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ABSTRACT
Motivation: The prediction of a protein’s contact map has become in
recent years a crucial stepping stone for the prediction of the complete
3D structure of a protein. In this paper we describe a methodology for
this problem that was shown to be successful in CASP8 and CASP9.
The methodology is based on (1) the fusion of the prediction of a
variety of structural aspects of protein residues, (2) an ensemble
strategy used to facilitate the training process and (3) a rule-based
machine learning system from which we can extract human-readable
explanations of the predictor and derive useful information about the
contact map representation.
Results: The main part of the evaluation is the comparison against
the sequence-based contact prediction from CASP9, where our
method presented the best rank in five out of the six evaluated
metrics. We also assess the impact of the size of the ensemble used
in our predictor to show the trade-off between performance and trai-
ning time of our method. Finally, we also study the rule-sets generated
by our machine learning system. From this analysis we are able to
estimate the contribution of the attributes in our representation and
how these interact to derive contact predictions.
Availability: http://icos.cs.nott.ac.uk/servers/psp.html
Contact: natalio.krasnogor@nottingham.ac.uk

1 INTRODUCTION
Contact Map (CM) prediction is one of the most challenging pro-
blems within the field of protein structure prediction (PSP). This is
due to the sparseness of the contacts (i.e. the positive examples) and
the large training sets (millions of instances, GBs of disk space) that
are generated by using just a few thousands of proteins. CM can pro-
vide crucial information for improving PSP methods in a variety of
ways: providing restraints candidate conformations (Zhang, 2009),
reconstructing approximate 3D structures from the CM (Vassura
et al., 2008) or selecting good models (Tress and Valencia, 2010).

Most CM prediction methods use a sequence-based approach
using machine learning methods. Through the years many techni-
ques have been applied to CM prediction, such as neural networks
(Shackelford and Karplus, 2007; Punta and Rost, 2005), support
vector machines (Cheng and Baldi, 2007), genetic programming
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(MacCallum, 2004) or random forests (Li et al., 2011). Moreover,
many sources of information can be used for CM prediction. Beside
evolutionary information, used by all methods, some use predicted
secondary structure (SS), predicted solvent accessibility (SA), cor-
related mutations, contact propensity, statistics over the connecting
segment between the pair of target residues or global protein infor-
mation. The diversity of information sources as well as the fact that
CM datasets can easily reach millions of residue pairs requires the
use of methods that can cope with both large instance sets and high
dimensionality spaces.

This paper introduces the prediction methodology with which
we have participated in the last two editions of CASP under the
name Infobiotics. The main characteristics of this predictor are
(a) an ensemble architecture designed to alleviate the sparseness
and large training set sizes of the CM problem, (b) the fusion
of several predicted 1D structural features. Beside the usual SS
and SA we also use the less frequently used Coordination Number
(CN) (Kinjo et al., 2005) and our own 1D metric called Recursive
Convex Hull (RCH)(Stout et al., 2008), which models the degree
of burial of an amino-acid within a protein by modelling a pro-
tein’s structure as a series of nested convex hulls and assigning
each residue to a certain hull, and (c) a robust genetic algorithms-
based rule learning system called BioHEL(Bacardit et al., 2009b)
(http://icos.cs.nott.ac.uk/software/biohel.html) that has been desi-
gned to cope with both large numbers of instances and large
dimensionality spaces and has been successfully applied across a
broad range of bioinformatics problems (Stout et al., 2008; Bacardit
et al., 2009a; Stout et al., 2009; Bassel et al., 2011).

We assess the prediction capacity of our method firstly on a set of
3262 non-redundant protein chains and afterwards on the CASP8
and CASP9 free modelling targets. Finally we compare the per-
formance of our method against the top sequence-based methods
in CASP9, showing that our method is very competitive, being
the top ranked sequence-based method in most metrics. We also
assessed the influence of the size of the ensemble architecture on
its performance. Finally, the added benefit of using a rule-based
machine learning system such as BioHEL is that we can study the
human-readable solutions it produces to understand how the system
predicts, identifying which attributes are the most useful and how
they interact.
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Fig. 1. General architecture of the contact map predictor

2 MATERIALS AND METHODS
Our CM prediction architecture integrates four types of complementary
1D predictions of structural aspects of protein residues: SS, SA, CN and
RCH. These predictions together with information derived from the pri-
mary sequence are integrated to create the full CM dataset from where our
prediction model is trained. This architecture is represented in figure 1.

