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Abstract. In this paper we propose an immune algorithm (IA) to solve
high dimensional global optimization problems. To evaluate the effec-
tiveness and quality of the IA we performed a large set of unconstrained
numerical optimisation experiments, which is a crucial component of
many real-world problem-solving settings. We extensively compare the
IA against several Differential Evolution (DE) algorithms as these have
been shown to perform better than many other Evolutionary Algorithms
on similar problems. The DE algorithms were implemented using a range
of recombination and mutation operators combinations. The algorithms
were tested on 13 well known benchmark problems. Our results show
that the proposed IA is effective, in terms of accuracy, and capable of
solving large-scale instances of our benchmarks. We also show that the
IA is comparable, and often outperforms, all the DE variants, including
two Memetic algorithms.

1 Introduction

Since in many real-world engineering and technology applications analytical so-
lutions, even for simple problems, are not allways available, numerical continuous
optimisation is often the only viable alternative.

A global minimization problem can be formalized as a pair (S, f), where S ⊆
R

n is a bounded set on R
n and f : S → R is an n-dimensional real-valued

function. The goal is to find a point xmin ∈ S such that f(xmin) is a global
minimum on S, i.e. ∀x ∈ S : f(xmin) ≤ f(x).

The problem of continous optimisation is a difficult one not least because it is
difficult to decide when a global (or local) optimum has been reached but also
because there could be very many local optima that traps the search algorithm.
Furthermore, as the dimensionality of the problem increases the number of local
optima grows dramatically.
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In this work we consider the following numerical minimization problem:
min(f(x)), Bl ≤ x ≤ Bu where x = (x1, x2, . . . , xn) is the variable vector in
R

n, f(x) denotes the objective function to minimize and Bl =(Bl1 , Bl2 , . . . , Bln),
Bu = (Bu1 , Bu2 , . . . , Bun) represent, respectively, the variables’ lower and the
upper bounds, such that xi ∈ [Bli , Bui ] .

We use the above formulation to evaluate our immune algorithm (IA), first
proposed in [1], for high dimensional problems. Moreover, we compare the results
of the IA with several Differential Evolution (DE) variants as those proposed
in [6], [4] and [5]. DE were chosen as they typically show better convergence
behaviour than other well-known EAs [8], [9].

2 Differential Evolution

Differential Evolution (DE) is an effective and efficient method which has been
proposed to solve optimization problems in continuous search spaces [8], [9].
The main advantage of DE is its simple structure, because it has few control
variables, and it uses common concepts of Evolutionary Algorithms (EA). DE1

is based on a population of individuals, generated through a similar operation
to the classical mutation, where, for each individual xt

i, a new individual yt+1
i is

generated as follows: yt+1
i = xt

j + F (xt
k − xt

l), and F is called scaling factor. To
have high diversity into the population, DE uses a crossover operator, between
xt

i and yt+1
i , to generate the offspring xt+1

i . Finally, the offspring is evaluated
and it replaces its parent if its fitness is better than its parent (selection process).

There are several variants of DE, depending on the the selection for mutation
operator, and the crossover scheme used. To distinguish its several variants we
use the notation a/b/c, where ”a” denotes the way an individual is selected to
be mutated (random or best individual); ”b” is the number of pairs of solutions
chosen and ”c” represent the crossover scheme used (binomial or exponential).
Therefore, using this notation we have the following variants [6]: rand/1/bin,
rand/1/exp, best/1/bin and best/1/exp; current-to-rand/1 and current-to-best/1,
which use an arithmetic recombination; current-to-rand/1/bin, which presents
a combined discrete-arithmetic recombination; and rand/2/dir, which includes
fitness function information to the mutation and recombination operators.

3 Immune Algorithms

The immune algorithms are inspired by the human’s clonal selection principle,
which suggests that among all possible cells, B lymphocytes, with different re-
ceptors circulating in the host organism, only those who are actually able to
recognize the antigen will start to proliferate by cloning.

The proposed algorithm is population based, like any typical evolutionary
algorithm and it is based on two entity types: antigens (Ag) and B cells receptor.
The Ag’s represent the problem to tackle, i.e. the function to optimize, whereas
1 for a deeply knowledge on DE see [8], [9].
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the B cells are a population of points of the search space of the given function. At
each time step t the algorithm presents a population P (t) of size d. The initial
population of candidate solutions at time t = 0 is randomly generated using
uniform distribution in the relative domains of each function. The proposed
algorithm generates each gene xi = Bli + β · (Bui − Bli), where β ∈ [0, 1] is a
random value, Bli and Bui are the lower and upper bounds of the real coded
variable xi respectively.

