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ABSTRACT
This paper focuses on automated procedures to reduce the
dimensionality of protein structure prediction datasets by
simplifying the way in which the primary sequence of a pro-
tein is represented. The potential benefits of this proce-
dure are faster and easier learning process and generation
of more compact and human-readable solutions. This sim-
plification consists of an alphabet reduction procedure to
map the 20-letter Amino Acid (AA) alphabet into a much
lower cardinality alphabet by grouping similar AA types.
This procedure is guided by a fitness function based on the
Mutual Information between the AA-based input attributes
of the dataset and the PSP feature that is being predicted.
To search for the optimal reduction, the Extended Compact
Genetic Algorithm was used, and afterwards the results of
this process were validated by learning the reduced dataset
with BioHEL, a genetics-based machine learning algorithm
that induces sets of rules. The results are mixed; we suc-
ceed in reducing the alphabet size to three which leads to
faster computation and more compact rules. However, the
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accuracy suffers slightly although the difference is not sta-
tistically significant when compared to the performance ob-
tained from learning the full AA alphabet of 20 symbols,
based on the protein-wise accuracy performance metric.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing, Induction; G.1.6 [Numerical Analysis]: Optimiza-
tion; J.3 [Computer Applications]: Life and Medical Sci-
ences—Biology and Genetics

General Terms
Algorithms, Experimentation, Performance

Keywords
Evolutionary Algorithms, Estimation of Distribution Algo-
rithms, Learning Classifier Systems, Rule Induction, Bioin-
formatics, Protein Structure Prediction, Coordination Num-
ber Prediction, Alphabet Reduction

1. INTRODUCTION
One of the main open problems in computational biology

is the prediction of the 3D structure of protein chains (PSP).
This domain usually requires enormous amounts of compu-
tational resources due to its size and difficulty. For instance,
one of the PSP predictors that obtained top results in the
last CASP (Critical Assessment of Techniques for Protein
Structure Prediction) experiment was the Rosetta@home
system [24] which used a massive collaborative computing
system to predict protein structures with up to 10000 com-
puting hours per protein.



One of the possible ways in which the dimensionality of
this problem can be alleviated is by reducing the size of
the alphabet of the variables that are involved in this prob-
lem and also in its subproblems, such as the prediction of
protein secondary structure, solvent accessibility or coor-
dination number (CN). An example of a high cardinality
alphabet that can have its size reduced is the primary se-
quence of a protein that consist of a 20-letter alphabet, the
20 amino acids (AA).

An example of a widely explored dramatic alphabet re-
duction option is to transform the 20 letters AA alphabet
into a two letters hydrophobic/polar (HP) alphabet. This
reduction is usually followed by constraining the residue lo-
cations of the predicted protein to those of a 2D/3D lattice
[32, 17], although sometimes this HP alphabet reduction is
applied to real non-constrained proteins. A recent paper
[29] compared the performance of several learning methods
applied to predict the coordination number for lattice-based
proteins, real proteins with HP alphabet and real proteins
with AA alphabet. The experiments showed that there is a
significant although not big performance difference between
the HP and AA alphabets. Moreover, the criterion to divide
the AA types between hydrophobic and polar was the one of
Broome and Hecht [8], although there are alternative HP as-
signment policies [20] as well as real-valued hydrophobicity
scales [9].

These facts prompt several questions. Is is possible to ob-
tain statistically similar performance between the original
AA alphabet and another alphabet with reduced number of
symbols? Moreover, can we tailor the alphabet reduction
criteria to each specific problem we want to solve? The aim
of these paper is to answer these two questions. We propose
an automated method to perform alphabet reduction. This
method uses the Extended Compact Genetic Algorithm [14]
to optimize the distribution of the 20 letters of the AA alpha-
bet into a predefined number of categories. We apply this
alphabet reduction to the coordination number prediction
domain. For the fitness function of such reduction process
we have chosen a rigorous information theory measure, the
Mutual Information [10]. This measure relates the depen-
dence between two variables, in this case the input attributes
and the predicted class of the coordination number domain.
By optimizing this measure we are looking for the alphabet
reduction criterion that maintains as much as possible the
useful information existing in the input attributes related to
the predicted feature.

We have performed experiments trying to reduce the AA
alphabet into two, three for and five groups, and verified the
performance of the reduction criteria found by this optimiza-
tion process by learning the reduced dataset, and comparing
the predictive performance to the one obtained by learn-
ing the original 20-letters alphabet. The learning process
used BioHEL (Bioinformatics-Oriented Hierarchical Evolu-
tionary Learning) [3], a recent Learning Classifier System
based on the Iterative Rule Learning [31] approach. We have
also analyzed the relation between the resulting groups of at-
tributes and some standard categories in which the amino
acids can be grouped [6].

