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ABSTRACT

Datasets with a large number of attributes are a difficult
challenge for evolutionary learning techniques. The recently
proposed attribute list rule representation has shown to be
able to significantly improve the overall performance (e.g.
run-time, accuracy, rule set size) of the BioHEL Iterative
Evolutionary Rule Learning system. In this paper we, first,
extend the attribute list rule representation so it can handle
not only continuous domains, but also datasets with a very
large number of mixed discrete-continuous attributes. Sec-
ondly, we benchmark the new representation with a diverse
set of large-scale datasets and, third, we compare the new
algorithms with several well-known machine learning meth-
ods. The experimental results we describe in the paper show
that the new representation is equal or better than the state-
of-the-art in evolutionary rule representations both in terms
of the accuracy obtained with the benchmark datasets used,
as well as in terms of the computational time requirements
needed to achieve these improved accuracies. The new at-
tribute list representation puts BioHEL on an equal footing
with other well-established machine learning techniques in
terms of accuracy. In the paper, we also analyse and discuss
the current weaknesses behind the current representation
and indicate potential avenues for correcting them.
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1 Introduction

Learning Classifier Systems (LCS) [16] and, in general, evo-
lutionary learning techniques [14], have experienced remark-
able progress over the past few years. This progress has
been related to a multi-pronged research programme that
included vigorous research on, e.g., theoretical models [§],
advanced exploration mechanisms [8], new representations
[17], the use of local search [3] and a healthy mix of “reality
checks” against hard classification problems [19].

The application of evolutionary learning techniques to
mine large-scale datasets has received renewed emphasis and
systematic studies on this research front are being carried
out. Two recent examples in this line of inquiry are NAX
[17] and BioHEL (Bioinformatics-oriented Hierarchical Evo-
lutionary Learning) [4]. These two learning systems apply
the iterative rule learning approach first proposed by Ven-
turini [24]. Although great progress has been achieved for
specific types of problems using the above methods (e.g.
Bioinformatics domains [22, 5]), the important question of
their generality and robustness across other domains re-
mains unanswered. That is, notwithstanding The No Free
Lunch theorems and related work [27, 21], it is important to
assess how far it is possible to push the boundary of compe-
tency for a given algorithm, in this case, evolutionary learn-
ing ones.

Recently, a new rule encoding for continuous attributes,
called attribute-list knowledge representation (ALKR), was
proposed within the framework of BioHEL [2]. ALKR was
designed to improve BioHEL’s efficiency in datasets with
a large number of attributes. Improved performance was
achieved by identifying, throughout the iterations of the
genetic algorithm, the key relevant attributes that con-
tributed towards concrete classifications. That is, rules kept
only information associated to useful attributes, thus avoid-
ing unnecessary computations with attributes that did not
contribute towards a classification decision. Experiments
showed that ALKR helped not only to improve run-time
but also to generate more accurate solutions. This was at-
tributed to the fact that the search process could invest CPU
effort only in the relevant attributes without investing in
unimportant ones.

In this work our aim is three-fold. First, we extend the
representation to be able to cope also with discrete at-
tributes (using the GABIL [11] representation for these) and
propose an efficient method to perform the matching process
for datasets with both continuous and discrete attributes.



Secondly, we extensively evaluate the capacity of the repre-
sentation (and, in general, the BioHEL system) to deal with
large-scale datasets with different characteristics. Some of
the datasets we use have a large number of instances (up to
500000 instances), others have a large number of attributes
(up to 14000 variables) while a third type of datasets has
unbalanced classes. The aim of this evaluation process is
to do an initial assessment of the capacity of BioHEL with
a mixed continuous-discrete ALKR as to identify strengths
and weaknesses of our approach. Finally, we compare the
performance of the representation against other standard
machine learning techniques.

The rest of the paper is structured as follows: First, sec-
tion 2 will describe some related work. Next, section 3 will
describe the framework of this work: the BioHEL evolu-
tionary learning system and the ALKR and GABIL rep-
resentations. Section 3.2 will present our extension of the
representation to handle both continuous and discrete at-
tributes efficiently. Afterwards section 5 will describe the
experimental design, section 6 will show and analyze the re-
sults of our experiments and, finally, section 7 will contain
the conclusions and further work of the paper.