The function Evaluate(P (t)) (see Table 3) computes the fitness function value
of each B cell x ∈ P (t). The evolution cycle ends when the maximum number of
fitness function evaluations, Tmax, is reached.

We used the classical cloning operator, which clones each B cell dup times
producing an intermediate population P (clo), assigning to each clone the same
age of its parent. The age of B cells, determines their life span into the population:
when a B cell reaches the maximum allowed age, it dies, i.e. it is eliminated
from the population. Subsequentely, if a cloned B cell undergoes a successfully
mutation (called constructive mutation), i.e. its fitness value has increased, it
will be considered to have age equal to 0. Such a scheme, as proposed in [2],
intends to give an equal opportunity to each new B cell to effectively explore the
search landscape.

The hypermutation operators act on the B cell receptor of P (clo). We used the
inversely proportional hypermutation operator, which tries to mutate each B cell
receptor M times without the explicit usage of a mutation probability. The feature
of this operator is that the number of mutations is inversely proportional to the
fitness value, i.e. as the fitness function value of the current B cell increases, the
number of mutations performed decreases. The mutation potential used was α =
e(−ρ·f), where α represents the mutation rate and f is the fitness function value
normalized in [0, 1].The perturbation operator choose randomly a variablexi, with
i ∈ {1, . . . , �} (� is the length of B cell) and replace it with xnew

i = ((1 − β) ·
xi) + (β · xrandom), where xrandom �= xi is a randomly chosen variable and β ∈
[0, 1] is a random number obtained with uniform distribution. As proposed in [1],
the proposed algorithm does not use any additional information concerning the
problem. For example the global optima is not considered when normalizing the
fitness function value, but the best current fitness value decreased of a threshold θ.

The aging operator, used by the algorithm, eliminates old B cells, in the pop-
ulations P (t), and P (hyp), maintaining high diversity in the current population,
in order to avoid premature convergence. The maximum number of generations
the B cells are allowed to remain in the population is determined by the τB

parameter: when a B cell is τB + 1 old it is erased from the current population,
independently from its fitness value. The algorithm makes only one exception:
when generating a new population the selection mechanism does not allow the
elimination of the B cell with the best fitness function value (elitist aging). After
the application of the immune operators the best surviving B cells are selected
from the populations P

(t)
a and P

(hyp)
a . In this way, the new population P (t+1),

of d B cells, for the next generation t+1, is obtained. If only d′ < d B cells have
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Table 1. Pseudo-code of the proposed Immune Algorithm

Immune Algorithm(d, dup, ρ, τB , Tmax)
FFE ← 0;
Nc ← d · dup;
t ← 0;
P (t) ← Init Population(d);
Evaluate(P (t));
FFE ← FFE + d;
while (FFE < Tmax)do

P (clo) ← Cloning (P (t), dup);
P (hyp) ← Hypermutation(P (clo), ρ);
Evaluate(P (hyp));
FFE ← FFE + Nc;
(P (t)

a , P
(hyp)
a ) = Aging(P (t), P (hyp), τB);

P (t+1) ← (μ + λ)-Selection(P (t)
a , P

(hyp)
a );

t ← t + 1;
end while

survived, the (μ + λ)-Selection operator randomly selects d − d′ “old” B cells
from P

(t)
a � P

(hyp)
a .

In Table 3 is showed the pseudo-code of the proposed immune algorithm.

4 Experimental Results

To better understand the search ability of the proposed IA and its real per-
formances, we used a large set of experiments on two different categories of
functions with different features, using high different dimensional values. More-
over, we compared our algorithm to several DE variants, as proposed in [6], [5],
[4], to evaluate the goodness of the proposed solutions by IA. We used the first
13 well-known benchmark functions from [3]: unimodal functions, that are rel-
atively easy to optimize, but their difficulty increases as the dimensional space
increase, and multimodal functions, with many local minima, that represent the
most difficult class of problems for many optimization algorithms. Last category
is the most important, because the quality of the final results reflects the ability
of the given algorithm to escape from local optima.

For all experiments we used the following values for IA: d = 100, dup = 2,
τB = 15, and θ = 75%, where θ represents the threshold used to decrease the
best fitness function value obtained in each generation to normalize the fitness
in the range [0, 1] [1]. Moreover, we used ρ = 7 for high dimension values, whilst
lower ρ values for smaller dimensions.

Figure 1 shows the mutation number obtained at different fitness function
values, from worst to best. These experiment were obtained using small and high
dimensional values. In the inset plot we give a zoom reducing the normalized
fitness function in the range [0.4, 1].
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Fig. 1. Mutation Potential behavior using different dimension values

At each generation we computed the mean value of the best fit individuals for
all independently runs and the standard deviation, to indicate the consistency of
the algorithm.