Protein chains were selected from PDB-REPRDB, a non-redundant cura-
ted subset of the Protein Data Bank (PDB) (Noguchi et al., 2001), covering
the space of possible folds. Chains were selected using the following criteria:
less than 30% sequence identity, sequence length greater than 50 residues,
no non-standard residues, no chain breaks, resolution smaller than 2Å and
crystallographic R factor smaller than 20%. PDB entries that had been used
in the CASP8 Free Modelling category were removed from the training set
as these will be used for the evaluation of the CM predictor. 3262 protein
chains were selected with a total of 637494 residues. 90% of the set was
used for training and 10% for test. For clarity we will refer to this protein
set as CM-3262 in the rest of the manuscript. The lists of proteins used for
training and test is available in the supplementary material of the paper.

The complete training set was used to generate the predictors of CN, SA
and RCH. For efficiency reasons, we thinned out the sets of proteins used to
train and test the CM predictor. We kept all proteins with less than 250 resi-
dues and a randomly selected 20% of larger proteins, resulting in a training
set of almost 32M pairs of amino acids (using a minimal chain separation of
6; small separation, to generate a large number of residue pairs) and a test
set of 2.8M pairs of amino acids (using a minimal chain separation of 24; as
used in CASP to assess CM prediction). Overall less than 2% of all amino
acids pairs were real contacts at the usual distance threshold of 8Å.

2.1 Prediction of 1D structural features
For the prediction of SS we have used PSIPRED (Jones, 1999) and hence
its 3-state representation of SS (helix, strand or coil). We have generated
predictors for the other three metrics using the same system (BioHEL) as for
the CM predictor. We describe the three metrics and how these are predicted.

2.1.1 Coordination Number The CN of a certain amino acid is the
number of spatial neighbours of the residue within a specified distance thres-
hold. We have used the CN definition proposed by Kinjo et al. (Kinjo et al.,
2005). It is defined using the Cβ atom (Cα for glycine) of each residue.
The boundary of the sphere around a residue, defined by the distance cutoff
dc ∈ <+, is made smooth by using a sigmoid function. A minimum chain
separation of two residues is required. Formally, the CN, Np

i , of residue i in
protein chain p is computed as:

Np
i =

X
j:|j−i|>2

1

1 + exp(w(rij − dc))
(1)

where rij is the Euclidean distance between the Cβ atoms of the ith and
jth residues. The constant w determines the sharpness of the boundary of

the sphere. In this paper we used a distance cutoff dc of 10Å (which gives
higher predictability than 8Å (Bacardit et al., 2006)) and a w of 3.

2.1.2 Solvent Accessibility Following (Rost and Sander, 1994) we
predict the relative SA, where the SA of a residue is divided by the maximum
accessible surface in the extended conformation of its amino-acid (AA) type.
DSSP (Kabsch and Sander, 1983) is used to obtain the absolute SA of each
residue in the dataset. Next, to obtain the relative SA values we divide the
absolute values by the maximum SA values specified for each AA type in
(Rost and Sander, 1994).

2.1.3 Recursive Convex Hull RCH (Stout et al., 2008) is a metric that
aims at assessing the degree of burial of a residue within the core of a pro-
tein. This is achieved by modelling the topology of a protein structure using
the well defined geometry concept of convex hull. The convex hull (Pre-
parata and Shamos, 1985) of a set of points X is the minimal convex set
containing X where a set is said to be convex if, for every pair of points
within the set, all points on the line segment joining these two points are also
within the set. As in CN, residues are represented by the position of their Cβ

atoms (Cα for glycine). Convex hulls for each chain were identified from
the residue Cβ atom coordinate point sets using the QHull package (Barber
et al., 1996). Hulls were iteratively identified, surface residues were assigned
a hull number and then removed from the point set. This was repeated until
all residues had been assigned a hull number. Hulls were numbered outmost
inward. Software to compute the RCH of the residues of a protein is available
at http://icos.cs.nott.ac.uk/resources/RCH.