2 Related work

Several methods have been proposed through the years to al-
leviate the run-time of LCS and evolutionary learning meth-
ods. Rule representations [18, 17] that use SSE or Altivec
vectorial instructions to parallelize the match operations
have been proposed, by performing various match opera-
tions (at the attribute level) at the same time. A different
approach, with a similar inspiration as the rule representa-
tion studied in this paper was proposed by Butz et al.[9].
This paper studied a specificity-based rule representation,
where the attributes were reordered from specific to general,
and the match process started with the most specific ones.
Experiments showed that this representation was more effi-
cient than traditional rule representations. The set of rel-
evant attributes identified by ALKR are usually the most
specific attributes in the domain, so effectively both repre-
sentations achieve higher efficiency by performing a similar
procedure.

The maintenance of a relevant attribute list effectively
represents a feature selection (FS) [15] strategy. There are
various works on the use of evolutionary computation for F'S
(e.g. [23]). Most of these works define a binary chromosome
with one bit associated to each attribute of the domain,
which decides whether the feature is selected or not. Fit-
ness functions of these methods try to reduce the subset of
selected features while attempting to preserver a high accu-
racy. ALKR applies an slightly different approach for two
reasons. (1) feature selection and learning are performed
in a concurrent and integrated manner, and (2) our feature
selection is performed at a rule-wise level. That is, different
rules can use different sets of relevant attributes. Standard
FS methods filter the dataset keeping only the same subset
of attributes for the whole solution (e.g. rule set). Thus, we
could say that our representation applies a fine-grained FS
process.

Finally, we would like to mention another system, Evolu-
tionary Concept Learner (ECL) [13] that uses an evolution-
ary approach to inductive logic programming. Rules are
Horn Clauses having a list of terms, each of them associated
to an attribute. Terms can be added or removed to/from the

list using mutation operators, which is similar to the knowl-
edge representation studied in this paper. However, ECL
does not have a crossover operator nor was not designed for
efficiency purposes.

3 Framework

In this framework section we would like to describe the learn-
ing system that has been used for our experiments (BioHEL)
the studied representation, ALKR, and the GABIL repre-
sentation [11] that we will use for the discrete attributes.

3.1 The BioHEL evolutionary learning sys-
tem

BioHEL, originally developed for structural bioinformatics
datasets, is an evolutionary learning system following the
Iterative Rule Learning approach, first used in evolution-
ary learning by Venturini [24]. Most of BioHEL’s modules
have been adapted from GAssist [1] which is a Pittsburgh
LCS. The system applies a standard generational GA, which
evolves individuals that are classification rules.

The final solution of the learning process is a rule set that
is constructed by applying iteratively a GA. After each rule
is obtained, the training examples that are covered by the
rule are removed from the training set, to force the GA of
the next iteration to explore other areas of the search space.
The rules are inserted into a rule set with an explicit de-
fault rule that covers the majority class of the domain. The
evolved rules will cover all the other classes. The iterative
process of generating rules stops when it is impossible to
find any rule where the associated class is not the major-
ity class of the matched examples. When this happens, all
remained examples are assigned to the default rule. Also,
several repetitions of the GA with the same set of instances
but different random seeds are performed. A new rule is
inserted into the rule set (and therefore examples removed
from the training set) only when it is the best rule obtained
from across all the incumbent GA runs.

The system uses a windowing scheme called ILAS (incre-
mental learning with alternating strata) [1] to reduce the
run-time of the system. This is especially useful for dataset
with a high number of instances such as the ones studied
in this paper. This mechanism divides the training set into
several non-overlapping subsets and selects a different sub-
set at each GA iteration for the fitness computations of the
population.

The fitness function of BioHEL is based on the Minimum
Description Length (MDL) principle [20]. The MDL princi-
ple is a metric applied to a theory (a rule) which balances
its complexity and accuracy. For the specific details of the
overall MDL formula and the complexity definition for the
GABIL representation, please see [4]. The details of the
complexity definition for the continuous attributes ALKR
version are in [2].