In the first experiment, IA is compared with the 8 DE variants, proposed in
[6], where Tmax was fixed to 12 × 104. For each function 100 independent runs
were performed. The dimension of the functions was fixed to 30, and the results
are shown in Table 2. Because in [6] the authors have modified the function f8 to
have its minimum at zero (rather than −12569.5), it is not included into the same
table. The best results obtained by each algorithm are shown in boldface. From
this table, one can see that IA outperforms the majority of the DE variants,
either in unimodal class or multimodal, and it is comparable with the best DE
algorithm.

In Table 3 IA is compared to rand/1/bin variant, using a different experi-
mental protocol, proposed in [5]. For each experiment the maximum number of
fitness function evaluations Tmax was fixed to 5×105, for function dimension 30
or less, whilst using 100 dimension, Tmax was set to 5×106. For each benchmark
function, 30 independent runs were performed. For each function the mean best
function values found in the last generation is shown in the first row, and stan-
dard deviation in the second. The results obtained for both 30 and 100 variables
IA are comparable to the results obtained by rand/1/bin. In this comparison all
results below 10−20 were reported as 0.0.

Recent developments in EAs field, have shown that to tackle complex search
spaces, pure genetic algorithms (GA) need to use local search operators and
specialized crossover [7]. In [4] two memetic versions of DE, which used crossover
based local search (XLS), were proposed. As a last experiment, IA was compared
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Table 2. Immune Algorithm versus DE variants on the unimodal and multimodal
functions, using 30 dimension

Unimodal Functions
f1 f2 f3 f4 f6 f7

IA 0.0 0.0 0.0 0.0 0.0 0.0000489
rand/1/bin 0.0 0.0 0.02 1.9521 0.0 0.0
rand/1/exp 0.0 0.0 0.0 3.7584 0.84 0.0
best/1/bin 0.0 0.0 0.0 0.0017 0.0 0.0
best/1/exp 407.972 3.291 10.6078 1.701872 2737.8458 0.070545
current-to-best/1 0.54148 4.842 0.471730 4.2337 1.394 0.0
current-to-rand/1 0.69966 3.503 0.903563 3.298563 1.767 0.0
current-to-rand/1/bin 0.0 0.0 0.000232 0.149514 0.0 0.0
rand/2/dir 0.0 0.0 30.112881 0.044199 0.0 0.0

Multimodal Functions
f5 f9 f10 f11 f12 f13

IA 11.69 0.0 0.0 0.0 0.0 0.0
rand/1/bin 19.578 0.0 0.0 0.001117 0.0 0.0
rand/1/exp 6.696 97.753938 0.080037 0.000075 0.0 0.0
best/1/bin 30.39087 0.0 0.0 0.000722 0.0 0.000226
best/1/exp 132621.5 40.003971 9.3961 5.9278 1293.0262 2584.85
current-to-best/1 30.984666 98.205432 0.270788 0.219391 0.891301 0.038622
current-to-rand/1 31.702063 92.263070 0.164786 0.184920 0.464829 5.169196
current-to-rand/1/bin 24.260535 0.0 0.0 0.0 0.001007 0.000114
rand/2/dir 30.654916 0.0 0.0 0.0 0.0 0.0

Table 3. Performance Comparison among IA and ”rand/1/bin” on 13 functions bench-
marks, using 30 and 100 dimensions

30 dimension 100 dimension
IA rand/1/bin IA rand/1/bin

f1 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f3 0.0 2.02 × 10−9 0.0 5.87 × 10−10

0.0 8.26 × 10−10 0.0 1.83 × 10−10

f4 0.0 3.85 × 10−8 6.447 × 10−7 1.128 × 10−9

0.0 9.17 × 10−9 3.338 × 10−6 1.42 × 10−10

f5 12 0.0 74.99 0.0
13.22 0.0 38.99 0.0

f6 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f7 1.521 × 10−5 4.939 × 10−3 1.59 × 10−5 7.664 × 10−3

2.05 × 10−5 1.13 × 10−3 3.61 × 10−5 6.58 × 10−4

f8 −1.256041 × 10+4 −1.256948 × 10+4 −4.16 × 10+4 −4.1898 × 10+4

25.912 2.3 × 10−4 2.06 × 10+2 1.06 × 10−3

f9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f10 0.0 −1.19 × 10−15 0.0 8.023 × 10−15