The rest of the paper is structured as follows: Section 2
will contain a brief summary of background information and
related work. Section 3 will describe all techniques used for
the optimization and learning stages of the experiments re-
ported in the paper, while section 4 will describe the dataset

and experimental setup. Section 5 will report the results of
the experiments. Finally, section 6 will describe the conclu-
sions and further work.

2. BACKGROUND AND RELATED WORK
Proteins are heteropolymer molecules constructed as a

chain of residues or amino acids of 20 different types. This
string of amino acids is known as the primary sequence. In
its native state, the chain folds to create a 3D structure. It is
thought that this folding process has several steps. The first
step, called secondary structure, consists of local structures
such as alpha helix or beta sheets. These local structures
can group in several conformations or domains forming a ter-
tiary structure. Secondary and tertiary structure may form
concomitantly. The final 3D structure of a protein consists
of one or more domains.

In this context, the coordination number of a certain
residue is a profile of this folding process indicating the num-
ber of other residues that, after the folding process, end
up being near the target residue. Some of these contacts
can be close in the protein chain but other can be quite far
apart. Some trivial contacts such as those with the imme-
diate neighbour residues are discarded. Figure 1 contains a
graphical representation of the CN of a residue for an alpha
helix, given a minimum chain separation (discarded trivial
contacts) of two. In this example, the CN is two. This prob-
lem is closely related to contact map (CM) prediction that
predicts, for all possible pairs of residues of a protein, if they
are in contact or not.

Figure 1: Graphical representation of the CN of a residue

There is a large literature in CN and CM prediction, in
which a variety of machine learning paradigms have been
used, such as linear regression [16], neural networks [5], hid-
den markov models [28], a combination of self-organizing
maps and genetic programming [19] or support vector ma-
chines [33].

The research in alphabet reduction techniques applied to
PSP is quite active in recent years [21, 22, 23]. One example
of a previous application of an Evolutionary Algorithm for
alphabet reduction is [22]. In this case, a GA was used
to optimize a reduction into 5 letters applied to sequence
alignment. The fitness function was based on maximizing
the difference between the sequence identity of the training
alignments and a set of random alignments based on the
same sequences.



Another approach [23] applies Mutual Information to op-
timize alphabet reduction for contact potentials. This ap-
proach unlike ours is tailored to the problem being solved
because the mutual information is computed between AA
types (or AA groups) potentially in contact, instead of be-
ing a generic process connecting the inputs and the output
of the domain.

Finally, Meiler et al. [21] propose a slightly different ap-
proach. Instead of treating the AA types at a symbolic
level, they characterize them numerically with several phys-
ical features and then apply a neural network to generate a
lower dimensionality representation of these features.

3. EVOLUTIONARY COMPUTATION
METHODS AND FITNESS FUNCTION

The experiments reported in this paper have two stages.
In the first one, ECGA is used to optimize the alphabet
reduction mapping given the number of symbols of the final
alphabet by using Mutual Information as fitness function. In
the second stage, BioHEL is used to validate the goodness
of the alphabet groupings found by ECGA by learning the
reduced dataset.

3.1 Extended Compact Genetic Algorithm
Extended Compact Genetic Algorithm [14] is an opti-

mization method belonging to the family of Estimation of
Distribution Algorithms [18]. This method iteratively opti-
mizes a population of candidate solutions by first heuristi-
cally estimating the structure of the problem being solved
and later recombining the population based on this struc-
ture. The structure of the problem in the specific case
of ECGA is defined as non-overlapping groups of variables
that interact among them. A greedy approach using a fit-
ness function based on the Minimum Description Length
(MDL) principle [26] applied to a type of probabilistic mod-
els called Marginal Product Models is used to find these
groups of variables. The recombination of the population
uses uniform crossover [30] based on the identified struc-
ture of the domain. Specifically we use the χ-ary version of
ECGA [11] and the code is an slightly modified version of
the one available at ftp://www-illigal.ge.uiuc.edu/pub/
src/ECGA/chiECGA.tgz. The default parameters of ECGA
were used except for the population size that was set to
10000 individuals when optimizing the alphabet reduction
for two or three letters, and 40000 when optimizing for four
or five letters.

3.2 The BioHEL learning system
BioHEL (Bioinformatics-oriented Hierarchical Evolution-

ary Learning) is Genetics–Based Machine Learning (GBML)
system following the Iterative Rule Learning or Separate-
and-Conquer approach [13], first used in the GBML field
by Venturini [31]. BioHEL is strongly influenced by GAs-
sist [1] which is a Pittsburgh GBML system. Several of
BioHEL features have been inherited from GAssist. The
system applies an almost standard generational GA, which
evolves individuals that are rules for the problem that we
are solving.

