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1 Introduction

Simbiotics is a 3D modelling platform which allows for the design, simulation and analysis of multicellular systems.
The platform is focussed on modelling of bacterial populations, cellular species with individual behaviour and
interactions with their environment can be defined. Large populations of multispecies communities can be simulated,
with population dynamics emerging from the interplay between individual cells. Through this one can observe a
colony self-organising based on cell metabolism, genetics and interactions. Simbiotics provides a standard modelling
library of processes typical to bacteria, such as growth, motility, gene regulation, metabolic activity and cell-surface
appendages such as receptors and adhesins. The library also provides some models of environmental factors such
as a fluid mixing force, bouyancy/gravity, friction and a primitive flow chamber.

Additionally one can attach virtual devices to a model in order to probe or interact with it, allowing for a partial
virtual lab experience. Data exporters can also be attached to a model in order to collate, format and write data
to file. The inclusion of auxiliary programs to model specifications allows for initial conditions, repetitive tasks and
desired interactions with the model to be automated.

In order to design a model in Simbiotics, modules from the Library can be attached to a model. This means
that the modeller can fine tune the simulation content, designing a specification in a compositional manner in order
to build bacterial and environmental models. In addition this means that only processes relevant to a model will
be simulated.

Simbiotics is written in Java, and utilises a spatial representation and parallelised scheduler as implemented in
Cortex3Dp.
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1.1 License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details: http://www.gnu.org/licenses/gpl.html

1.2 Terminology

To clarify some of the terminology used in this document, we list some keywords and their meaning.

Term Meaning
Library module Java classes within the Simbiotics library which describe model-specific behaviour,

maybe also be called an implementation module.
$SIMBIOTICS The main Simbiotics folder, which contains the src folder

Table 1: User manual terminology
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2 Getting Simbiotics

Simbiotics is a Java project which can be run from command-line or opened in an integrated development environ-
ment (IDE). Simbiotics and the its dependencies must be downloaded, installed and linked to the project.

2.1 Simbiotics

Simbiotics is available free at:
Download Simbiotics

2.2 LibSBML

The first dependency is the Systems Biology Markup Language (SBML) library. SBML is a language format
for representating computational models of biological processes, such as the metabolism and gene regulation of
individual cells. Simbiotics can handle SBML through these libraries to represent populations of SBML models
interacting with each other. LibSBMLj is a java interface for the SBML format, and can be downloaded at the link
below:

Download LibSBML

2.3 LibSBMLsim

The second dependency is LibSBMLsim, a simulator which is used to run SBML models. It is written in C++ and
LibSBMLsimj is the java interface for using the library, and can be downloaded from the link below:

Download LibSBMLsim
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3 Running Simbiotics

Simbiotics can be run in multiple ways allowing the user to choose which is most appropriate for them. The two
main routes for running Simbiotics are: running the software from command-line or opening the project in an IDE.
Before Simbiotics can be run we must first link the dependecies (LibSBML and LibSBMLsim), and then compile
the source code.

3.1 Linking dependencies

Once LibSBML and LibSBMLsim are installed on your system (make sure you have the correct ones for your
OS and architecture), you must link them to the Simbiotics project. Locate libsbmlj.jar/libsbmlsimj.jar and lib-
sbmlj.so/libsbmlsimj.so files on your system, and copy them into the $SIMBIOTICS/jars folder (overwrite any
existing versions which are in that folder).

3.2 Compiling Simbiotics

The supplied Simbiotics source code must be compiled to an executable jar if you wish to run it from command-
line. This is a simple one stage process; from command-line enter the $SIMBIOTICS root folder and run the make
command, as such:

Listing 1: Compling Simbiotics source to executable jar

cd $SIMBIOTICS

make
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3.3 Using command line

Simbiotics can be launched by command line using the jar file. A configuration file must be provided as a command
line argument, the config file contains the launch parameters for the software. A default configuration file is provided
in the $SIMBIOTICS/configs folder. The configuration file is described in Section 4.1.

To run Simbiotics from command-line, change directory to the $SIMBIOTICS root directory (simbiotics 1.0/ ).

Linux/Mac

Where 〈config〉 is the Simbiotics configuration file path, 〈model〉 is an optional parameter specifying the path to
a model file, and 〈results〉 is an optional parameter to set the root path for exported simulation results.

Running from jar
The jar file can be used to run a Simbiotics model in the following manner.

Listing 2: Jar file arguments

simbiotics.jar <config> <model> <results>

The configuration file is the only compulsory argument, thus Simbiotics can be run as simply as:

Listing 3: Minimal use of jar file

cd $SIMBIOTICS

java -jar simbiotics.jar configs/default.json

The target model, results directory and other parameters all exist in the configuration file, however one may
wish to override the target model and results directory via command line, this can be done as much:

Listing 4: Loading a custom model

#setting a custom model

java -jar simbiotics.jar configs/default.json simbiotics.examples.Model1_Aggregation

#setting a custom model and custom results directory

java -jar simbiotics.jar configs/default.json simbiotics.examples.Model1_Aggregation

$CUSTOM_RESULTS_DIRECTORY/

Windows

...TBA
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3.4 Opening in IDE

For this user manual the IDE we will use is Intellij 14.1, which can be downloaded at the link below.
Download Intellij 14.1

The following steps are how to open the project in Intellij, version 14.1 was used for this user guide.

1. File - New - Project from Existing Sources

2. Select the simbiotics main folder.

3. Create project from existing sources

4. Name the project

5. Make sure the simbiotics src folder path is selected

6. Make sure the libraries are selected

7. Finish

The dependencies may need to be manually linked in the IDE.

1. Navigate to File - Project Structure... (Ctrl+Shift+Alt+S)

2. Click on the Libraries tab on the left

3. Click New Project Library (Green +)

4. Choose Java

5. Navigate to the $SIMBIOTICS/jars folder

6. Choose one of the .jar or .so files

7. Choose to add it to the simbiotics module

8. Repeat this for all of the files in $SIMBIOTICS/jars (both .jar and .so files)
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3.5 Developing models

To develop models in Simbiotics one can write their own Java class which extends the Model class, add it the
source code folder, and then compile the source to a jar (as described in 3.1). Alternatively one may open the
project in an IDE and develop classes in there, compilating and running can be done from within the IDE.