2.1.4 Representation and training process We used the same repre-
sentation and training process for CN, SA and RCH. We predicted all three
metrics as a five-state problem by binning the range of values of the metric
into five intervals of approximately the same number of data points. The
boundaries of the states were computed using the training set and applied to
the test set. The cut points for each metric are reported in the supplemen-
tary material. The representation for the predictor contains information of
a window of ±4 residues around the target amino acid. Evolutionary infor-
mation in the form of position-specific scoring matrices (PSSM) (generated
using PSI-BLAST (Altschul et al., 1997) using the non-redundant protein
sequences database) has been used to represent each residue in the window.
Hence, the representation of the CN, SA and RCH predictors consists of a
vector of 180 continuous attributes.

2.2 CM representation
Three types of information sources were used for the representation of our
CM predictor:

1. Detailed local sequence information from three selected regions (win-
dows) around specific residues

2. Information about the segment connecting the target pair of residues

3. Global sequence information and other attributes.

Two windows of ±4 amino acids are centered around the two target resi-
dues and a third window of ±2 residues is centered around the middle point
in the chain between the two target residues (Punta and Rost, 2005). Each
residue in all three windows is characterised by the PSSM profile and the
predictions of SS, SA, CN and RCH. The two windows around the targets
are represented using 216 attributes each and the central window using 120
attributes. The connecting segment is represented by the frequencies of the
amino acids types (20 attributes), predicted SS states (3 attributes), predicted
SA (5 attributes) (Punta and Rost, 2005), predicted CN (5 attributes) and pre-
dicted RCH (5 attributes). In total 33 attributes are used for this connecting
segment. The global sequence information uses the same representation as
the connecting segment with the addition of an extra attribute representing
the sequence length (34 attributes in total). Finally, two extra attributes are
included: the chain separation of the target residues (Punta and Rost, 2005)
and the contact propensity between the amino acid types of the two target
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residues (Shackelford and Karplus, 2007). In total, 631 attributes are used to
represent a given pair of residues for which we are predicting whether they
are in contact or not. While this is a very large number of attributes, it is
relatively small compared to other recent predictors (Li et al., 2011).

2.3 Training process of the CM prediction
The training process for CM prediction is challenging for two reasons: (1)
the relatively large size of the training set (32M pairs of residues and 56.7GB
of disk space) which is impossible to load and hold in memory all together
and (2) the low ratio (less than 2%) of true contacts, which makes the training
set unbalanced and hence extremely difficult to learn from. We have used
ensemble learning to deal with both challenges simultaneously.

First, to create smaller and more balanced (in terms of contacts/non con-
tacts) training sets we generated 50 random samples from the complete
set. Each sample contained around 660000 residue pairs with a fixed 2:1
proportion of non-contacts to real contacts (re-balancing the original 50:1
proportion). The ratio of contacts/non-contacts has an influence in the rate
of predicted contacts produced by the system. Preliminary experiments (see
supplementary material) showed that using a 1:1 ratio lead to a very high
false positives rate. This was due to the fact that a 1:1 sampling induced
classifiers that predicted too many spurious contacts. Hence, our strategy of
resampling with a more conservative 2:1 ratio. The sampling was performed
separately for each protein in the training set in order to sample residue pairs
from all proteins. Afterwards, we run BioHEL 25 times for each sample with
different initial random seeds. BioHEL is a stochastic algorithm (based on
genetic algorithms), so each run generated a different rule set. Thus, in total
we generated 1250 rule sets (50 training samples x 25 seeds). Finally, the
contact predictions were performed as a simple majority vote of all rule sets
in the ensemble.

The ensemble was also used to estimate the confidence of the predictions
(as required by CASP). It was estimated from the margin of victory of the
vote. If all rule sets agreed the confidence was 1, if the vote was split 50:50,
the confidence was 0. Specifically, the confidence was defined as conf =
(2 · V − T )/T , where V is the number of votes casted for the winning
outcome and T is the total number of votes casted.

2.4 Improvements since CASP8
Our CASP8 and CASP9 predictors used exactly the same representation.
The only differences were in the selection of protein dataset and the sizes of
the samples fed into BioHEL. The complete protein set had 2811 proteins in
CASP8 (3262 in CASP9) which is a small difference. The major difference
was the “thinning” process performed to select the proteins used for the CM
dataset. In CASP8 we discarded all proteins larger than 350 residues and
selected only a random half of the smaller ones. This resulted in a set of
15.2M pair of residues (32M in CASP9). Finally, the sizes of the 50 samples
fed to BioHEL was 300K in CASP8 (660K in CASP9). These changes meant
that the computational resources required for the CASP9 dataset were larger
than before (25000 CPU hours were used for the training process of the CM
predictor). Nevertheless, as the result section will show, the larger and more
representative dataset used in CASP9 managed to boost the performance of
our predictor consistently across most evaluation metrics.