As to improve accuracy and leveraging the fact that
BioHEL is a stochastic algorithm, several rules sets are gen-
erated by running it multiple times with different random
seeds. These rule sets are ensembled based on a simple ma-
jority vote, thus combining their predictions. In the rest of
the paper, all reported accuracy measures of BioHEL will
be the result of a such an ensemble prediction.



3.2 The Attribute List Knowledge Represen-
tation (ALKR)

We describe next the ALKR [2] as it forms the core of our
enhanced mixed continuous-discrete attribute list represen-
tation.

3.2.1 Representation definition

Each rule will be represented by four elements: (1) an in-
teger containing the number of expressed attributes, (2) a
vector specifying which attributes are expressed, ordered in
the same way as they are defined in the dataset, (3) a vector
specifying, for each expressed attribute, the lower and upper
bound of its associated interval and (4) the class associated
to the rule.

3.2.2 Initialization strategy

The initialization of the rules in any kind of evolutionary
learning system is crucial for a proper learning process, and
it becomes critical when dealing with problem domains that
contain hundreds of attributes. The proper balance be-
tween specificity and generality needs to be found. This
issue has been studied in depth for Michigan LCS [8]. For
continuous problems, a rule representation would need to
decide about two specific issues: (1) how many and which
attributes would be relevant within a rule and (2) how would
intervals be defined for the relevant attributes.

As suggested by the representation of the NAX system
[17], this representation addresses the first issue by having
a parameter that specifies the expected value of the num-
ber of relevant attributes in a rule. The expected value is
transformed into a probability and then, using this prob-
ability, the relevant attributes are randomly chosen. The
answer for the second question means having to decide the
size of the interval and its position within the domain of the
attribute. The size of the interval is randomly initialized
with uniform distribution to be between 25% and 75% of
the domain size. Moreover, a covering mechanism similar to
[25] is used. This mechanism samples without replacement
and with class-wise uniform probability an example from the
training set and initializes the interval to be centered at the
value of that instance for the attribute being initialized. In
case the interval would overlap with lower or upper bound of
the domain, it is shifted to place it fully within the attribute
domain.

3.2.3 Exploration operators

This representation’s search space is explored by means of
two types of operators: (1) the traditional crossover and mu-
tation operators that edit the intervals for the expressed at-
tributes and (2) the operators that edit the list of expressed
attributes.

The crossover operator of this representation could be de-
fined as a “virtual one point crossover”. In a standard hy-
perrectangle representation, a one point crossover operator
would randomly select a cut point within the chromosome
laying in the same position (attribute) for both parents and
exchange all the genes after the cut point between parents.
This procedure follows these steps:

1. An expressed attribute from the first parent is ran-
domly chosen

2. If the attribute is also expressed in the other parent
then

(a) A cut point is selected, either before the lower
bound, between the two bounds or after the upper
bound, and the genes are exchanged accordingly
between the parents

(b) The intervals for the rest of attributes in the list
are exchanged between parents

3. If the attribute is not expressed in the second parent
then

(a) The next attribute (in the order in which the at-
tributes are defined in the dataset) that is ex-
pressed in the second parent is identified

(b) The complete intervals (without mixing bounds)
after the cut point are exchanged between par-
ents: Parent 1 gives all the intervals after the cut
point attribute and parent 2 gives the intervals
starting at the next expressed attribute after the
cut point attribute

4. One offspring randomly picks the class value from one
parent and the other offspring from the other parent.

The mutation operator selects one bound with uniform
probability and adds or subtracts a randomly generated off-
set to the bound, of size (picked with uniform distribution)
between 0 and 50% of the attribute domain. If the muta-
tion affects the class value of the rule, a different class value
is assigned to the rule, picked at random. Both crossover
and mutation operators can create intervals where the lower
bound is higher than the upper bound. In this case the rules
are repaired by swapping the bounds.

The specializing and generalizing operators are used to
respectively add and remove attributes to/from the list of
expressed attributes. These operators are applied to the
offspring population after mutation with a given individual-
wise probability. When the generalizing operator is applied
to an individual, one of the expressed attributes is ran-
domly selected with uniform probability and afterwards the
attribute and its associated interval are removed from the
rule. When the specializing operator is applied, one of the
attributes from the domain not expressed in the rule is ran-
domly selected and it is added to the list. An interval for
the attribute is randomly initialized using the same policy
explained above for the initialization stage.