To aid in the development of models, there are a series of examples models (5) and modelling tutorials (6).
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4 Input/output

4.1 Configuration file

The configuration file is the first argument when loading Simbiotics from command-line, it is the only compulsory
argument. It describes the parameters for Simbiotics which can be seen in Table 2 below. When developing in an
IDE, the configuration parameters exist in the SimbioticsConfig class.

Listing 5: Simbiotics configuration file

{

"model_file": "simbiotics.examples.Model1_Aggregation",

"results_dir": "results/",

"duration": 0,

"simple_workers": 1,

"complex_workers": 4,

"max_nodes_per_pm": 20000,

"node_depth": 0,

"slot_resolution": 20,

"balance_round": 300

"verlet_update": 10,

"view_width": 1280,

"view_height": 800,

"parallel": true,

"profiling": false,

"gui": true

}

Parameter Description Type
model file The path to the model class/file to be simulated String
results dir The default results directory for data exporting String
duration Number of simulated seconds before exiting, 0 means indefinite Double

simple workers Number of simple worker threads Integer
complex workers Number of complex worker threads Integer

max nodes per pm Number of agent geometries in partition before it is split into subpartitions Integer
node depth Number of binary splits of the cuboid domain into the diffusion grid of subdomains Integer

slot resolution Number of voxels in each subpartition Integer
balance round Number of iterations before the domain is checked if it should be split into subdomains Integer
verlet update Number of iterations before updated a cells verlet list (nearest neighbours) Integer
view width Width of the GUI frame in pixels Integer
view height Height of the GUI frame in pixels Integer

parallel Whether the simulation should be run in a parallelized manner Boolean
profling Whether the simulation profiling data should be displayed Boolean

gui Whether the simulation should be run with a GUI Boolean

Table 2: Simbiotics configuration parameters

4.2 Keyboard/mouse interactivity

There are some default key bindings provided in Simbiotics. These can only be run when the Simbiotics GUI is
also loaded (gui = true in configuration file).
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Input Action
Left click + drag Translates the model visualisation

Right click + drag Rotates the model visualisation
a Forces data exporters
q Takes a 3D population snapshot

Spacebar Toggles the colour scheme

Table 3: Simbiotics input commands
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4.3 Inputs

4.3.1 Microscopy images

Microscopy images can be processed and loaded into Simbiotics to specify the initial spatial arrangement of bac-
teria. This is achieved by using the MicroscopyLoader class, which is available in the simbiotics.loader package.
Usage of the microscopy laoder module is as such:

MicroscopyLoader(<data file>, <image dimensions>, <loading dimensions>)

Where data file is the path to the target microscopy image data file, image dimensions is the resolution of
the micropscopy image data, and loading dimensions describes the resolution where the image data cells will be
loaded within.

This will be described in more detail through the following example:

Listing 6: Loading microscopy images into Simbiotics

defineWorld(200, 200, 200);

double[] image_dimensions = new double[]{1024, 1024, 256};

double[] loading_dimensions = new double[]{128, 128, 32};

PopulationEncoding my_population = MicroscopyLoader.generatePopulation("encoding.csv", image_dimensions,

loading_dimensions);

definePopulation(my_population);

Here we create a new cellular population from a microscopy image data file called encoding.csv. This microscopy
data file was generated from a z-stack of microscopy images, where each z-stack slice was 1024*1024*4px (in the
order of x, y, z). In the z-stack there were 64 slices, therefore the final resolution of the z axis is not 4px, but infact
4 * 64 = 256. Thus we have an image size of 1024*1024*256.

The simualtion dimensions must describe a cuboid which is within the defined simulation domain. It must also
have the same proportions as the image dimensions. In our example we define a world which is 200*200*200µm, the
image dimensions are 1024*1024*256 which do not fit into the world domain. We must set the loading dimensions

to be the converted image dimensions which fit within the world domain. We set them to be 128*128*32, these
dimensions have the same ratio as the image dimensions and fit within the world domain. When the microscopy
image data is loaded, the encoded cell coordinates are mapped from the image dimensions to the loading dimensions.

Once the population is generated via the MicroscopyLoader class, that population must be defined to be a
population in the model via the definePopulation function.

4.3.2 SBML models

SBML models can be embedded in agents in Simbiotics. This is achieved by using the SBMLModule behaviour
class, which is available in the simbiotics.library.behaviour.sbml package. SBML module usage is as such:

SBMLModule(<SBML file>, <timestep>, <SBML timestep>)

where SBML file is the path to the target SBML model file, timestep is the time between SBML module runs,
and SBML timestep is the internal timestep for the SBML solver (must be smaller than timestep). An example
of how to use the SBML module can be seen below:

Listing 7: Loading SBML models into Simbiotics

SBMLModule my_sbml = new SBMLModule("my_sbml_file.xml", 1, 0.1);

defineCellBehaviour(my_sbml, "sbml_metabolism");

defineCellSpecies(new CellSpecies("my_species", Color.BLUE, new Sphere(1.0), "sbml_metabolism"));
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Here we create an SBML module, which contains the SBML model contained within my sbml file.xml. The
SBML model is run every 1 second, and has an internal time step of 0.1 seconds. The SBML module can then be
defined as a behaviour and attached to a cell species definition, using the defineBehaviour and defineCellSpecies
functions.
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4.4 Outputs

4.4.1 Data exporting

4.4.2 Snapshot rendering

14



5 Specification
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6 Example models

The Simbiotics source code contains a set of example models which utilise a range of library functionality. These
models can be simulated and can be used as templates for creating your own models using the library functionality.

All models exist in the package simbiotics.examples (src/simbiotics/examples).