The final solution of the learning process is a set of rules
that is obtained by applying iteratively a GA. After each
rule is obtained, the training examples that are covered by
this rule are removed from the training set, to force the GA

of the next iteration to explore other areas of the search
space. The rules are inserted into a rule set with an explicit
default rule that covers the majority class of the domain.
The evolved rules will cover all the other classes. Therefore,
the stopping criteria of the learning process is when it is
impossible to find any rule where the associated class is not
the majority class of the matched examples. When this
happens, all remained examples are assigned to the default
rule. Also, several repetitions of the GA with the same set
of instances are performed, and we will only insert in the
rule set (and therefore remove examples from the training
set) the best rule from all the GA runs. Figure 2 contains
the C++ code of the general workflow of BioHEL.

Each individual is a rule, which consists of a predicate
and an associated class. We use the GABIL [12] knowl-
edge representation for the predicates of these rules. The
system also uses a windowing scheme called ILAS (incre-
mental learning with alternating strata) [2] to reduce the
run-time of the system, especially for dataset with hundreds
of thousands of instances, as in this paper. This mechanism
divides the training set into several non-overlapping subsets
and chooses a different subset at each GA iteration for the
fitness computations of the individuals.

The fitness function of BioHEL is based on the Minimum
Description Length (MDL) principle [26]. The MDL princi-
ple is a metric applied to a theory (a rule) which balances its
complexity and accuracy. BioHEL MDL formula is adapted
from GAssist one as follows:

Fitness = TL ·W + EL (1)

where TL stands for theory length (the complexity of the
solution) and EL stands for exceptions length (the accuracy
of the solution). This fitness function has to be minimized.

W is a weight that adjusts the relation between TL and
EL. BioHEL uses the automatic weight adjustment heuris-
tic proposed for GAssist [1]. The parameters of this heuristic
are adjusted as follows: Initial TL ratio: 0.25, weight relax
factor: 0.90, max iterations without improvement: 10.

TL is defined as follows:

TL(R) =

P
i = 1NANumZeros(Ri)/Cardi

NA
(2)

where R is a rule, NA is the number of attributes of the do-
main, Ri is the predicate of rule R associated to attribute i,
NumZeros counts the number of bits set to zero for a given
predicate in GABIL representation and Cardi is the cardi-
nality of attribute i. TL always has a value between 0 and
1. It has been designed in this way in order to simplify the
tuning of W . The number of zeros in the GABIL predicates
are a measure of specificity. Therefore, promoting the min-
imization of zeros means promoting general and thus less
complex rules.

The design of EL has to take into account that we have to
achieve an equilibrium between accuracy and coverage. We
have to promote rules that cover as much examples as possi-
ble without sacrificing accuracy. In order to achieve this ob-
jective, we will design a coverage measure that strongly pro-
motes covering a certain minimum of examples, but that re-
duces its effect after the coverage has surpassed this thresh-
old. The measure is defined as follows:



Figure 2: General workflow of BioHEL

i n s t anceSe t ∗ i s=new in s tanceSe t ( argv [ 2 ] , TRAIN) ;
c l a s s i f i e r a g g r e g a t e d ru l eS e t ;
c l a s s i f i e r F a c t o r y c f ;

do {
c l a s s i f i e r ∗ best=NULL;
f o r ( i n t i =0; i<tGlobals−>numRepetit ionsLearning ; i ++) {

c l a s s i f i e r ∗ b e s t I t=runGA ( ) ;
i f ( bes t==NULL | | bes t I t−>compareToIndividual ( bes t ) >0) {

i f ( bes t ) c f . d e l e t e C l a s s i f i e r ( bes t ) ;
bes t=be s t I t ;

}

i f ( i<tGlobals−>numRepetit ionsLearning −1) {
i s−>r e s t a r t ( ) ;

}
}
i f ( i sMa jo r i t y (∗ best ) ) {

r u l eS e t . a d dC l a s s i f i e r ( bes t ) ;
i s−>removeInstancesAndRestart ( bes t ) ;

} e l s e {
c f . d e l e t e C l a s s i f i e r ( bes t ) ;
break ;

}
} whi le ( 1 ) ;

EL(R) = 2−ACC(R)− COV (R) (3)

ACC(R) =
corr(R)

matched(R)
(4)

COV =


MCR · RC

CB
If RC < CB

MCR + (1−MCR) · RC−CB
1−RC

If RC ≥ CB
(5)

RC =
matched(R)

|T | (6)

COV is the adjusted coverage metric that promotes the
coverage of at least a certain minimum number of exam-
ples, while RC is the raw coverage of the rule. ACC is
the accuracy of the rule, corr(R) is the number of exam-
ples correctly classified by R, matched(R) is the number of
examples matched by R, MCR is the weight given in the
coverage formula to achieving the minimum coverage, CB is
the minimum coverage threshold and |T | is the total number
of training examples. For all the tests reported in the paper,
MCR has 0.9 value, and CB has value 0.01.