3.2.4 Match process
The match process of a rule with this representation is sim-
ple:
e For each attribute in the list of expressed attributes:
— Check if the instance’s value for the attribute lays
between the bounds
— If not, the match process returns false, if true,

continue with the next attribute

e Return true

3.3 The GABIL representation

The predicates in GABIL’s rules have a fixed structure: A
Conjunctive Normal Form (CNF).

(A =VEV.. V™A ANA = (Viv...vV™)



Where A; is the ith attribute of the problem and Vij is the
jth value of the ith attribute.

This kind of predicate is encoded into a binary string in
the following way: given a problem with two attributes,
where each attribute can take three values {1,2,3}, a rule
of the form “If the first attribute has value 1 or 2 and the
second one has value 3 then we predict class 1”7 will be rep-
resented by the string 110/001||1. There is a bit associated
to each value of each attribute. If a value appears in the
disjunction associated to its attribute in the predicate, the
bit is set to one. Otherwise it is set to zero. The | symbols
are placed just for clarify, to differentiate the parts of the
rule associated to each attribute and the associated class of
the rule, but do not appear in the encoding.

4 Extending ALKR to Deal with Both Contin-
uous and Discrete Attributes

This section presents our extension to this knowledge rep-
resentation so it can be applied to datasets that contain
both discrete and continuous attributes. The GABIL rep-
resentation [11] has been chosen to represent the discrete
attributes. This extension is very simple and there is only
one detail that needs to be designed with very care: the ef-
ficient matching process. The next paragraphs present the
changes that have been done to the representation.

4.1 Representation definition

The only change in the representation definition is that in-
stead of having a list of intervals, defined as a lower and an
upper bound, we will have a mixed list of elements. Inter-
vals will still be used for the continuous attributes, and the
binary GABIL attribute encoding will be use for the discrete
ones. Also, there is one addition: a list of attribute indexes
that indicate, within the previous list, where the informa-
tion associated to each attribute starts. This list is included
for efficiency purposes. Figure 1 contains one example of
this definition.

Figure 1: Example of a rule in the extended at-
tribute list knowledge representation with four ex-
pressed attributes: 1, 3, 4, and 7. Attributes 1 and
4 are continuous, attributes 3 and 7 are discrete and
have 3 values each. [, = lower bound of attribute
n, un= upper bound of attribute n, v}, = value j of
attribute n, c1=Class 1 of the domain

#Exp. Atts.
1[e]e 7]

Intervals/Binary encoding ‘ L1 ‘ U1

Exp. Atts.

1
V3
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4.2 Initialization strategy

The policy that selects which attributes are expressed in the
initial rules based on a parameter encoding the expected
value of expressed attributes remains unchanged. To initial-
ize the GABIL binary encoding for the discrete attributes
we define a probability of setting to one each of the bits as-
sociated to a value of the attribute. For each attribute, the

2 3 2 3
V3 VS V7 V7

L, ‘ u, ‘v;

Attribute indexes

covering-like operator sets to one the bit associated to the
value from the seed example and initializes the rest of values
with the probability of one. The list of attribute indexes is
computed after the initial attributes are expressed.

4.3 Exploration operators

The crossover operator is almost unchanged. If the attribute
selected as cut-point is expressed in both parents and is a
discrete one, the actual cut-point for the recombination can
be in any point within the GABIL binary encoding of the
attribute. The list of indexes is regenerated for the offspring
after crossover. Mutation in discrete attributes is the classic
bit-flipping mutation. The generalize and specialize remain
mostly unchanged, the only addition is that they regenerate
the indexes list after their application.