Model1 Aggregation
Caggregation between two species of bacteria, based on cell-surface receptors.

Model2 BoundaryConditions
Extended Model1toincludeasoliddomainboundarysurfacetowhichbacteriamayadhere, andperiodic(cyclical)domainboundaries.

Model3 Biofilm
Dualspeciesbiofilmformedfromaninitiallyplanktonicpopulation.Thegreenspeciescanadheretothesurface, andredspeciescanadheretothegreenspecies.

Model4 BooleanNetworkGenetics

Coaggregation between two species of bacteria, based on cell-surface receptors.

Model5 NutrientDependence

Model6 DifferentialEqGenetics

Model7 MembraneTransport

Model9 SBMLIntegration

Model10 MicroscopyLoading

Model11 BoundaryInterfaces

Model12 BacterialDiffusionCoefficient

Model14 ConstantGrowth

Model15 DLVO population

Model16 Gillespie

Model17 HertzianContact

Model18 Chemotaxis

Model19 LiveGraph

Tutorial1 AggregationOpticalDensity

Tutorial2 BiofilmHeight

16



7 Modelling tutorials

This section has two tutorials to demonstrate how Simbiotics models can be defined. The first tutorial is a step-
by-step overview of how to create a basic model, and the second tutorial builds upon these ideas to develop a more
complex model specification. These models can be run at the end of each subsection.

7.1 Tutorial 1 - Creating your first model

In this first tutorial we will describe how to construct a basic model, followed by how to attach some library modules
to describe model functionality and perform basic analysis and data collection.

The complete model can be found in the Simbiotics project at:
simbiotics.examples.Tutorial1 AggregationOpticalDensity

7.1.1 Creating a model class

First we define a new model class which extends Model. This class needs two functions to work, a typical Java main
method to start the application, and a build method in which the model definitions are. The main method should
have a call to the initialise function, and should pass the .class variable of the model you are defining. The build
method contains the model specification, and is used by calling desired define functions and passing in modules
from the Simbiotics library. Additionally one may override the step method, which is called at each iteration of
the simulation and can used for custom modeller defined uses.

// define a new class which extends Model

public class MyModel extends Model {

// define a main method in which this objects static class variable is passed into the initialise

function

public static void main(String[] args){

initialise(MyModel.class);

}

// override the Model build method

public void build(){

// model definitions go here

}

// optionally override the Model step method

public void step(){

// custom modeller definitions

}

}

The modeller is required to define the world domain size which will be simulated. This is shown below where a
world of size 100*50*100 micrometers is specified.

We also define boundary conditions which describe the behaviour at the domain boundaries. Here we set the
X and Z axes to be cyclical (periodic) boundaries, such that agents which leave a face of the cuboidal domain on
the X and Z axes enter from the opposing face of the domain. By default boundary conditions are set to be solid
walls, in this case the Y axis (top and bottom faces of the cube) are impassable.

// define the world domain to be 100*50*100 micrometers (in form {x, y, z})

defineWorldSize(100, 50, 100);

// define the world X and Z boundaries to be cyclical

defineBoundary(Axis.X, new CyclicalBoundary());

defineBoundary(Axis.Z, new CyclicalBoundary());

Defining three solver systems for the model is required, namely the physical intergration solver, reaction-diffusion
solver and the goemetry collisions solver. This is shown below, where we use the default library modules for each
of the solvers.
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The StandardPhysics module implements a verlet integrator which describes how forces are translated into
velocities and positions for agent geometries. The StandardDiffusion module implements a finite-volume method of
Fick’s Law for solving the diffusion of chemicals in the world domain. The StandardCollisions module implements
a mass-spring law to describe how intersecting agent geometries exert forces on each other.

// define the physics solver (StandardPhysics implements verlet integration) and add force components

definePhysics(new StandardPhysics());

// define the diffusion solver (StandardDiffusion implements a finite-volume method of Fick’s law)

defineDiffusion(new StandardDiffusion());

// define the collision solver (StandardCollisions implements a mass-spring system)

defineCollisions(new StandardCollisions());

The modeller can define cell species using a CellTemplate, which describes the name and functionality of the
species. Below we define two species, ”species a” which is red and is represented as a sphere of diameter 0.9
micrometers, and ”species b” which is green a sphere of 1.1 micrometers.

Populations of the two species are then defined, 300 ”species a” cells and 200 ”species b” cells. The definePop-
ulation function randomly positions cells with a normal distribution throughout the world domain.

// define two species of cells

defineCellSpecies(new CellTemplate("species_a", Color.RED, new Sphere(0.9));

defineCellSpecies(new CellTemplate("species_b", Color.GREEN, new Sphere(1.1));

// define a population of the species

definePopulation("species_a", 300);

definePopulation("species_b", 200);

Loading the model in its current state results in a static scene with the inanimate cell populations suspended
in the domain. This is the first step of building a typical model, providing the core components on which model
functionality will be layered.

7.1.2 Extending the model

Defining environmental forces is done via the physics solver system. The StandardPhysics module can take a set
of force component parameters, which describe the forces equations due to specific mechanisms. Force components
are found in the simbiotics.library.physics.components package.

We define two force components, Brownian dynamics and friction dynamics, with force coefficients passed into
their constructors.

// define the physics solver (StandardPhysics implements verlet integration) and add force components

definePhysics(new StandardPhysics(new Brownian(2.4), new Friction(2)));

Binding sites can also be used to represent targets for interactions, typically representing cell surface proteins
and carbohydrates. We define two binding sites ”adhesin a” and ”adhesin b”. We then define an interaction called
”interaction a b” which occurs between the two spcies of adhesin. An InteractionTemplate describes interaction
parameters, here we set the interacton force coefficient to be 40 and the interaction rate to be 30.

defineBindingSite(new BindingSite("adhesin_a"));

defineBindingSite(new BindingSite("adhesin_b"));

// define the interactions which occur between adhesins

defineInteraction(new PhysicalInteraction("interaction_a_b", new Pair("adhesin_a", "adhesin_b"), new

InteractionTemplate(40, 30)));

Now we have defined binding sites which have an interaction between them, we can add the binding sites our
cell species definitions, this is achieved via adding a behaviour library module to the species. Below we define two
behaviour modules, both instances of CellAdhesion which is a module implementing how cells detect binding site
interactions with neighbouring cells. This module takes a parameter list of Strings, being the IDs of the binding
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sites which are present in that module. For our modules ”adhesion a/b” have their corresponding adhesin as their
constructor parameter.

