. The first rule claims
that male babies, born after the 35 week of gestation and
with an AGT SNP3 allele2 of 1 have a good probability



TABLE III
STATISTICAL RESULTS FROM ADTREE: CBC=10-90

CBC Thresholds | 10 20 30 40 50 60 70 80 90
Kappa 0.35 | 0.23 | 0.20 | 0.02 | —0.03 | 0.02 | —0.01 | O | —0.01

TABLE IV
KAPPA AVERAGED OVER NINE RUNS FOR ADTREE, C4.5 AND ID3 ALGORITHMS

CBC Thresholds | 10 20 30 40 50 60 70 80 90
ADTree Kappa | 0.38 | 0.32 | 0.29 | 0.18 <0.07 | <0.04 | <0.04 | <0.05 | <0.04
C4.5 Kappa 0271022028 | 018 | <0.17 | <0.18 | <0.05 0 0

ID3 Kappa 0.15]0.14 | 0.18 | <0.09 | <0.16 | <0.11 | <0.12 | <0.11 | <0.05
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Fig. 3. Kappa Values of the two applied algorithms (ADTree and C4.5) versus weight of the baby expressed as CBC within the range CBC= 4-30.
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Fig. 4. Number of cases versus the CBC of the babies.



TABLE VI
COMMON ATTRIBUTES TO THE THREE CBC THRESHOLDS 6,10 AND 28
FOR THE C4.5 ALGORITHM.

CBC
Gene SNP | Allele 6 | 10 | 28 All
AGT 1 1 Y Y
AGT 1 2 Y Y
AGT 3 2 Y Y Y Y
AGT 4 2 Y
AGT 6 1 y
AGT 7 2 Y
AGT 8 1 Y
AGT 8 2 y |y y y
AGTR1 9 1 y |y y y
AGTRI1 9 2 Y Y
AGTRI1 10 1 Y Y
AGTRI1 10 2 Y
AGTRI1 11 1 Y
AGTRI1 11 2 Y Y
AGTRI1 12 1 Y Y
AGTR1 12 2 Y|y y y
TNF 13 1 Y Y
TNF 13 2 y y
TNF 14 2 Y Y y y
TNF 15 2 Y
TNF 16 1 y y
TNF 16 2 Y
F5 17 2 Y y
NOS3 18 2 Y
NOS3 19 1 Y
NOS3 19 2 Yy |y
NOS3 20 1 Y Y Y y
NOS3 20 2 Y
NOS3 21 1 Y
NOS3 21 2 Y y
NOS3 22 1 Y
NOS3 22 2 Y Y Y Y
NOS3 24 1 Y Y Y Y
NOS3 24 2 y
MTHFR 25 1 Y y y y
MTHFR 25 2 Y y y
MTHFR 26 2 Y Y
AGTR2 27 1 Y Y
AGTR2 27 2 Y Y

to have a normal weight (CBC > 28). The confidence
of the C4.5 algorithm is measured by the ratio between
the corrected classified instances over the uncorrected ones,
which is 84/24. The ADTree measure of confidence is instead
made by the ‘classification margin’, analyzed on prior work
[33] and it has a absolute value of 1.29. The second finding
shows that male babies, born after the 35" week of gestation
and with an AGT SNP3 allele2 of 2 and an AGTR1 SNP11
allele2 of 1 have a good probability to be under weight
(CBC < 28). For the C4.5 the confidence parameters
measures 21/5 and for the ADTree the classification margin
has an absolute value of 0.76.

Following these results, we have performed the analysis
with only one attribute, the ‘delivery gestation week’, and
the CBC predictive variable. We find out that there is
an association between these two parameters with a good
significance as shown by the Kappa value of 0.4212 for both
the ADTree and C4.5 analysis. The ADTree algorithm detects
an interesting threshold for the ‘GestationatBirthw’ equal to
35.5 to discriminate the small babies (cases) from the normal

TABLE VII
COMMON ATTRIBUTES TO THE THREE CBC THRESHOLDS 6,10 AND 28
FOR THE TWO ALGORITHMS: ADTREE AND C4.5.