0.0 7.03 × 10−16 0.0 1.74 × 10−15

f11 0.0 0.0 0.0 5.42 × 10−20

0.0 0.0 0.0 5.42 × 10−20

f12 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f13 0.0 −1.142824 0.0 −1.142824
0.0 4.45 × 10−8 0.0 2.74 × 10−8
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Table 4. IA versus rand/1/exp, best/1/exp and their memetic versions by [4], with
n = 50 dimensional search space

IA rand/1/exp best/1/exp DEfirDE DEfirSPX

f1
0 ± 0 309.74 ± 481.05 0 ± 0 0 ± 0

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
0.0535 ± 0.0520 0.0027 ± 0.0013 0.0026 ± 0.0023 1 · 10−4 ± 4.75 · 10−5

f5
79.8921 ± 102.611 3.69 · 10+5 ± 5.011 · 10+5 72.0242 ± 47.1958 65.8951 ± 37.8933

30 ± 21.7 52.4066 ± 19.9109 54.5985 ± 25.6652 53.1894 ± 26.1913 45.8367 ± 10.2518
90.0213 ± 33.8734 58.1931 ± 9.4289 66.9674 ± 23.7196 52.0033 ± 13.6881

f9
0 ± 0 0.61256 ± 1.1988 0 ± 0 0 ± 0

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
0 ± 0 0 ± 0 0 ± 0 0 ± 0

f10
0 ± 0 0.2621 ± 0.5524 0 ± 0 0 ± 0

0 ± 0 9.36 · 10−6 ± 3.67 · 10−6 6.85 · 10−6 ± 6.06 · 10−6 2.28 · 10−5 ± 1.45 · 10−5 3.0 · 10−6 ± 1.07 · 10−6

0.0104 ± 0.0015 0.0067 ± 0.0015 0.0060 ± 0.0015 0.0019 ± 4.32 · 10−4

f11
0 ± 0 0.1651 ± 0.2133 0 ± 0 0 ± 0

0 ± 0 9.95 · 10−7 ± 4.3 · 10−7 0 ± 0 0 ± 0 0 ± 0
0.0053 ± 0.010 0.0012 ± 0.0028 4.96 · 10−4 ± 6.68 · 10−4 5.27 · 10−4 ± 0.0013

Table 5. IA versus rand/1/exp, best/1/exp and their memetic versions by [4], with
n = 100 dimensional search space

IA rand/1/exp best/1/exp DEfirDE DEfirSPX

f1
1.58 · 10−6 ± 3.75 · 10−6 0.0046 ± 0.0247 0 ± 0 0 ± 0

0 ± 0 59.926 ± 16.574 30.242 ± 5.93 11.731 ± 5.0574 1.2614 ± 0.4581
2496.82 ± 246.55 1729.40 ± 172.28 358.57 ± 108.12 104.986 ± 22.549

f5
120.917 ± 41.8753 178.465 ± 60.938 107.5604 ± 28.2529 99.1086 ± 18.5735

85.6 ± 31.758 12312.16 ± 3981.44 7463.633 ± 2631.92 2923.108 ± 1521.085 732.85 ± 142.22
3.165 · 10+6 ± 6.052 · 10+5 1.798 · 10+6 ± 3.304 · 10+5 2.822 · 10+5 ± 3.012 · 10+5 16621.32 ± 6400.43

f9
0 ± 0 0 ± 0 0 ± 0 0 ± 0

0 ± 0 2.6384 ± 0.7977 0.7585 ± 0.2524 0.1534 ± 0.1240 0.0094 ± 0.0068
234.588 ± 13.662 198.079 ± 18.947 17.133 ± 7.958 27.0537 ± 20.889

f10
1.02 · 10−6 ± 1.6 · 10−7 9.5 · 10−7 ± 1.1 · 10−7 1.2 · 10−6 ± 6.07 · 10−7 0 ± 0

0 ± 0 1.6761 ± 0.0819 1.2202 ± 0.0965 0.5340 ± 0.1101 0.3695 ± 0.0734
7.7335 ± 0.1584 6.7251 ± 0.1373 3.7515 ± 0.2773 3.4528 ± 0.1797

f11
0 ± 0 0 ± 0 0 ± 0 0 ± 0

0 ± 0 1.1316 ± 0.0124 1.0530 ± 0.0100 0.7725 ± 0.1008 0.5433 ± 0.1331
20.037 ± 0.9614 13.068 ± 0.8876 3.7439 ± 0.7651 2.2186 ± 0.3010

Table 6. IA versus rand/1/exp, best/1/exp and their memetic versions by [4], with
n = 200 dimensional search space