We then modify the cell species definitions we defined earlier; cell templates can take a parameter list of Strings
after the cell geometry (sphere) parameter, these are the IDs of the behaviour modules as we defined above.
Cell species ”species a/b” have their corresponding cell adhesion behaviour module attached to their definition,
”adhesin a/b” are then implicitly represented on the surface of ”species a/b”.

// define the cell behaviour module which implements cell-adhesin functionality

defineCellBehaviour(new CellAdhesion("adhesin_a"), "adhesion_a");

defineCellBehaviour(new CellAdhesion("adhesin_b"), "adhesion_b");

...

// add the new behaviour modules to the cell species templates using their unique keys

defineCellSpecies(new CellTemplate("species_a", Color.RED, new Sphere(0.9), "adhesion_a");

defineCellSpecies(new CellTemplate("species_b", Color.GREEN, new Sphere(1.1), "adhesion_b");

Binding stes can be used to define environmental structures such as binding targets on solid boundaries. We
define a binding site called ”boundary structure”, and an interaction ”boundary interaction” which occurs between
”adhesin a” and the new boundary structure with a force coefficient of 100 and a rate of 100.

We then define a boundary condition on the Y axis, at the face of the cube where the Y coordinate is the
maximum of the world domain (in Simbiotics Y max is the top face of the cuboid domain). The boundary is
set to be a solid wall, and has a property object assigned to. In the property object we defined property called
”structures”, which takes a String array of the binding sites which are present, in this case only the new binding
site ”boundary structure”.

// define the new environmental binding site

defineBindingSite(new BindingSite("boundary_structure"));

...

// define the interaciton between species_a’s adhesin, adhesin_a, and the environmental_structure

defineInteraction(new PhysicalInteraction("boundary_interaction", new Pair("adhesin_a",

"boundary_structure"), new InteractionTemplate(100, 100)));

...

//define the world Y boundaries to be solid, and the top substratum has a surface structure which

interacts with species_a

defineBoundary(Axis.Y, AxisFace.MAX, new SolidBoundary(new BoundaryData(new Pair("structures", new

String[]{"boundary_structure"}))));

7.1.3 Collecting data from the model

To collect data from the model we can define exporters, these are library modules which read desired model state
information and writes it to file. Additionally the modeller can define devices, which are programs that perform
built-in analysis on the model state such as measurements or interactions with the model, device data can then be
used by exporters.

For this model we can measure the aggregation of the bacterial population using a simulated spectrophotometer,
emulating the process a biologist would go through to acquire such data. We first define the spectrophotometer
module, then an exporter module which uses the data from this spectrophotometer. This is achieved by using the
ID of the spectrophotometer in the constructor of the exporter. We take a spectrophotometer scan and export the
data every 10 seconds, this sample period is the second parameter to the exporter.

// define the optical density device

defineDevice(new Spectrophotometer(), "spectrophotometer");

// define the optical density

defineExporter(new SpectrophotometerExporter("spectrophotometer", 10), "od600_data");
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7.2 Tutorial 2 - Biofilm

In this tutorial we will develop a more advanced model, building on concepts we covered in the first tutorial.
We first develop a primitive single species biofilm model, where planktonic cells can colonise a surface. We then
extend the model, introducing a second bacterial species which performs chemotaxis towards a chemical which is
produced by the first species biofilm, resulting in the second species adhering the the biofilm. Growth kinetics are
introduced, as well as a boundary interface which describes a flux of new chemicals and bacteria into the world
domain. Analysis is then performed to measure the biofilm height profile and this data is written to file.

The complete model can be found in the Simbiotics project at:
simbiotics.examples.Tutorial2 BiofilmHeight

7.2.1 Environment setup

We first define a world domain size of 100*50*100 micrometers followed by definition of cyclical (periodic) boundaries
on the X and Z axes, as we did in the first tutorial. The domain boundary at the minimum value of the Y axis
(bottom face of the cuboid domain) is then set to be solid with binding sites present.

We then define the solver systems for the physics, diffusion and collisions in the model. The physics system has
three force components, namely forces due to gravity, Brownian dynamics and friction (viscous drag force).

// define a world domain of 100*50*100 micrometers

defineWorldSize(100, 50, 100);

// define the world X and Z boundaries to be cyclical

defineBoundary(Axis.X, new CyclicalBoundary());

defineBoundary(Axis.Z, new CyclicalBoundary());

// define the world Y boundaries to be solid, and the top substratum has a surface structure which

interacts with species_a

defineBoundary(Axis.Y, AxisFace.MIN, new SolidBoundary(new BoundaryData(new Pair("structures", new

String[]{"boundary_structure"}))));

// define the boundary structure binding site

defineBindingSite(new BindingSite("boundary_structure"));

// define the physics solver (StandardPhysics implements verlet integration) and add force components

definePhysics(new StandardPhysics(new Gravity(0.1), new Brownian(2.4), new Friction(2)));

// define the diffusion solver (StandardDiffusion implements a finite-volume method of Fick’s law)

defineDiffusion(new StandardDiffusion());

// define the collision solver (StandardCollisions implements a mass-spring system)

defineCollisions(new StandardCollisions());

7.2.2 Bacterial species

A bacterial species is then defined; it’s represented as a red sphere of diameter 0.9 micrometers, and has a binding
site ”adhesin a” on its surface which may interact with the ”boundary structure” binding site. We then create 100
instances of the species.