Gene | SNP | Allele || CBC 6 | CBC 10 | CBC 28
AGT 3 2 Yy
AGTRI | 11 2 Y
AGTRI | 12 2 v
5 17 2 Yy

NOS3 | 19 2 Y

NOS3 | 21 2 v
AGTRZ | 27 2 y Yy

one (CBC > 10) and in C4.5 the threshold is set at 35 weeks
of pregnancy. This means that babies delivered before 35 or
35.5 week of gestation are likely to have a CBC < 10.

IV. CONCLUSION

The methodology shown in this paper provides researchers
with a guideline for data mining in the specific application
of case-control analysis for SNPs. This technique may find
an association between the SNPs and the disease or its
phenotypes. However, it is also possible that the results don’t
show a significant direct connection between the SNPs and
the disease as found in this study. In this case it is still
possible to detect a reduced number of SNPs that may play
an important role in the genetic association, as for example
in this specific experiment.

From the methodological point of view, we conclude that
thanks to this strategy, some attributes are rejected as not
relevant for the analysis, the number of the instances are
decreased and a set of attributes, clinical or genetic, are found
to be correlated to the predictive variable, as show in the
lists of the common attributes in the example described in
this paper, see Table V, Table VI and Table VII. From a
comparison of these Tables it is also clear that there are
SNPs such as AGT 2 and AGT 5 that never appear in the
results; these SNPs can thus be ignored in further analysis.

From the clinical perspective, there are at least two im-
portant findings which emerge from this methodology. The
first is the significance of the threshold CBC of 10. From the
study on the validity of the thresholds three different values
have been found: i.e. 30, 20 and 10. The feedback from
the medical point of view confirmed the clinical importance
of a CBC of 10 for babies affected by pre-eclampsia, as
it is a clinically accepted threshold used to identify growth
restricted babies, which have then a higher risk of problems
in the neonatal period. The second finding is the dependency
of the CBC on the ‘week of delivery’ parameter. In the
formula for calculating the CBC, the birth weight is adjusted
considering parameters including the ‘week of delivery’. This
means that there shouldn’t be any association between these
two attributes. From the results of this analysis on PE disease,
an association between these two parameters has been found:
women with pre-eclampsia who deliver before 35 weeks of
pregnancy are more likely to give birth to babies with a CBC
under the value of 10.

The proposed methodology provides (besides the opportu-
nity to find new and challenging results) a useful tool for the



screening stage where a reduction in the number of cases is
the main goal.

V. FUTURE WORK

An important observation arises concerning the signifi-
cance of considering the genotype of the mothers rather that
the babies. It is still difficult and risky to collect information
related to the DNA of babies in pregnancy, as this requires
an invasive test. On the other hand we can easily collect
such information from the mothers. For this reason, in further
research, the analysis may be focused on only the mothers,
using the CBC of the baby as the predictive variable.

A second consideration concerns the re-codification of the
SNPs in the DB. The whole human DNA chain is divided
in 23 different pairs of chromosomes, each one therefore
composed by two copies called alleles. The SNP is encoded
by two numbers, one for each allele (for instance 1/2). A
set of alleles at different places that are present in the same
chromosome is called a haplotype [17]. When we perform
an analysis between more than one SNP, we consider two
haplotypes each one coming from each chromosome pair. It
is then important to know which allele comes from a specific
chromosome pair. That means it is relevant to know whether
the SNP is 1/2 or 2/1. If this information is not available,
as in most cases, we have to encode the SNPs considering a
SNP 1/2 to be the same as a SNP 2/1.

A limitation of the current study is the redundant inter-
action between attributes, ignored by these algorithms. A
possible selection and elimination of the attributes which
are very related to each other can be performed in a pre-
processing stage as future work.

The last remark concerns the clinical condition of the
grandmothers when their mothers were born. A heritable
trend can be detected across the two generations validating
the genetic association of this disease. Unfortunately, the
current database doesn’t contain sufficient information to
perform this kind of analysis.
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