Finally, we have used a mechanism wrapped over BioHEL
to boost its performance. We generate several rule sets using
GAssist with different random seeds and combine them as
an ensemble, combining their predictions using a simple ma-
jority vote. This approach is similar to Bagging [7]. BioHEL
used the values for the parameters defined in [1] except for
the followings: population size 500; GA iterations 200; rep-
etitions of rule learning process: 2; rule sets per ensemble;
10.

3.3 Mutual Information
The aim of the alphabet reduction optimization is to sim-

plify the representation of the dataset in a way that main-
tains the underlying information that is really needed for the
learning process. Therefore, the fitness function for such a
process should give an estimation of what can the reduced

input information tell about the output. Ideally, we could
simply try to learn the reduced dataset geneated by each
individual that we evaluate and use the training accuracy
as fitness function, but this option is not feasible due to the
enormous computational cost that would requiere. There-
fore, we need to use some cheap estimation of the relation-
ship between inputs and output as fitness function, and we
have chosen the Mutual Information metric for this task.

The mutual information is an information theory mea-
sure that quantifies the interrelationship that two discrete
variables have among each other [10], that is, how much in-
formation can one variable tell about the other one. The
mutual information is defined as follows:

I(X; Y ) =
X
y∈Y

X
xinX

p(x, y)log
p(x, y)

p(x)p(y)
(7)

Where p(x) and p(y) are the probabilities of appearance of x
and y and p(x, y) is the probability of having x, y at the same
time. In our specific case, we use the mutual information to
measure the quantity of information that the input variables
of the alphabet-reduced dataset have related to the class of
the domain. Therefore, for a given instance x will be a string
that concatenates the input variables of an instance, and y
the associated class of the instance.

4. PROBLEM DEFINITION AND EXPERI-
MENTAL DESIGN

4.1 Problem definition
The dataset that we have used in this paper is the one

identified as CN1 with two states and uniform length class
partition criteria in [4]. Its main characteristics are briefly
described as follows:

4.1.1 Coordination number Definition



The CN definition is the one proposed by Kinjo et al.
[16]. The distance used is defined using the Cβ atom (Cα

for glycine) of the residues. Next, the boundary of the sphere
around the residue defined by the distance cutoff dc ∈ <+

is made smooth by using a sigmoid function. A minimum
chain separation of two residues is required. Formally, the
CN, Np

i , of residue i in protein chain p is computed as:

Np
i =

X
j:|j−i|>2

1

1 + exp(w(rij − dc))
(8)

where rij is the distance between the Cβ atoms of the ith
and jth residues. The constant w determines the sharpness
of the boundary of the sphere. The dataset used in this
paper had a distance cutoff dc of 10 Å.

The real-valued definition of CN has been discretized in
order to transform the dataset into a classification problem
that can be mined by BioHEL. The chosen discretization
algorithm is the well-known unsupervised uniform-length
(UL) discretization. Moreover, for the experiments of this
paper we have used the simplest version of the dataset, di-
viding the domain into two states, low or high CN.

4.1.2 Protein dataset
We have used the dataset and training/test partitions pro-

posed by Kinjo et al. The protein chains were selected from
PDB-REPRDB [25] with the following conditions: less than
30% of sequence identity, sequence length greater than 50,
no membrane proteins, no nonstandard residues, no chain
breaks, resolution better than 2 Å and a crystallographic R
factor better than 20%. Chains that had no entry in the
HSSP [27] database were discarded. The final data set con-
tains 1050 protein chains and 257560 residues.

4.1.3 Definition of the training and tests sets
The set was divided randomly into ten pairs of training

and test set using 950 proteins for training and 100 for test
in each set, using bootstrap. The proteins included in each
partition are reported in http://maccl01.genes.nig.ac.

jp/~akinjo/sippre/suppl/list/.
The definition of the input attributes is the one identified

as CN1 in [4]. The input data will consists of the AA type of
the residues in a window around the target one. A window
size of 4 (4 residues at each side of the target) has been used.
Therefore, each instance consist in 9 nominal attributes of
cardinality 21 (the 20 AA types plus the symbol that repre-
sents end of chain, in case that the window overlaps with the
beginning or the end of a protein chain). Figure 3 contains
a representation of the windowing process that creates the
instances of the dataset.