// define the binding site

defineBindingSite(new BindingSite("adhesin_a"));

// define the interaction between species_a’s adhesin (adhesin_a), and the boundary

defineInteraction(new PhysicalInteraction("interaction_a_boundary", new Pair("adhesin_a",

"boundary_structure"), new InteractionTemplate(100, 100)));

// define the cell behaviour module which implements cell-adhesin functionality
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defineCellBehaviour(new CellAdhesion("adhesin_a"), "adhesion_a");

// define the cell species

defineCellSpecies(new CellTemplate("species_a", new Color.RED, new Sphere(0.9), "adhesion_a"));

// define cell population

definePopulation("species_a", 100);

7.2.3 Multiple bacterial species

To develop the biofilm model further we introduce a second species. We define ”species b”, which is represented
by a blue sphere of diameter 1.1 micrometers, it has a binding site ”adhesin b” on its surface which may interact
with ”adhesin a” on ”species a” cells.

// define the binding site

defineBindingSite(new BindingSite("adhesin_b"));

// define the interactions which occur between adhesins

defineInteraction(new PhysicalInteraction("interaction_a_b", new Pair("adhesin_a", "adhesin_b"), new

InteractionTemplate(50, 50)));

// define the second cell species

defineCellSpecies(new CellTemplate("species_b", Color.BLUE, new Sphere(1.2), "adhesion_b"));

// define second cell population

definePopulation("species_b", 50);

7.2.4 Bacterial growth

We use two forms of bacterial growth in this model. The first is a constant growth module which is not dependent
on any factor, the second is a nutrient dependent growth which depends on an extracelluar nutrient. In order to
represent an extracellular nutrient which undergoes reaction-diffusion dynamics, we must define the diffusion grid
resolution and chemical species.

To define the diffusion grid resolution we pass a value of 3 to the StandardDiffusion constructor, this means
a binary split will be recursively performed on the cuboidal domain 3 times. For our domain size of 100*50*100
micrometers, 3 binary splits mean our diffusion voxel resolution is 12.5*6.75*12.5 micrometers.

We then define the ”substance b” chemical which represents the nutrient, it has a diffusion rate of 50 and a
degradation rate of 0.5.

We also define a ”chemotaxis” behaviour module, which describes motility dynamics in order to ascend a
chemical gradient. We set the chemoattractant to be ”substance b”.

// define the diffusion solver (StandardDiffusion implements a finite-volume method of Fick’s law)

and an integer of how many binary divisions to preform on the world domain

defineDiffusion(new StandardDiffusion(3));

// define substance_b with its diffusion and degradation rates

defineChemicalSpecies(new Chemical("substance_b", 50, 0.5));

// define species_b’s oxygen chemotaxis module

defineCellBehaviour(new Chemotaxis("substance_b", 50, 50, 50), "chemotaxis");

We define two forms of growth in the model. For ”species a” a constant growth module is used, which has a growth
rate of 0.0004 ± a variation of 0.0004 fg s−1.

For ”species b” a nutrient dependent growth module is used. We first create a reaction called ”growth reaction”,
defining its as non-autocatalytic, then setting the maximum growth rate and reaction yield coefficient. We then
add a kinetic factor describing the form of the reaction, using a MonodKinetic we set the depending substance
to be ”substance b” and the half-saturation value to be 0.5 We then create a ReactionKineticGrowth behaviour
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module and attach the growth reaction we had defined. Then we set the stoichiometric yield coefficients of the
reactants and products in the reaction. We set the yields to be ”substance b” decreasing by one unit as the cells
”biomass” increases one unit.

Cells will divide (undergo mitosis) upon reaching twice the diamater they were at birth.

// define the species_a’s constant growth module

defineCellBehaviour(new ConstantGrowth(0.0004, 0.0004), "growth_a");

// define the reaction kinetics for substrate-dependent growth

KineticReaction growth_reaction = new KineticReaction("growth_reaction");

growth_reaction.setAutocatalytic(false);

growth_reaction.setMaxRate(0.001);

growth_reaction.setYield(1.0);

growth_reaction.addKineticFactor(new MonodKinetic("substance_b", 0.5));

// define species_b’s substance dependent growth module

ReactionKineticGrowth dependent_growth = new ReactionKineticGrowth();

dependent_growth.addReaction(growth_reaction);

dependent_growth.addYield("substance_b", -1.0);

dependent_growth.addYield("biomass", 1.0);

defineCellBehaviour(dependent_growth, "growth_b");

The new modules must then be added to the cell species definitions by their IDs. We modify the ”species a” defi-
nition to add the constant ”growth a” module, and modify ”species b” to have the nutrient-dependent ”growth b”
module and ”chemotaxis” module.

// define the cell species

defineCellSpecies(new CellTemplate("species_a", Color.RED, new Sphere(0.9), "adhesion_a", "growth_a")

);

defineCellSpecies(new CellTemplate("species_b", Color.BLUE, new Sphere(1.2), "adhesion_b",

"growth_b", "chemotaxis")

);

7.2.5 Bacterial differentiation

To introduce bacterial differentiation to model we can embed some decision making into the cells. A cell can be
in a set of discrete states, which can be turned on/off based on local environment factors. For this tutorial we
represent this decision making at a high level of abstraction by using a single state, indicating whether the cell has
adhered to the substratum. These states then effect the behaviour that the cell has, changing the way it interacts
with its environment.

First, we will set up some cell behaviours which can be turned on when the cell attaches to the substratum. A
secretor will be turned on which secretes substance b at given rate. Extracellular-polymeric substances (EPS) also
start being produced, EPS are represented as soft spheres.

// define the secretor which species_a has to secrete substance_b

defineCellBehaviour(new Secretor("substance_b", 100), "secrete_substance_b");

// define the species_a’s constant growth module

defineCellBehaviour(new SecretingCapsule(0.002, 0.002, 0.05), "secreting_capsule");

Secondly we set the states of the species, in this instance both have one state ”SESSILE” which is true if the
cell is attached to the surface.