3 RESULTS
We have evaluated our CM predictor according to the CASP eva-
luation rules (Monastyrskyy et al., 2011), where (1) only long range
contacts (at least 24 residues apart) are considered, (2) the predic-
ted contacts are ranked by confidence, (3) only the top ranked 5,
L/10 and L/5 predicted contacts (L=chain length) are considered
and (4) the performance metrics considered are accuracy (defined
as TP/(TP+FP)) and Xd, defined as:

Xd =

15X
i=1

Ppi − Pai

15di
(2)
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Fig. 2. Accuracy vs number of samples in the ensemble, CM-3262 test set
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where Ppi is the percentage of predicted pairs with a distance bet-
ween 4(i − 1) and 4i, Pai is the percentage of all pairs with a
distance between 4(i− 1) and 4i and di is the upper limit of the ith
bin normalised to 60.

3.1 Influence of the size of the ensemble
Firstly we assess the impact of the number of predictors in our
ensemble architecture. To this aim we apply our predictor to the
test partition of our CM-3262 dataset using an ensemble including
the rule sets generated from only one sample (25 rule sets) and then
a number of predictors ranging from 125 (using 5 training samples)
to 1250 (using 50 training samples) rule sets in increments of 25.
Figures 2 and 3 show the results of this experiment for accuracy and
Xd, respectively, showing that the increase in predictors is beneficial
to the predictive power of our method for both metrics, although the
slope of the plots suggests that the influence of the ensemble size
is stronger in the top predicted contacts (Top 5 and L/10) and less
in L/5. Of course, increased number of predictors means increased
computational cost. In our case, training the 25 rule sets derived
from each sample took approx. 500 CPU hours. Finally we can also
see that it is not clear that adding samples beyond 50 will contribute
to a large performance increase except in the Top 5 contacts.
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Table 1. Comparison of our CASP8 and CASP9 predictors
on the CASP8 and CASP9 CM assessment datasets

Predictor Metric CASP8 dataset CASP9 dataset

CASP8 predictor

Acc Top5 21.7±19.1 26.4±26.2
Acc L/10 26.4±18.6 23.8±17.7
Acc L/5 23.7±11.5 19.6±13.6
Xd Top5 10.7±4.3 12.1±7.5
Xd L/10 11.7±4.4 11.3±6.1
Xd L/5 10.6±3.1 10.2±5.3

CASP9 predictor

Acc Top5 28.3±22.3 25.7±23.2
Acc L/10 27.3±16.8 24.1±16.4
Acc L/5 28.9±12.9 21.1±13.3
Xd Top5 13.2±6.3 11.8±9.0
Xd L/10 12.7±4.9 11.7±7.1
Xd L/5 12.8±3.4 10.6±5.3

3.2 Comparing our CASP8 and CASP9 predictors
Table 6 in the supplementary material shows the performance of our
CM predictor on the 28 targets used in CASP9 for the assessment of
CM prediction. In most domains, and for both accuracy and Xd, we
observed that the highest performance was achieved under the Top5
metric, then came the L/10 metric and finally the L/5 metric had the
worst performance. These results indicate that our prediction confi-
dence estimator procedure is sound, because the best performance is
obtained when using only the predictions at the top of the rank, and
it degrades when more predictions are included (first L/10, then L/5)
in the metric computation. This trend, however, was not observed in
all domains. Thus, the confidence procedure can still be improved
further and is the subject of future research.

Next, we compare the performance of our CASP8 and CASP9
predictors (as these are trained slightly different, as detailed above)
on the targets used in CASP8 (T0397-D1, T0405-D1, T0405-D2,
T0416-D2, T0443-D1, T0443-D2, T0465-D1, T0476-D1, T0482-
D1, T0496-D1, T0510-D3 and T0513-D2) and CASP9 (detailed in
table 6 of the supplementary material) for the assessment of CM pre-
diction. The aim of this experiment is to test the consistency of the
predictor, that is, to check if it manages to maintain stable predic-
tion capacity across CASP editions. The results of this experiment
are reported in table 1 and show that the CASP9 predictor is slightly
better than its CAPS8 counterpart for almost all scenarios (the only
two exceptions are Acc Top5 and Xd Top5 in the CASP9 dataset)
although the difference is minor. Hence, the consistency of the pre-
dictions across CASP editions is confirmed. Moreover, the CASP9
CM prediction assessors observed that the average performance of
the CASP9 predictors was lower than in CASP8, indicating that the
CASP9 targets were more difficult (Monastyrskyy et al., 2011). The
results in table 1 for the two versions of our predictor are consistent
with this observation (in all metrics except Acc Top5 and Xd Top5
the predictors obtained lower average performance in CASP8 targets
than in CASP9 targets), although the difference is difficult to stati-
stically measure due to the low number of targets used in CASP8
for the assessment of CM prediction.