4.4 Match and evaluation process

The match process is crucial in order to have an efficient
representation. When thinking about a representation with
a mixed kind of attributes, intuitively the first approach to
perform the matching process would probably be like fol-
lows:

e For each attribute in the list of expressed attributes:

— If the attribute is discrete:

* Check if the bit associated to the instance’s
value is set to 1

x If not, the match process returns false, if true,
continue with the next attribute

— It it is continuous:

* Check if the instance’s value for the attribute
lays between the bounds

x If not, the match process returns false, if true,
continue with the next attribute

e Return true

The main difference between this code and that from the
original representation (in section 3.2.4) is the extra If op-
eration performed for each expressed attributed. Consid-
ering that this code is the core of the whole learning sys-
tem, where the program spends more time, this extra oper-
ation can produce a considerable impact in the efficiency of
the system. To overcome this problem the algorithm pre-
calculates which attributes are continuous and which are
discrete. That is, although at each GA iteration, each rule
in the population with all the training examples (or the cur-
rent subset of examples, when using a windowing system
such as ILAS) is evaluated, the algorithms needs only pre-
calculate the lists of discrete and continuous attributes once
at each iteration for each rule. The pseudocode for the whole
evaluation process of a rule in a GA iteration is included in
figure 2. This pseudocode assumes that the discrete values
have been transformed into integers starting with 0.

S Experimental design

This section contains the description of the experimental
design of the results reported in this paper, including the
different performed experiments and datasets, and the con-
figurations of BioHEL.



Figure 2: Pseudo-code of the rule evaluation process
with the extended ALKR

Procedure Rule Evaluation
Input : rule,TrainingExamples
ListDiscrete = Compute list of discrete attributes in rule
ListContinuous = Compute list of continuous attributes in rule
fitnessAgent = Initialize fitness agent
Foreach example in TrainingExamples
match = true
Foreach attribute in ListDiscrete
value = example.values|attribute]
index = rule.attributeIndezes[attribute]
If rule.encodinglindex + value] = 0
match = false
Finish matching process for this example
EndIf
EndForeach
Foreach attribute in ListContinuous
value = example.values[attribute]
index = rule.attributeIndexes[attribute]
If values < rule.encoding|index)
or values > rule.encodinglindex + 1]
match = false
Finish matching process for this example
EndIf
EndForeach
If match is true
If rule.class = example.class
Add a correct classification to fitnessAgent
Else
Add a wrong classification to fitnessAgent
EndIf
Else
Add a no-classification to fitnessAgent
EndIf
EndForeach
fitness = Compute rule fitness with rule and fitnessAgent

Output : fitness

5.1 Experiments

In order to perform an analysis of the competence of ALKR
on challenging large-scale datasets we have selected a set
of seven datasets that contain a medium-high number of
instances, variables or both. Table 1 contain the main char-
acteristics of these datasets.

The adult (adu), kddcup, waveform (wav) and connect-
4 (c-4) datasets are taken from the UCI repository [7] of
machine learning datasets. The adult dataset contains data
people extracted from the U.S. census bureau database, and
the problem consists in predicting whether a given record
belongs to somebody that earns more or less than 50K a
year. The kddcup dataset is a classic large-scale benchmark.
KDDCUP is a Data Mining and Knowledge Discovery com-
petition organized by ACM SIGKDD, the Special Interest
Group on Knowledge Discovery and Data Mining. Specif-
ically, we are using the data from the 1999 edition of the
KDDCUP, predicting intrusion detection. The waveform
datasets is a synthetic problem that consists in recognizing
the shape of a wave give 40 continuous characteristics. All
the characteristics have been distorted with noise, and 19
of them are solely noise. The connect-4 dataset contains all
possible moves in the connect-4 game where neither player
has won yet nor the next move is forced. The prediction is
the final outcome of the game.

The FARS (Fatality Analysis Reporting System) dataset
is a compilation of statistics about car accidents made by the
U.S. National Center for Statistics and Analysis *. The spe-
cific dataset used contains information about all people in-

'Downloaded from ftp://ftp.nhtsa.dot.gov/FARS/

volved in car accidents in the U.S. during 2001. The selected
class is the level of injury suffered. The Germinate (Germ)
dataset contains data generated by microarray techniques
from tissue extracted from seeds of the Arabidopsis Thaliana
plant [6]. The class of the dataset is whether the seed ger-
minates or not. Finally, the ParMX dataset is an hybrid
synthetic parity-multiplexer dataset [8]. This dataset is a
challenge for many machine learning techniques because the
optimal solution consists in 512 (non-ordered) rules where
half of the attributes of the domain are expressed in each
rule.