Links are set up, which connect cell behaviours to cell states. For both ”species a/b” there is a BiofilmSensor
link, which connects their ”adhesion a/b” to the ”SESSILE” state, setting the state to be true if the cell has
adhered to the substratum (boundary structure) or to a cell is already sessile.

If a ”species a” cell is sessile it has the following behaviour:
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• Turns on secretion of ”substance b” (StateToBehaviourLink)

• Increases its growth rate and variation (VariableChanger)

If a ”species b” cell is sessile is has the following behaviour:

• Turns on secretion of EPS (StateToBehaviourLink)

• Decreases its chemotaxis propel speed (VariableChanger)

// define the cell states

States states_a = new States();

states_a.add("SESSILE", false);

States states_b = new States();

states_b.add("SESSILE", false);

// define links

Links links_a = new Links();

links_a.add(new BiofilmSensor("adhesion_a", "SESSILE"));

links_a.add(new StateToBehaviourLink("SESSILE", "secrete_substance_b"));

links_a.add(new VariableChanger(new Pair("SESSILE", "growth_a"), new Pair("growth_rate", 0.00125)));

links_a.add(new VariableChanger(new Pair("SESSILE", "growth_a"), new Pair("deviation", 0.0005)));

Links links_b = new Links();

links_b.add(new BiofilmSensor("adhesion_b", "SESSILE"));

links_b.add(new StateToBehaviourLink("SESSILE", "secreting_capsule"));

links_b.add(new VariableChanger(new Pair("SESSILE", "chemotaxis"), new Pair("run_force", 1)));

We must then attach the newly defined behaviours, states and links to the cell species definitions, modify the
original definitions.

// define the cell species

defineCellSpecies(new CellTemplate(

"species_a", Color.RED, states_a, links_a, new Sphere(0.9),

"adhesion_a", "growth_a", "secrete_substance_b")

);

defineCellSpecies(new CellTemplate(

"species_b", Color.BLUE, states_b, links_b, new Sphere(1.2),

"adhesion_b", "growth_b", "chemotaxis", "secreting_capsule")

);

7.2.6 Chemostat and bactostat

We define a flux of new bacteria and chemicals into the system. This is achieved by defining a chemostat (for
chemical fluxes) and a bactostat (for bacterial fluxes), and assigning them an environment interface which describes
which domain boundary they operate on.

Below we define two lists of Fluxes, one for chemicals representing a flux of acid into the system, and one for
bacteria representing the flux of the two species into the domain. Flux declarations have the flux rate as their
second parameter.

For chemicals we have flux of ”substance b” at a rate of 0.01 µMs−1 µm2. For bacteria we have a flux of
”species a” at a rate of 0.6 cells s−1, and of ”species b” at 0.4 cells s−1.

We then define an environment interface, describing which domain boundary this flux occurs at. Here we specific
that the MAX boundary of the Y axis is where the fluxes occur, meaning that cells and chemicals are introduced
from the top face of the cuboid simulation domain.

We then define the two devices, a Chemostat and a Bactostat, passing their constructors the corresponding
fluxes and the target environment interface. They are also identifiable by their unique device IDs, ”chemostat” and
”bactostat”.

// set up the fluxes used for the chemostat
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ArrayList<Flux> chemical_flux = new ArrayList<>();

chemical_flux.add(new Flux("substance_b", 0.001));

// set up the fluxes used for the bactostat

ArrayList<Flux> bacteria_flux = new ArrayList<>();

bacteria_flux.add(new Flux("species_a", 0.6));

bacteria_flux.add(new Flux("species_b", 0.4));

// define the environment interface

EnvironmentInterface environment_interface = new EnvironmentInterface(Axis.Y, AxisFace.MAX)

// define up the chemostat and bactostat devices with their respective fluxes

defineDevice(new Chemostat(chemical_flux, environment_interface), "chemostat");

defineDevice(new Bactostat(bacteria_flux, environment_interface), "bactostat");

7.2.7 Biofilm height measurements

To analyse the model we take measurements of the biofilm height. This gives us both the average and standard
deviation of the biofilm height, as well as a 2D heatmap which encodes the biofilm height profile.

First we define the biofilm height measuring device which samples the height of the biofilm across the entire
world domain. Its scan resolution is defined in its constructor by as X and Z resolution, here we set that resolution
to be 2 micrometers on both the X and Z axes. We give it a device ID of ”biofilm height measurer”.

We then define a data exporter specifically for this device. We pass the ID of the device we defined above to
instruct the exporter to use data collected from this device. The second parameter is the sample period of data
collection, it’s set to export the data every 25 seconds. The exporter unique ID ”biofilm height data” is the name
of the file which will hold this default, it can be found in the results directory which is defined in the Simbiotics
configuration.

// define the biofilm height measuring device

defineDevice(new BiofilmHeight(2, 2), "biofilm_height_measurer");

// define the biofilm height exporter

defineExporter(new BiofilmHeightExporter("biofilm_height_measurer", 25), "biofilm_height_data");
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8 Modelling library

Model specifications are composed of java classes which extend the Simbiotics’ Model class.

Definition Description Interface Base implementation
World Size Simulation domain size - -

Physics Physics solver - PhysicalSystem
Diffusion Diffusion solver - DiffusionSystem
Collisions Collisions solver - CollisionSystem
Chemical Chemical species - Chemical

ChemicalInterface Chemical fluxes at a given position iChemicalInterface -
BindingSite Binding sites which which may interact - BindingSite
Interactions Interactions between binding sites iInteraction PhysicalInteraction

Cell Cellular (bacterial) species iCell Cell
States Set of states an Agent can have iStates States

Behaviour Behaviour module for a cellular agent iBehaviour Behaviour
Geometry Geometry which physical represents an agent iGeometry Geometry
Devices Device can interact/analyse the model state iDevice Device

Exporters Exporter which can write data to file iExporter Exporter
Auxiliary Program which can automate model events iAuxiliary Auxiliary

Table 4: Growth kinetic equations, were µ is the growth rate, S is a given substance concentration and K is the
half-saturation constant of a given substance.
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8.1 Model definitions

defineWorldSize

Defining the world size sets the simulation domain dimensions.

void defineWorldSize(double world_size) (1)

void defineWorldSize(double world_x, double world_y, double world_z) (2)

Where world size is the length of a cubic domain. Alternatively one can have a cuboidal domain, whereworld x is
the length of the domain along the X axis, world y the length of the domain along the Y axis, and world z the
length of the domain along the Z axis.