3.3 Comparison with the top methods in CASP9
Finally, the last stage of the evaluation is the compari-
son against the top methods that participated in CASP9 on

the 28 domains used for the assessment of CM predic-
tion. The predictions from all methods have been extracted
from http://www.predictioncenter.org/download_
area/CASP9/predictions/RR.tar.gz. We include in this
comparison the top 10 sequence-based methods 1 (including ours)
that the CASP9 assessors highlighted in their report (Monastyrskyy
et al., 2011). Given that not all methods managed to submit enough
predictions for all targets, we will focus on a subset of 23 domains
for which all methods generated enough predictions. The supple-
mentary material reports, for each predictor, average results across
all targets for which each method generated enough predictions.

Furthermore, we have analyzed these results using the recommen-
dations proposed by Demšar (Demšar, 2006) for comparing multiple
methods over multiple datasets (domains in this case). This proce-
dure takes into account that, when comparing multiple methods,
corrections need to be applied to the pair-wise comparisons in
order to make sure that all of them hold simultaneously. Moreover,
Demšar recommends to perform the comparison based on averaging
the ranks of performance of the methods for each domain rather than
on the average of a given performance metric across datasets. Fur-
thermore, the Friedman statistical test (a non-parametric test that
makes no assumptions about the distribution of the data) is used to
determine if there are statistically significant differences within the
methods included in the comparison. If the Friedman test detects
significant differences, a post-hoc test is applied to identify them.
For this paper we have used the Holm post-hoc test which compa-
res a control method with the rest of methods to determine if there
is any significant performance difference between any of them. We
have used, for each of the six metrics, the method with the best ave-
rage rank as control. All tests were applied with 95% confidence
level.

Table 2 contains the results of this analysis. Each row shows
the p-value of the Friedman test and afterwards the methods sorted
by their average rank across protein domains. Bold cells indicate
methods that are significantly worse than the top ranked method.

Our method presented the best average rank in five out of the
six metrics. It should be mentioned, though, that the best method
was shown to be statistically indistinguishable from the other nine
methods in table 2 according to the Acc measure, and showed sta-
tistical superiority over the methods ranked as 8-10 according to
the Xd score. Using the average rank of a metric instead of the
average value of the metric reveals some difference in the ranking,
favoring methods that regularly perform well. A single large per-
formance difference in a specific protein can distort the average
accuracy computation, but it will not distort the average rank.

4 MINING BIOHEL’S RULE SETS
One issue that affects most CM predictors (and many other sub-
problems of PSP) is that it is extremely difficult to explain the
predictions performed by the system, quantify the contribution that
the different parts of the representation give to the predictive power
of the method or identify the interactions between the different parts
of the representation. Modern CM prediction methods generally use
hundreds (or even thousands) of attributes in their representation, so

1 The two top groups in the CASP9 contact map assessment, 391 and
490 are not included in this comparison as these groups derived contact
predictions from 3D models, instead of directly from sequence.
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Table 2. Statistical comparison of CASP9 methods on the common set of 23
domains using the Friedman and Holm statistical tests.

Acc Top5
p-value Method 103 51 138 375 422 244 119 2 214 80
0.1199 Rank 4.63 4.78 4.80 4.85 5.57 5.65 5.72 5.89 6.48 6.63

Acc L/10
p-value Method 51 103 138 2 375 244 422 119 214 80
0.2482 Rank 3.98 4.63 4.80 4.93 5.43 5.65 5.78 6.35 6.61 6.83

Acc L/5
p-value Method 51 2 138 103 244 375 422 214 119 80
0.0916 Rank 4.63 4.78 4.80 4.85 5.57 5.65 5.72 5.89 6.48 6.63