IA rand/1/exp best/1/exp DEfirDE DEfirSPX

f1
50.005 ± 16.376 26.581 ± 7.4714 17.678 ± 9.483 0.8568 ± 0.2563

0 ± 0 5.45 · 10+4 ± 2605.73 4.84 · 10+4 ± 1891.24 9056.0 ± 1840.45 2782.32 ± 335.69
1.82 · 10+5 ± 6785.18 1.74 · 10+5 ± 6119.01 44090.5 ± 6122.35 9850.45 ± 1729.9

f5
9370.17 ± 3671.11 6725.48 ± 1915.38 5302.79 ± 2363.74 996.69 ± 128.483

165.1 ± 71.2 4.22 · 10+8 ± 3.04 · 10+7 3.54 · 10+8 ± 3.54 · 10+7 2.39 · 10+7 ± 6.379 · 10+6 1.19 · 10+6 ± 4.10 · 10+5

3.29 · 10+9 ± 2.12 · 10+8 3.12 · 10+9 ± 1.65 · 10+8 3.48 · 10+8 ± 1.75 · 10+8 1.21 · 10+7 ± 4.73 · 10+6

f9
0.4245 ± 0.2905 0.2255 ± 0.1051 0.1453 ± 0.2771 0.0024 ± 0.0011

0 ± 0 1878.61 ± 60.298 1761.55 ± 43.3824 352.93 ± 46.11 369.88 ± 136.87
5471.35 ± 239.67 5094.97 ± 182.77 1193.83 ± 145.477 859.03 ± 99.76

f10
0.5208 ± 0.0870 0.4322 ± 0.0427 0.3123 ± 0.0426 0.1589 ± 0.0207

0 ± 0 15.917 ± 0.1209 15.46 ± 0.1205 9.2373 ± 0.4785 6.6861 ± 0.3286
19.253 ± 0.0698 19.138 ± 0.0772 14.309 ± 0.3706 9.4114 ± 0.4581

f11
0.7687 ± 0.0768 0.5707 ± 0.0651 0.5984 ± 0.1419 0.1631 ± 0.0314

0 ± 0 490.29 ± 21.225 441.97 ± 15.877 78.692 ± 11.766 28.245 ± 4.605
1657.93 ± 47.142 1572.51 ± 53.611 368.90 ± 41.116 85.176 ± 12.824

with rand/1/exp, best/1/exp and their memetic versions, called DEfirDE and
DEfirSPX [4], respectively. For each experiment, the maximum number of fitness
function evaluations Tmax was fixed to 5 × 105, and 50, 100 and 200 dimension
variables were used. For each instance 30 independent runs were performed. The
same functions proposed in [4]: f1, f5, f9, f10 and f11, were used. In Tables 4,
5 and 6, for the two DE variants and their memetic versions, are reported the
results obtained varying the population size, with n, 5n and 10n, where n is
the dimensional search space, as showed in [4]. Moreover, for each algorithm,
is showed the mean value of the best fit individuals and standard deviation
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(mean ± sd), used to indicate the consistency of the algorithm. In Table 4 we
report the results obtained using n = 50 dimensional search space. From this
table one can see that IA is comparable and in many cases outperforms DE and
its memetic variants, expecially for f5.

In Tables 5 and 6 one can see the results obtained using 100 and 200 dimen-
sional search space. From these two tables it is clear that IA outperforms the
compared algorithms when increasing the function dimension. It is important
to highlight that our proposed algorithm outperforms DE variants and their
memetic versions, in each function using smaller population size for n = 100 and
n = 200.

5 Conclusion

The main features of the IA can be sumarized as: (1) the cloning operator, which
explores the neighbourhood of a given solution, (2) the inversely proportional
hypermutation operator, that perturbs each candidate solution as a function of
its fitness function (inversely proportional), and (3) the aging operator, that
eliminates the oldest candidate solutions from the current population in order
to introduce diversity and thus avoiding local minima during the search process.

In this research paper we presented an extensive comparative study illustrat-
ing the performance of a well-known immune algorithm [1], with the features
mentioned above, and that of several differential evolution variants [6], [5] and
their memetic versions [4]. We used the 13 classical benchmark functions from
[3] (unimodal and multimodal functions) for our experiments. Furthermore the
dimensionality of the problems was varied from n = 30 to n = 200 dimensions.

Our results suggest that the proposed immune algorithm is an effective nu-
merical optimization algorithm( in terms of solution quality) particularly for the
most challenging highly dimensional search spaces. In particular, increasing the
dimension of the solutions space improves the performances of IA. Finally, the
experimental results also show that the IA is comparable, and it often outper-
forms, all 8 DE variants as well as their memetic counterparts.
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