In Simbiotics, the X axis is right/left, the Y axis is up/down and the Z axis is back/front, with the positive/neg-
ative values being the respective direction for each axis.

defineBoundary

Defining boundaries sets the behaviour of agent geometries when they interact with the sides of the cuboidal world
domain. Specific boundary behaviours can be set to particular faces of the domain by specifying the Axis and
AxisFace parameters (2), if no AxisFace parameter is passed (1) then the boundary condition is applied to both
the minimum and maximum faces of the given axis.

void defineBoundary(Axis axis, BoundaryCondition boundary_condition) (1)

void defineBoundary(Axis axis, AxisFace axis_face, BoundaryCondition boundary_condition) (2)

Where axis is the target axis (X, Y, Z), axis face is which face of the cube along that axis (MIN, MAX) and
boundary condition is an implementation module describing boundary mechanics.

definePhysics

Defining the physics solver sets the integration method for calculating how agent geometries positions change due
to forces.

void definePhysics(PhysicsSolver physics_solver)

Where physics solver is an implementation module of the physics solver.

defineDiffusion

Defining the diffusion solver sets the method used for calculating chemical fluxes between domain subvolumes.

void defineDiffusion(DiffusionSolver diffusion_solver)

Where diffusion solver is an implementation module of the diffusion solver.

defineCollisions

Defining the collision solver sets the method used for calculating the forces geometries which are colliding exert on
each other.

void defineCollisions(CollisionSolver collision_solver)

Where collision solver is an implementation module of the collision solver.

defineChemicalSpecies

Defines a chemical species to be part of the model with given ID and properties.

void defineChemicalSpecies(Chemical chemical)
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Where chemical is an implementation module of a chemical, which can be present in extracellular and intracellular
compartments.

defineChemicalInterface

Defines a flux of chemicals at a point position in the domain, which can be identified with an ID.

void defineChemicalInterface(ChemicalInterface chemical_interface, String id)

Where chemical interface is an implementation module of a chemical interface, and id is the name of that interface.

defineBindingSite

Defines a binding site which can represent a physical binding location on the surface of cellular geometries and
boundary interfaces.

void defineBindingSite(BindingSite binding_site)

Where binding site is an implementation module of a binding site.

defineInteraction

Defines an interaction which can represent the physical mechanism between two binding sites.

void defineInteraction(PhysicalInteraction interaction)

Where interaction is an implementation module of a PhysicalInteraction.

defineCellBehaviour

Defines a behaviour module to be identified by its ID and key, which can then be bound to cell species definitions
to describe cell dynamics.

void defineCellBehaviour(iBehaviour behaviour, String module_id, String module_key, Boolean active)

Where behaviour is an implementation module of an iBehaviour, module id is its unique identifier, module key is
the type of behaviour corresponding to the Simbiotics library keys, and active is a boolean whether the behaviour
is active (on) or inactive (off).

defineCellSpecies

Defines a cell species with a particular implementation, such as their spatial representation, behaviour and state
information.

void defineCellSpecies(CellSpecies cell_species)

Where cell species is an implementation module of CellSpecies.

definePopulation

Defines the initial population size of the cell species, their positions are distributed normally throughout the cubic
domain.

void definePopulation(String species_id, int population_size)

Where species id is the target species ID, and population size is the number of cells .
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defineCellAtPosition

Defines a cell of the given species at a position, can also have a unique cell name to track an individual cell
throughout the simulation.

void defineCellAtPosition(String species_id, double[] position)

void defineCellAtPosition(String species_id, double[] position, String cell_name)

Where species id is the target species ID, position is the coordinates of the cell, and cell name is the unique
name of that cell.

defineInitialVelocity

Defines the initial velocity for all cells in at the initial state of the model with some random deviation.

void defineInitialVelocity(double velocity, double standard_deviation)

defineDevice

Defines a device which may interact with or probe the model state, indentifiable by its ID.

void defineDevice(iDevice device, String device_id)

defineExporter

Defines an exporter to write model data to file, it’s identifiable by its ID and has an optional file path of where to
write the data to. If no file path is supplied then the default results folder as defined in the Simbiotics configuration
will be used.

void defineExporter(Exporter exporter, String exporter_id)

void defineExporter(Exporter exporter, String file_path, String exporter_id)

defineAuxiliary

Defines an auxiliary program which may automate interactions or events in the model, identifiable by a unique ID.

void defineAuxiliary(iAuxiliary auxiliary, String auxiliary_id)

defineDrawer

Defines a model component to visual for 3D rendering output.

void defineDrawer(Drawer drawer)

defineConstant

Defines a constant for the simulation engine, such as the global ”TIME STEP”.

void defineConstant(String id, double value)
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8.2 Library modules

Chemical

Represents a chemical species in the world domain.

Chemical(String id, double diffusion_constant, double degradation_constant, boolean diffusable, Color

colour)

ChemicalSource

Represents a flux of chemicals at a position into the source domain. Could be used to represent a pipette or point
source of a chemical.

ChemicalSource(double[] position, Flux... fluxes)

ChemicalSource(double[] position, ArrayList<Flux> fluxes)

ChemicalSource(double[] position, boolean active, Flux... fluxes)

ChemicalSource(double[] position, boolean active, ArrayList<Flux> fluxes)

ChemicalPool

Represents a set chemical concentration at a point in the simulation. Could be used to set a maximum concentration
point which can diffuse to form a gradient in the domain.