Xd Top5
p-value Method 51 103 375 138 2 119 422 244 80 214
0.0142 Rank 3.98 4.63 4.80 4.93 5.43 5.65 5.78 6.35 6.61 6.83

Xd L/10
p-value Method 51 2 103 138 375 422 244 119 80 214
0.0025 Rank 4.15 4.63 4.76 4.83 4.93 5.63 5.67 6.04 6.78 7.57

Xd L/5
p-value Method 51 2 138 375 103 422 244 119 80 214
0.0227 Rank 4.43 4.74 4.74 4.85 4.93 5.52 5.76 5.96 6.74 7.33

Each row sorts the 12 methods by their average rank for the row’s metric. p-value =
result of the Friedman test. Bold cells indicate statistically worse methods than the top
ranked method at 95%. Methods are identified by their CASP9 ID. Our method = 51.

this issue becomes even more important. Our BioHEL machine lear-
ning system generates human-readable sets of production rules, and
we can exploit this characteristic to extract knowledge from the rules
that can help address these challenges. Figure 4 contains one of the
1250 rule sets that form our CM predictor. A full description of the
meaning of the attributes that appear in the rules is available in the
supplementary material. On average a rule set contains 152.5±7.1
rules, and each rule uses 8.4±2.9 attributes. Given the large volume
of rules it would be very difficult to inspect them manually, but we
can extract global statistics from the complete set of rules.

4.1 Most frequently used attributes
Table 3 lists the top 20 attributes most frequently used in the rules.
The complete ranking is available in the supplementary material of
the paper and contains all 631 attributes of our representation. Thus,
all of them were used, although some of them rarely.

All four types of 1D predictions for both target residues ( r1/ r2)
were within the top 20 most frequently used attributes which indica-
tes that, despite expressing similar structural properties (especially
SA and RCH), all of them contributed complementary informa-
tion to the predictor. The static AA-wise contact propensity metric
(Shackelford and Karplus, 2007), a simplistic predictor on its own,
was the second most used attribute when combined with others in a
rule. Properties about window positions other than those of the tar-
get pair of amino acids start appearing at position 8 of the ranking,
and the evolutionary information (the PSSM attributes) at position
11. The PSSM attributes appearing in the top 20 were all polar (D,
E, N and K), and most of them charged. At positions 18-19 we found
two summary statistics for the chain segment connecting the target
pair of residues: the proportion of AAs that belong to the outer hull
and the proportion of amino acids in coil state.

Table 3. Top 20 most frequent attributes
used in BioHEL’s rules

Rank Attribute Ratio

1 PredSA r1 22.3
2 propensity 20.1
3 PredSA r2 18.4
4 PredSS r1 17.4
5 PredSS r2 15.7
6 PredRCH r1 15.6
7 PredRCH r2 13.9
8 PredSS r1 1 13.7
9 PredSS r2 -1 13.2

10 PredCN r1 12.3
11 PSSM r2 0 E 11.6
12 PSSM r2 0 D 10.9
13 PredCN r2 10.1
14 PredSS r1 -1 10.0
15 PSSM r1 0 D 10.0
16 PSSM r1 0 E 9.9
17 PSSM r2 0 N 9.4
18 PredRCH freq connecting 0 9.4
19 PredSS freq connecting C 9.0
20 PSSM r2 0 K 9.0

Ratio = percentage of rules where the attribute
appears

4.2 Contribution of the information sources
To measure the contribution of different information sources in our
rule sets we aggregated the ranks of all the attributes (window posi-
tions/frequency counts) belonging to each source. The results of
this analysis are reported in table 4. We can observe that, while
PredSA r1 was the most frequently used attribute, the correspon-
ding attributes for other positions in the windows are much less
used, and the average rank of that type of information is only 10.
On the other hand, the predicted SS attributes for most of the win-
dow positions around the targets are useful, as their average rank
is 5th and 6th, for the 1st and the 2nd residue in the pair, respec-
tively. Even higher is the average rank of the frequency of predicted
SS elements across the connecting segment between the target pair
(PredSS freq connecting), which is the first actual average rank
(unlike propensity, separation and length that are individual attribu-
tes). The average ranks for RCH, SA and CN are relatively similar,
and much lower than the SS one. At the bottom of the average
ranks we find all the attributes related to the central window, clearly
indicating that these are the least useful information sources.