All datasets have been partitioned into training and test
sets using a stratified ten-fold cross-validation. All training
and test partitions are publicly available in WEKA format at
URLremovedforanonymoussubmission. In these set of prob-
lems we have included some classic large-scale benchmarks
such as the kddcup dataset as well as datasets with ex-
tremely high number of attributes as the germinate dataset.

To assess the competence of BioHEL using ALKR (la-
belled BioHEL-ALKR) we have compared it to other al-
ternatives. First, we have also the previous version of
BioHEL. This version uses either the NAX representation
in the datasets that only have continuous attributes or a
hybrid intervalar-GABIL representation without attribute
list for the rest of datasets. This configuration is labelled
as BioHEL-orig. Also, we have included in the comparison
three well known machine learning datasets: C4.5, Naive
Bayes and SVM. We have used the WEKA implementation
[26] of the first two and the libsvm [10] implementation of
the latter. Their default parameters have been used.

Table 1: Features of the datasets used in this paper.
#Inst. = Number of Instances, #2Attr. = Number
of attributes, #Cont. = Number of continuous at-
tributes, #Disc. = Number of discrete attributes,
#Cla. = Number of classes, Dev.cla. = Deviation
of class distribution

Name #Inst.  #Attr. #Cont. #Disc. #Cla. Dev.cla.
adu 48842 14 6 8 2 26.07%
c-4 67557 42 0 42 3 23.79%
FARS 100968 29 5 24 13.08%
Germ 129 13942 13942 0 2 6.03%
kddcup 494020 41 26 15 23 12.89%
ParMX 262144 18 0 18 2 0%
wav 5000 40 40 0 3 0.36%

5.2 BioHEL configuration

For all the experiments BioHEL used the same configura-
tion, summarised in table 2, except for two parameters: (1)
the number of stata of the ILAS windowing scheme, which
is set to 2 for datasets with small number of instances and
to 50 otherwise and (2) the coverage breakpoint parameter
of BioHEL’s MDL-based fitness function. This parameter
controls the generality pressure of the fitness formula. A
value too high will generate over-general rules. A value too
low will generate rules with small coverage and potentially
suffering from over-learning. This parameter was adjusted
for each dataset to be as high as possible while avoiding
over-general rules. The values for these two parameters for
all datasets are reported in table 3. As specified in table
2, 25 rule sets are used in each ensemble. This means that
BioHEL is run 25 times on each training set with different
random seeds. This makes a total of 250 BioHEL runs per



dataset and configuration (BioHEL-orig or BloHEL-ALKR)

Table 2: General parameters of BioHEL

Parameter Value
General parameters
Crossover prob. 0.6
Selection algorithm tournament
Tournament size 4
Population size 500
Individual-wise mutation prob. 0.6
Default class policy major
Iterations 50
Repetitions of rule learning process 2
Expected value of #expressed att. in init. 15
Probability of one in GABIL repr. 0.75
Rule sets per ensemble 25
MDL-based fitness function
Tteration of activation 10
Initial theory length ratio 0.25
Weight relax factor 0.90
Coverage ratio 0.90
Attribute List Knowledge representation
Expected value of expressed attributes 15
Prob. generalize 0.10
Prob. specialize 0.10

Table 3: Dataset-specific parameters of BioHEL
Dataset  #strata ILAS  Coverage breakpoint

adu 50 0.01
c-4 50 0.0025
FARS 50 0.1
germ 2 01
kddcup 50 0.1
ParMX 50 0.001
wav 2 0.1

6 Results

Table 4 describes the results of our experiments. For each
dataset and learning system we report the cross-validation
accuracy. For the two configurations of BioHEL as well as
C4.5 we report the size of the generated solutions in terms
of number of rules or number of leaves. For the two con-
figurations of BioHEL we also report the average run-time
and the average number of expressed attributes per rule. As
these two configurations belong to the same code base, the
run-times are directly comparable. We have not included
run-times of the other systems because they are coded in
various languages, so a totally fair comparison would not be
possible. The accuracy results were statistically analyzed
using the Friedman test for multiple comparisons (follow-
ing [12]). The test indicated with a confidence of 97.77%
that there were significant differences between the compared
accuracies. A post-hoc Holm test indicated that BioHEL-
ALKR was significantly better than Naive Bayes with 95%
confidence.