4.1.4 Performance measure
In section 5 we will report the performance of the learning

process of BioHEL over the reduced datasets in two differ-
ent ways. On one hand we will use the standard machine
learning accuracy metric (#correct examples/#total exam-
ples) (called residue-wise accuracy). On the other hand, as
usual in the protein structure prediction field [16, 15], we
will take into account the fact that each example (a residue)
belongs to a protein chain. Therefore, we will first com-
pute the standard accuracy measure for each protein chain,
and then average these accuracies to obtain the final per-
formance measure (called protein-wise accuracy). Because
different chains have different lengths, residue-wise accuracy

Figure 3: Representation of the windowing process used to
generate the instances of the dataset

(Y,0),(V,0),(D,0),(R,0),(V,1),
(I,0),(A,0),(E,0)

Sequence (AA,CN): (S,0),(K,0),

X,X,S,K,Y,V,D,R,V 0
X,S,K,Y,V,D,R,V,I 0

K,Y,V,D,R,V,I,A,E 0
Y,V,D,R,V,I,A,E,V 1
V,D,R,V,I,A,E,V,E 0
D,R,V,I,A,E,V,E,K 0
R,V,I,A,E,V,E,K,K 0

X,X,X,S,K,Y,V,D,R 0
X,X,X,X,S,K,Y,V,D 0

S,K,Y,V,D,R,V,I,A 0Instances

and protein-wise accuracy can differ greatly. The rationale
for reporting the second measure is to mimic the real-life sit-
uation, in which a new protein is sequenced, and researchers
are interested in the predicted properties based on the entire
protein sequence, independent of its length.

4.2 Experimental design

4.2.1 Steps of the experimental process
The experiments reported in this paper follow these steps:

• For a number of symbols of the final alphabet going
from two to five

1. ECGA is used to find the optimal alphabet re-
duction based on the MI-based fitness function.

2. The alphabet reduction policy is applied to the
dataset

3. BioHEL is used to learn the reduced dataset

4.2.2 Representation and fitness function of the al-
phabet reduction process

The chromosome optimized by ECGA is very simple. It
has one gene for each letter of the original alphabet (the 20
AA types plus the end-of-chain symbol) meaning the group
of letters where this AA type is assigned. This gene can
take a value from the range 0..N − 1, where N is the prede-
fined number of symbols of the reduced alphabet. Figure 4
illustrates an example of such chromosome for a reduction
process into two groups.

Figure 4: Representation of the chromosome for the alpha-
bet reduction process for a two-letter reduction

Orig. Alphabet ACDEFGHIKLMNPQRSTVWXY

Genotype 001100001001111110010

Phenotype
Group 1: ACFGHILMV WY
Group 2: DEKNPQRSTX

Each fitness computation follows these steps:

1. The reduction mappings are extracted from the chro-
mosome



2. The instances of the training set are transformed into
the low cardinality alphabet based on the extracted
mappings

3. The mutual information between class attribute and
the string formed by concatenating the input at-
tributes is computed

4. This mutual information is the fitness value of the
chromosome

5. RESULTS

5.1 Results of the alphabet reduction process
ECGA was used to find reductions to alphabets of two,

three, four and five symbols; the results are reported in Table
1. ECGA was used to find alphabet reductions into two,
three, four and five symbols alphabet. Table 1 describes the
obtained reductions. In order to visualize better what are
the physical properties of the groups of AA types obtained
by this method, we are going to assign to some of the AA
type a colour depending on its properties, the colored groups
are also described in table 1. The physical properties used
to group in colours the AA types are taken from [6].

Table 1: Alphabet reductions generated by ECGA

#letters Groups of letters

2 ACFGHILMVWY DEKNPQRSTX
3 ACFILMVWY DEKNPQRX GHST
4 AFHTY CILMV DEKPQX GNRSW
5 AIS CHLV DEPQY FGMWX KNRT

CLV - hydrophobic
AIM - hydrophobic

FWY - aromatic, neutral, hydrophobic
DE - negatively charged
KHR - positively charged

When optimizing for a two letters alphabet, the MI-
based optimization process ends up finding two groups
of AA types that separate the most hydrophobic residues
(ACFGHILMV WY ) from the rest. Hydrophobicity is one
of the main factors in the folding process of proteins, so it
is natural that a reduction process into only two symbols is
equivalent to identifying the hydrophobic residues.

From the experiment with three-letter alphabets we can
observe that one of the groups still contains all-hydrophobic
AA types (ACFILMV WY ) while the other two groups con-
tain more mixed AA types. From the visualization of the
obtained groups with colours we can see how only two of
the colour groups (CLV and DE) are conserved across all
reduced alphabet sizes. The colour mix for four-letter and
five-letter alphabets is considerable, meaning that the ob-
tained groups have very mixed physical properties difficult
to explain and, as next subsection will show, make the prob-
lem more difficult to learn.

5.2 Validation of the obtained reduced alpha-
bets

The reduced alphabets were used to represent the
datasets, and then BioHEL was used to learn these datasets.
Table 2 contains the test accuracy and average rule-set size

of the solutions found by the learning system. As a baseline,
results for BioHEL learning the original dataset with full AA
type representation (labelled Orig.) are also included.