4.3 Contribution of the PSSM profile’s columns
Table 4 also shows a big disparity between the best and average
rank of the evolutionary information (PSSM r1 and PSSM r2). To
analyse this in more detail we have computed the average rank of
the PSSM elements corresponding to each amino acid type. Table
5 contains the results of this analysis, reporting the average rank
for the positions of the windows associated to the target residues
or for the complete windows. Only the two windows around the
target pair have been included in this analysis, ignoring the central
window, and the rank is sorted by the central positions rank. As
we observed in the top 20 rank, the top AA types are all polar and
most of them charged (except H which is lower in the rank). Next
we find two aliphatic AAs (I and V). Aromatic and tiny AAs are
in general low in the ranking. There are small differences between
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1: If propensity ∈ [0.53, 1.51], PredSA freq connecting 0 ≤ 0.00, PSSM r1 0 E ∈ [−10.06,−4.78], PSSM r2 0 Q ≤ −3.57, PSSM central −
2 Q ∈ [−12.98, 6.42], PSSM central − 1 R ∈ [−2.96, 7.34] → predict contact

2: If PredSS r1 /∈ {C}, PredSS r1 2 ∈ {E}, PredSS r2 2 ∈ {E, X}, PredSA freq connecting 2 ≤ 0.52, PredRCH r2 1 ∈ {2, 3, 4},

PredSA r1 −2 ∈ {0, 1, X}, PredSA r2 3 ∈ {0, 1, 3}, AA freq connecting Y ≤ 0.00, PSSM r1 0 K ∈ [−9.97,−2.03], PSSM r2 −1 N ≥ −10.69,

PSSM r2 0 I ∈ [2.24, 8.16], PSSM central 1 N ≥ −7.67 → predict contact

.

.

161: Everything else→ predict non-contact

Fig. 4. Rule set generated by BioHEL. Attributes with r1, r2 or central belong to the corresponding three windows of AAs. A suffix (-4 .. 4) after
r1/ r2/ central gives the relative window position. The connecting suffix is used for frequency statistics computed over the segment connecting the target

pair. X is the end of chain symbol.

Table 4. Best and average rank of the information
sources in our CM representation sorted by average
rank

Type Best rank Average rank

propensity 2 2.0±0.0
separation 24 24.0±0.0

PredSS freq connecting 19 32.0±9.9
length 42 42.0±0.0

PredSS r1 4 43.0±31.4
PredSS r2 5 47.8±38.9

PredSS freq global 30 75.3±58.5
PredCN r1 10 81.6±40.2

PredRCH r1 6 82.7±40.1
PredSA r1 1 82.8±42.6

PredRCH r2 7 85.6±37.8
PredCN r2 13 89.2±37.7

AA freq connecting 45 91.8±38.4
PredSA freq connecting 27 92.4±56.2

PredSA r2 3 93.6±44.3
PredRCH freq connecting 18 114.2±48.9
PredCN freq connecting 63 118.2±49.2

PredCN freq global 31 133.2±66.6
PredRCH freq global 62 134.2±37.2
PredSA freq global 65 171.8±81.4

PredSS central 232 282.2±39.5
AA freq global 181 290.9±63.7

PSSM r1 15 322.6±130.8
PredCN central 301 329.4±18.0

PSSM r2 11 334.6±144.8
PredRCH central 305 366.4±33.6
PredSA central 331 408.8±41.4
PSSM central 390 568.6±50.4

the average rank for the target residues and for the whole window
for most AA types except for G (which raises 5 positions in the
whole window rank), P (which raises 6 positions) and V (which
falls 4 positions). Interestingly, these three AA types are among the
most frequent of the AA freq connecting attributes (as shown in the
complete attribute ranking in the supplementary material).

4.4 Interactions between attributes
The analysis of BioHEL’s rules performed so far has revealed use-
ful information about the contribution of the different information
sources into the predictor. However, it is a limited analysis. A rule
is activated when all of its attributes are activated together. There-
fore, it is also important to look at which pairs of attributes appear
together frequently in rules. Table 6 reports the top 20 pairs of
attributes. In this case we do not report the complete ranking as

Table 5. Rank of the evolutionary information attri-
butes aggregated by their AA type