If we compare the performance of the two BioHEL config-
urations we can see how BioHEL-ALKR is equal or better
in terms of accuracy than BioHEL-orig in all but one of
the datasets (FARS), which comfirms the observations from
[2]. Our hypothesis for the higher performance of BioHEL-
ALKR is that given that the rules only contain relevant
attributes, the exploration operators are more efficient be-
cause they always take place at genes that are important for
the rule. In BioHEL-orig it may happen often (especially in

datasets such as Germ) that a crossover or mutation opera-
tor affects an irrelevant attribute, hence producing either no
effect in most cases. We leave for further work the validation
of this hypothesis.

In terms of complexity of the generated solutions, ALKR
generated smaller rule sets in all but two of the datasets
(ParMX and wav) and its rules had less number of ex-
pressed attributes per rule. In some cases, such as the
FARS dataset, the ALKR rules had almost half the aver-
age number of relevant attributes of BioHEL-orig. The run
time of BioHEL-ALKR was always shorter except for the
ParMX dataset, one of the datasets with smaller number of
attributes, and all of the same kind. Specially notable is the
run-time difference in the Germ dataset, with almost 140000
attributes. ALKR was more than 72 times faster than the
NAX representation, which was used for this dataset be-
cause it only contains continuous attributes. The design of
ALKR, that only holds the relevant attributes of a rule, was
fully exploited in this dataset where each rule only has an
average 3.6 relevant attributes out of 14000.

BioHEL performs similarly or better than the other ma-
chine learning methods with the exception of the wav
dataset, where it is outperformed by the SVM. This dataset
is precisely the “least large-scale” dataset from those eval-
uated in this paper, so we can conclude that this method
is well prepared to deal with large-scale datasets. Specially
notable is the performance difference in the Germ dataset,
where BioHEL is by far the best method. This kind of prob-
lem, with so many attributes and so few instances is very
difficult to solve, and standard methods have a high dan-
ger of over-fitting the data because of the low number of
instances. In these situations BioHEL benefits greatly from
both ALKR and the ensemble mechanism wrapped over it.
All the rule sets generated by BioHEL were totally different
from each other. Their combination contained a large diver-
sity of predictions that managed to increase the robustness
of BioHEL. The rule sets generated by BioHEL were much
more compact than C4.5’s decision trees for all datasets ex-
cept for Germ dataset.

Nevertheless, these experiments also show several places
where BioHEL’s performance can be improved. For in-
stance, the number of rules that BioHEL generates for the
ParMX dataset (402 rules) is much larger than the opti-
mal solution of 257 (ordered) rules. BioHEL managed to
generated accurate rules, but not the best ones. This in-
dicates that the generality pressure of its fitness function
can be improved. The value that we used for the coverage
breakpoint parameter was the one that allowed the system
to avoid generating over-general rules at the early stages of
the learning process, but it produced sub-optimal rules in
later iterations as we can see in figure 3. This figure plots,
for each rule learnt by BioHEL, how many examples were re-
moved from the training set. All the first rules are optimal?,
but afterwards the generality pressure effectively diminishes.
Another situation where BioHEL’s performance could be
improved is the c-4 dataset. This dataset has the second
largest class unbalance degree. Looking at BioHEL’s pre-
dictions, the minority class is very rarely predicted. Thus,
this can be another area of improvement which can benefit

2Each optimal rule covers 512 examples of the whole dataset.
As we are using cross-validation and each training set con-
tains 90% of the dataset, the number of examples covered
by optimal rules is smaller in our experiment



Table 4: Results of the experiments on large-scale datasets.