Table 2: Residue-wise accuracy (RWA), Protein-wise accu-
racy (PWA) ave. rule set size and run-time of BioHEL ap-
plied to the reduced datasets. • marks the cases where the
reduced dataset had significantly worse performance than
the original dataset with AA type representation

#letters RWA PWA #rules Run-time (s)

Orig. 74.0±0.5 77.0±0.7 22.5±1.8 6435.5±462.3
2 72.3±0.5• 75.8±0.7• 11.3±0.6 3351.8±195.8
3 73.0±0.6• 76.4±0.7 16.7±1.4 4899.6±363.5
4 72.6±0.6• 76.1±0.8 15.4±1.3 4547.6±361.9
5 72.0±0.6• 75.7±0.8• 14.6±1.5 4362.2±424.2

Moreover, these results were analyzed using statistical t-
tests (95% conf.) to determine if the accuracy differences
were significant, using the Bonferroni correction for mul-
tiple comparisons. The test determined that the original
dataset with full AA representation significantly outper-
formed the representations with two and five letter alphabets
for protein-wise accuracy and all of the reduced datasets for
residue-wise accuracy.

All the reduced datasets could be learned in less time, for
the 2-letter alphabet, the run time was almost 50% of the
time needed to learn the dataset using the AA type repre-
sentation. Also, the rule sets obtained from all the reduced
alphabets were more compact than the dataset using the AA
type representation. Figure 5 contains a rule set obtained
from the original dataset with full AA representation, while
figure 6 contains a rule-set using the 2-letter alphabet, being
much more simple and human-readable.

Figure 5: Rule-set obtained by BioHEL over the dataset
with full AA type representation. AA±X means AA type
for residue in position ±X in respect to the target residue

1:If AA−4 /∈ {E, N, Q, R, W}, AA−3 /∈ {D, E, N, P, Q, R, S, X},
AA−2 /∈ {E, P, S}, AA−1 /∈ {D, E, G, K, N, P, Q, T},
AA ∈ {A, C, F, I, L, M, V, W}, AA1 /∈ {D, E, G, P, Q},
AA2 /∈ {D, H, K, P}, AA3 /∈ {D, E, K, N, P, Q, R, S, T},
AA4 ∈ {A, C, F, G, I, L, M, V } then class is 1
2:If AA−4 /∈ {T, X}, AA−3 /∈ {E, N}, AA−2 /∈
{E, K, N, Q, R, S, T}, AA−1 /∈ {D, E, G, K, N, P, Q, R, S},
AA ∈ {C, F, I, L, V }, AA1 ∈ {C, F, G, I, L, M, V, W, X, Y }, AA2 /∈
{E, K, N, P, Q, R}, AA3 /∈ {E, K, P, R}, AA4 /∈ {E, K, Q, X} then
class is 1
.
.
.
18:If AA−4 /∈ {E, K, N, P, X}, AA−3 ∈ {G, I, L, M, V, W, X, Y },
AA−2 /∈ {D, E, K, N, P, Q, R, S}, AA−1 /∈ {E, K, N, P, Q, R},
AA /∈ {D, E, K, N, P, Q, R, S, T}, AA1 /∈ {D, E, K, L, Q}, AA2 /∈
{D, E, L}, AA3 /∈ {D, K, M, N, P, Q, T}, AA4 /∈ {C, N, T, X} then
class is 1

19:Default class is 0

It was expected, based on earlier existing work [29] that
the reduction into two groups would suffer from a significant
performance hit, as the alphabet reduction is simplifying
dramatically the data and thus losing information. More-
over, as the number of groups increases, we should see a
reduction of this performance drop. However, the experi-
mental results show how the reduced dataset with higher
performance is the one with three groups. A higher number
of symbols does not help increasing the performance.



Figure 6: Rule-set obtained by BioHEL over the dataset
with 2-letter alphabet representation. Letter 0 =
ACFGHILMVWY, Letter 1 = DEKNPQRSTX. AA±X

means the group of AA types for residue in position ±X
in respect to the target residue

1:If AA−1 ∈ {0}, AA ∈ {0}, AA1 ∈ {0}, AA2 ∈ {0}, AA3 ∈ {0},
AA4 ∈ {0} then class is 1
2:If AA−3 ∈ {0}, AA−2 ∈ {0}, AA−1 ∈ {0}, AA ∈ {0}, AA3 ∈ {0},
AA4 ∈ {0} then class is 1
.
.
.
10:If AA−3 ∈ {0}, AA ∈ {0}, AA1 ∈ {0}, AA2 ∈ {0}, AA3 ∈ {0}
then class is 1

11:Default class is 0

Why is this? Our hypothesis is that the Mutual Informa-
tion measure is not a fitness measure robust enough for this
dataset. Table 3 contains the number of unique instances
(inputs+output) and unique input vectors for the different
reductions of the training fold 0 of the dataset, which con-
tains 234638 instances. We can see how the datasets with
four or five letters present a unique number of instance or
inputs with is at least 64% of the dataset, meaning that
there are many chances that there is a single instance rep-
resenting certain unique inputs (which means that p(X) in
the MI formula becomes 1/234638 in most cases).