AA Type Target residues rank Whole window rank

D 13.5±1.5 184.5±84.4
E 13.5±2.5 189.7±82.8
N 19.5±2.5 197.3±79.8
K 21.5±1.5 221.1±93.5
Q 27.0±2.0 236.4±91.4
R 34.0±1.0 271.2±109.7
I 57.0±11.0 340.5±148.8
V 66.0±16.0 359.7±151.8
S 73.0±2.0 303.9±108.4
G 85.0±15.0 226.6±80.1
H 92.5±2.5 357.9±107.5
L 111.0±23.0 384.3±140.7
P 136.0±12.0 257.7±96.3
M 209.0±7.0 374.0±76.2
F 227.5±13.5 439.7±92.4
C 252.5±85.5 441.4±90.5
T 260.5±24.5 413.1±74.2
Y 270.5±7.5 467.2±73.6
W 292.0±19.0 437.6±67.6
A 490.5±22.5 467.4±60.5

there were almost 200K pairs of attributes identified in BioHEL’s
rules (which is roughly half of the total possible pairs of attribu-
tes). We can observe a very clear trend in the most frequent pairs:
a pair includes one attribute associated to each of the two resides
in the pair. This was expected as the rules try to predict if the
two residues are in contact. Interestingly, the most frequent pair
(PredSS r1 & PredSS r2) does not include the most frequent attri-
bute (PredSA r1). We can observe that PredSS (both r1/r2) and
propensity appear very often across the top 20 pairs rank.

4.5 Lessons learnt from the rule analysis
This section has provided a thorough analysis of the rules gene-
rated by our BioHEL system. We have been able to quantify the
contribution of each of the sources of information as well as indivi-
dual attributes, thus providing useful information to the designers of
CM prediction methods about which information sources to choose.
Moreover, this information can be applied in specific ways to refine
the representation of the predictor: indicating which parts may be
candidates to be discarded all together (e.g. the central window) or,
in a more fine-grained strategy, the relevance of window positions,
PSSM columns and, in general, individual attributes. Thus, we can
avoid a blind feature selection process which, considering the size
of the training set (in both attributes and instances) could be very
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Table 6. Top 20 most frequent pairs of attri-
butes used together in BioHEL’s rules

Rank Attribute 1 Attribute 2 Ratio

1 PredSS r1 PredSS r2 5.4037
2 PredSA r1 PredSA r2 4.7722
3 PredSA r1 propensity 4.7537
4 PredSS r1 1 PredSS r2 4.1945
5 PredSS r1 PredSS r2 -1 3.9722
6 PredSS r1 1 PredSS r2 -1 3.7199
7 PredSA r2 propensity 3.6903
8 PSSM r2 0 E PredSA r1 3.4991
9 PSSM r2 0 E propensity 3.3260

10 PredSA r1 PredSS r2 3.2753
11 PredSS r1 PredSS r2 1 3.1855
12 PredRCH r1 PredRCH r2 3.1802
13 PSSM r2 0 D PredSA r1 2.9923
14 PSSM r1 0 E propensity 2.9389
15 PredRCH r2 PredSA r1 2.9363
16 PredRCH r1 PredSA r2 2.8951
17 PredSA r2 PredSS r1 2.8735
18 PredSS r1 -1 PredSS r2 2.8676
19 PredSA r1 PredSS r2 -1 2.7636
20 PSSM r2 0 K PredSA r1 2.7557

Ratio = percentage of rules using the attributes

computationally demanding. Finally, the analysis of the frequent
pairs of attributes provides useful information to understand how
the prediction is performed.

5 CONCLUSIONS
This paper has described our CM prediction methodology that par-
ticipated in CASP9 (under the name Infobiotics). Our method is
based on (a) the integration of several information sources inclu-
ding the prediction of four types of 1D structural features and (b) an
ensemble architecture that allows the use of very large training sets
via a distributed training process. Our experiments show that both
aspects are crucial for the predictor’s performance: On one hand
larger ensembles obtain better performance. On the other hand the
analysis of the rule sets generated by our BioHEL machine lear-
ning system has identified the important parts of the representation
(placing all the 1D features among the top ranked attributes) and
their interactions. The comparison against the top sequence-based
methods in CASP9 showed that our predictor is very competitive,
ranking first on five out of the six metrics. In future work we would
like to bring this analysis of rules much further with the objective
of refining our predictor and possibly tailoring its representation
for varying scenarios. Also, there are many aspects of our predic-
tion architecture that can be adjusted in different ways (e.g. the size
and ratio of contacts/non-contacts of the samples, size of the win-
dows) which could improve its performance. Finally, we would like
to study how to improve our prediction confidence estimation.
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