Dataset Method Accuracy Size F#exp.att. Run-time(s)
BioHEL-orig 85.8+£0.5 17.1+1.2 10.5+2.2 177.4421.4
BioHEL-ALKR 85.84+0.5 17.0£1.2 9.3£2.9 156.7421.0
adu C4.5 86.0£0.4 622.9+£79.7 — —
Naive Bayes 84.1£0.5 — — —
SVM 83.9+0.4 — — —
BioHEL-orig 80.7£0.4 113.1£7.8 19.3+4.5 2486.3+331.0
BioHEL-ALKR 80.7+0.4 113.1£6.5 19.24+4.5 1914.4+248.4
c-4 C4.5 80.9+0.5 4075.8+145.8 — —
Naive Bayes 72.14+0.2 — — —
SVM 81.2+0.4 — — —
BioHEL-orig 79.9£0.3 124.849.1 20.5+2.8 3181.94422.3
BioHEL-ALKR 79.7£0.3 91.5£7.1 10.3+3.6 1492.0+188.5
FARS C4.5 79.8£0.3 6524.9+175.1 — —
Naive Bayes 78.6+0.3 — — —
SVM 79.6+£0.4 — — —
BioHEL-orig 93.0+£2.4 5.84+0.6 5.31+2.7 407.2+£46.6
BioHEL-ALKR 94.5+5.0 4.440.6 3.6+1.9 5.61+0.4
Germ C4.5 82.2+6.7 5.240.4 — —
Naive Bayes 79.8£6.3 — — —
SVM 83.7+£5.4 — — —
BioHEL-orig 99.7£0.0 31.3£3.7 8.8+5.7 7409.44+1193.9
BioHEL-ALKR 99.8+0.0 29.243.3 5.6+4.3 2736.11+528.2
kddcup C4.5 100.0£0.0 708.0+100.4 — —
Naive Bayes 99.6£0.0 — — —
SVM 99.54+0.0 — — —
BioHEL-orig 100.0£0.0 402.7+£18.8 9.01+0.1 19683.71+2206.3
BioHEL-ALKR  100.040.0 412.4+20.9 9.010.0 20089.342085.6
ParMX C4.5 77.0£13.6  5740.0£3006.6
Naive Bayes 48.940.5
SVM 76.5£0.2
BioHEL-orig 82.1+1.4 35.8+£4.0 6.7+3.1 79.5+6.4
BioHEL-ALKR 83.0£1.2 36.0£1.9 6.41+3.0 60.2+2.6
wav C4.5 75.0£2.3 290.74+9.3 — —
Naive Bayes 80.2+1.2 — — —
SVM 86.5+1.7 — — —

from recent developments in LCS research [19].

7 Conclusions and further work

This paper studied the applicability of rule-based evolution-
ary learning methods for large-scale datasets. Specifically,
we focused on BioHEL, a iterative rule learning approach,
and its attribute list knowledge representation, designed to
deal efficiently with datasets with a large number of contin-
uous attributes.

We extended the representation so as to be applicable to
datasets with mixed types of attributes, i.e., continuous and
discrete. This extension uses the well-known GABIL repre-
sentation for discrete attributes. We also proposed an effi-
cient matching mechanism for these datasets. Afterwards,
the new representation was evaluated across a broad set of
large-scale domains, containing datasets with various char-
acteristics in what regards to the number of instances, at-
tributes and degree of class balance that is present. The rep-
resentation was compared against the previous BioHEL rep-
resentation, the NAX representation (for domains with only
continuous attributes) and also against three well-known
machine learning methods.

The results of this comparison showed that BioHEL and
ALKR are competitive against other machine learning tech-
niques in most evaluated scenarios and it generates solu-
tions much more compact and, hence, interpretable, than
C4.5. The evaluation process also showed some areas where
BioHEL’s performance can be improved, such as control-
ling appropriately the degree of generality pressure that its
fitness function applies, or its competence in datasets with
class imbalance.

In future work we would like to address these two identi-
fied issues, as well as compare and combine the ALKR rep-
resentation with similar efficiency-oriented matching mech-
anisms [9]. It would also be interesting to study mechanism
for parameters self-adjusting, in order to avoid having to
fine-tune BioHEL for each domains, and improve its general
applicability to large-scale datasets. All these objectives will
be made easier by the development of theoretical models
that explain the behavior of BioHEL and its representa-
tions. We believe that these models would not only benefit
BioHEL, but they would also be important milestones for
the application of evolutionary learning techniques to large-
scale datasets.
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