Mutual Information needs redundancy in order to esti-
mate properly the relation between inputs and outputs, and
there is almost no redundancy in the signal generated by the
dataset. If the fitness function cannot provide appropiate
guidance we cannot rely much on the obtained results. This
is probably the reason why it is difficult to extract physical
explanations from the groups of AA types that ECGA finds
and, therefore, why it is not possible to obtain good perfor-
mance when learning the reduced dataset. In this reduction
process we have lost too much information by forming wrong
groups of AA types.

Table 3: Counts of unique instances and unique input vec-
tors for the training fold 0 of the dataset

# letters Unique inputs Unique instances

2 512 1024
3 19254 33839
4 150914 175156
5 219943 224747

6. CONCLUSIONS AND FURTHER WORK
This paper has studied an information theory based au-

tomated procedure to perform alphabet reduction for pro-
tein structure prediction datasets that use an Amino Acid
(AA) alphabet for its attributes. Several groups of AA
types share some physical and chemical properties among
them and therefore could be grouped into a single category
thus reducing the dimensionality of the data that has to be
learned.

This procedure uses an Estimation of Distribution Algo-
rithm, ECGA to optimize the distribution of the AA types
into a predefined number of groups, using the Mutual Infor-
mation metric as fitness function applied over the training
set of the data that is being reduced. After this procedure,

an Evolutionary Computation based learning system (Bio-
HEL) was used to learn the reduced datasets to validate is
the reduction process was correct or not.

Our experiments showed that it is possible to perform a
reduction into a new alphabet with only three letters that
has a performance lower but not significantly different than
the performance obtained by learning a 20 letters alphabet
when using the protein-wise accuracy metric. We think that
this metric measure is more relevant than the flat residue-
wise accuracy, because it show the goodness of the reduction
in a more broad context with proteins of different lengths.
Therefore we think that obtaining a three-letters alphabet
with similar performance than a full AA type representa-
tion, even if it is only at a protein-wise level, has already
some merit. Moreover the learning process for all the re-
duced datasets is faster and the obtained rule-sets are more
compact and human-readable.

However, it was not possible to find appropriate groups
of AA types when increasing the number of groups to four
or five groups, because the dataset does not have enough
number of instances for the Mutual Information to provide
a reliable fitness function. Our automated alphabet reduc-
tion procedure showed some promising performance, and if
we are able to increase the robustness of the fitness func-
tion, it has the potential to be a very useful tool to simplify
the learning process of several datasets related to protein
structure prediction.

Therefore, the first step of further work into this line of
research is to adjust the Mutual Information based fitness
function or find a suitable alternative. Also, it would be
interesting to test this procedure in other datasets beside
Coordination Number prediction to check two issues: (1)
to see how general is this procedure and (2) to check if the
reduction groups found by the procedure differ between do-
mains. If this is true, it will be an answer of why this kind of
automated alphabet reduction procedures are necessary. It
would also be interesting to learn the reduced datasets with
other kind of machine learning methods to check how well
do they react to the dimensionality reduction performed by
this alphabet reduction process.
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J. M. Garrell. Speeding-up pittsburgh learning
classifier systems: Modeling time and accuracy. In
Parallel Problem Solving from Nature - PPSN 2004,
pages 1021–1031. Springer-Verlag, LNCS 3242, 2004.

[3] J. Bacardit and N. Krasnogor. Biohel:
Bioinformatics-oriented hierarchical evolutionary



learning. Nottingham eprints, University of
Nottingham, 2006.

[4] J. Bacardit, M. Stout, N. Krasnogor, J. D. Hirst, and
J. Blazewicz. Coordination number prediction using
learning classifier systems: performance and
interpretability. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary
computation, pages 247–254. ACM Press, 2006.

[5] P. Baldi and G. Pollastri. The principled design of
large-scale recursive neural network architectures
dag-rnns and the protein structure prediction
problem. Journal of Machine Learning Research, 4:575
– 602, 2003.

[6] M. Betts and R. Russell. Amino acid properties and
consequences of subsitutions. In Bioinformatics for
Geneticists. Wiley, 2003.

[7] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[8] B. Broome and M. Hecht. Nature disfavors sequences
of alternating polar and non-polar amino acids:
implications for amyloidogenesis. J Mol Biol,
296(4):961–968, 2000.

[9] J. Cornette, K. Cease, H. Margalit, J. Spouge,
J. Berzofsky, and C. DeLisi. Hydrophobicity scales
and computational techniques for detecting
amphipathic structures in proteins. J Mol Biol,
195(3):659–685, 1987.

[10] T. M. Cover and J. A. Thomas. Elements of
Information Theory. John Wiley & sons, 1991.

[11] L. de la Ossa, K. Sastry, and F. G. Lobo. χ-ary
extended compact genetic algorithm in c++. Technical
Report 2006013, Illinois Genetic Algorithms Lab,
University of Illinois at Urbana-Champaign, 2006.

[12] K. A. DeJong and W. M. Spears. Learning concept
classification rules using genetic algorithms. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 651–656. Morgan
Kaufmann, 1991.

[13] J. Fürnkranz. Separate-and-conquer rule learning.
Artificial Intelligence Review, 13(1):3–54, February
1999.

[14] G. Harik. Linkage learning via probabilistic modeling
in the ecga. Technical Report 99010, Illinois Genetic
Algorithms Lab, University of Illinois at
Urbana-Champaign, 1999.

[15] D. Jones. Protein secondary structure prediction
based on position-specific scoring matrices. J Mol
Biol, 292:195–202, 1999.

[16] A. R. Kinjo, K. Horimoto, and K. Nishikawa.
Predicting absolute contact numbers of native protein
structure from amino acid sequence. Proteins,
58:158–165, 2005.

[17] N. Krasnogor, B. Blackburne, E. Burke, and J. Hirst.
Multimeme algorithms for protein structure
prediction. In Proceedings of the Parallel Problem
Solving from Nature VII. Lecture Notes in Computer
Science, volume 2439, pages 769–778, 2002.

[18] P. Larranaga and J. Lozano, editors. Estimation of
Distribution Algorithms, A New Tool for
Evolutionnary Computation. Genetic Algorithms and
Evolutionnary Computation. Kluwer Academic
Publishers, 2002.

[19] R. MacCallum. Striped sheets and protein contact
prediction. Bioinformatics, 20:I224–I231, 2004.

[20] Y. Mandel-Gutfreund and L. Gregoret. On the
significance of alternating patterns of polar and
non-polar residues in beta-strands. Journal of
Molecular Biology, 323(9):453–461, 2002.

[21] J. Meiler, M. M. A. Zeidler, and F. Schmähke.
Generation and evaluation of dimension-reduced
amino acid parameter representations by artificial
neural networks. J Mol Model, 7:360–369, 2001.

[22] F. Melo and M. Marti-Renom. Accuracy of sequence
alignment and fold assessment using reduced amino
acid alphabets. Proteins, 63:986–995, 2006.

[23] J. Mintseris and Z. Weng. Optimizing protein
representations with information theory. Genome
Informatics, 15(1):160–169, 2004.

[24] K. M. Misura, D. Chivian, C. A. Rohl, D. E. Kim,
and D. Baker. Physically realistic homology models
built with rosetta can be more accurate than their
templates. Proc Natl Acad Sci U S A,
103(14):5361–5366, 2006.

[25] T. Noguchi, H. Matsuda, and Y. Akiyama.
Pdb-reprdb: a database of representative protein
chains from the protein data bank (pdb). Nucleic
Acids Res, 29:219–220, 2001.

[26] J. Rissanen. Modeling by shortest data description.
Automatica, vol. 14:465–471, 1978.

[27] C. Sander and R. Schneider. Database of
homology-derived protein structures. Proteins,
9:56–68, 1991.

[28] Y. Shao and C. Bystroff. Predicting interresidue
contacts using templates and pathways. Proteins,
53:497–502, 2003.

[29] M. Stout, J. Bacardit, J. D. Hirst, N. Krasnogor, and
J. Blazewicz. From hp lattice models to real proteins:
Coordination number prediction using learning
classifier systems. In Applications of Evolutionary
Computing, EvoWorkshops 2006, pages 208–220.
Springer LNCS 3907, 2006.

[30] G. Syswerda. Uniform crossover in genetic algorithms.
In Proceedings of the third international conference on
Genetic algorithms, pages 2–9. Morgan Kaufmann
Publishers Inc., 1989.

[31] G. Venturini. Sia: A supervised inductive algorithm
with genetic search for learning attributes based
concepts. In P. B. Brazdil, editor, Machine Learning:
ECML-93 - Proc. of the European Conference on
Machine Learning, pages 280–296. Springer-Verlag,
Berlin, Heidelberg, 1993.

[32] K. Yue, K. M. Fiebig, P. D. Thomas, C. H. Sun, E. I.
Shakhnovich, and K. A. Dill. A test of lattice protein
folding algorithms. Proc. Natl. Acad. Sci. USA,
92:325–329, 1995.

[33] Y. Zhao and G. Karypis. Prediction of contact maps
using support vector machines. In Proceedings of the
IEEE Symposium on BioInformatics and
BioEngineering, pages 26–36. IEEE Computer Society,
2003.