ChemicalPool(double[] position, Flux... concentrations)

ChemicalPool(double[] position, boolean active, Flux... concentrations)ChemicalPool(double[] position,

ArrayList<Flux> concentrations)

ChemicalPool(double[] position, boolean active, ArrayList<Flux> concentrations)

ChemicalSink

Represents a flux of chemicals a specific point out of the domain.

ChemicalSink(double[] position, Flux... fluxes)

ChemicalSink(double[] position, ArrayList<Flux> fluxes)

ChemicalSink(double[] position, boolean active, Flux... fluxes)

ChemicalSink(double[] position, boolean active, ArrayList<Flux> fluxes)

CellTemplate

Represents a species definition for a cell in the domain.

CellTemplate(String id, Color color, Geometry geometry)

CellTemplate(String id, Color color, States states, Geometry geometry)

CellTemplate(String id, Color color, States states, Links links, Geometry geometry)

CellTemplate(String id, Color color, Geometry geometry, String... module_ids)

CellTemplate(String id, Color color, States states, Geometry geometry, String... module_ids)

CellTemplate(String id, Color color, States states, Links links, Geometry geometry, String... module_ids)

CellTemplate(String id, Color color, Geometry geometry, iBehaviour... modules)

BindingSite

Represents a binding target/active site in the simulation domain. Could represent a receptor or adhesin on the
surface of a cell, or an adhesive structure on a substratum.

BindingSite(String site_id)
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InteractionTemplate

Represents the dynamics of binding site interactions, modelled as a spring connecting the two cels.

InteractionTemplate(double spring_constant)

InteractionTemplate(double spring_constant, double rate)

InteractionTemplate(double spring_constant, double rate, double extension_percentage)

InteractionTemplate(double spring_constant, double rate, double extension_percentage, double

spring_offset)

StandardPhysics

Implements the physics solver to be force-based dynamics with Verlet-strömer integration.

StandardPhysics(Force... forces)

Collisions

Collisions()

PhysicalBonds

PhysicalBonds()

Random

Random(double force_constant)

Friction

Friction(double force_constant)

Gravity

Gravity(double force_constant)

StandardDiffusion

Implements the diffusion solver to be a finite-volume method of Fick’s law.

StandardDiffusion(int binary_splits)

StandardCollisions

Implements the collision solver to be a soft-sphere implementation with mass-spring dynamics dictating forces
geometries exert on each other.

StandardCollisions()
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States

Represents state information of a cell. Can be used to describe modeller-specific detail, such as a high level state
describing whether a cell has adhered to a substratum, or a low level detail such as the MRNA concentration of a
particular gene.

public States(String states_id, iState... states)

Links

Represents some form of relationship between a cell state and a cell behaviour. Could be used to set a bacterial
behaviour only to become active if the cell is experiencing specific stimulii.

public Links(String links_id, iLink... links)

Geometry

Represents the physical geometry of an agent in the world domain. Currently Simbiotics only has sphere represen-
tations.

Sphere

Sphere(double birth_diameter)

Sphere(double birth_diameter, double birth_mass)

Sphere(double birth_diameter, Adherence adherence)

Sphere(double birth_diameter, double birth_mass, Adherence adherence)

Flux

Represents a flux of a species at some rate. Could be used to represent a flux of chemicals or bacteria into the
simulation domain.

Flux(String species_id, double rate)

Pair

Represents a pair of data which may be used in a multitude of ways. Could represent a pair of binding sites in an
interaction. This module is mainly used in other module constructors in order to cluster related parameter data.

Pair(K key, V value)

CellAdhesion

Represents the adhesive behaviour that a cell has.
Could be used to model adhesins/receptors on the surface of a cell which can bind with those on the surface of
other cells or surfaces.

CellAdhesion()

CellAdhesion(String... sites)

CellAdhesion(BindingSite... sites)

CellAdhesion(ArrayList<BindingSite> sites)
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NonSpecific

Represents the electrostatic interactions between geometries.

NonSpecific(double p_adhesion, double range_factor, double spring_constant)

SecretingCapsule

Represents the production of extracellular polymeric substances (EPS) which are secreted as particulates into the
local extracellular space of the cell.

SecretingCapsule(double volume, double volume_threshold, double growth_rate)

RunTumble

Represents the motility behaviour of a cell due to an active flagellar. Alternates between a run (clockwise flagellar
rotation) and a tumble (counter-clockwise flagellar rotation) to perform a random walk.

RunTumble(double p_end_run, double p_end_tumble)

Chemotaxis

Represents a cell ascending a chemical gradient. Uses run and tumble dynamics which are modulated by chemical
concentration memories. Could be used to represent a cell searching for a nutrient.

Chemotaxis(double p_end_run, double p_end_tumble)

Chemotaxis(String chemoattracant, double p_end_run, double p_end_tumble)

BooleanGRN

Represents cell decision making or processing. Could be used to represent state transitions that a cell undergoes,
such as gene regulation or phenotype changes, depending on the level of abstraction the modeller wishes to capture.

BooleanGRN(double update_period)

BooleanGRN(double update_period, States states)

BooleanGRN(double update_period, BooleanNetwork network)

DifferentialGRN

Represents a set of differential equations which may describe a cells gene regulation.

ProteinData

ProteinData(double protein)

MrnaProteinData

MrnaProteinData(double mrna, double protein)
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Conjugation

Represents the transfer of genes between adjacent cells.

Conjugation(String gene_id)

ConstantGrowth

Represents a constant growth of the behaviour with some random variations. Could represent an autotroph which
can be said to grow at a specific rate.

ConstantGrowth(double growth_rate)

ConstantGrowth(double growth_rate, double deviation)

ReactionKineticGrowth

Represents a nutrient-dependent growth. Can model multiple reactions utilising multiple chemicals in order to pro-
duce biomass. Yields can be set in a stoichiometry matrix. Additionally one can set the growth to be autocatalytic
if needed.

ReactionKineticGrowth()

ReactionKineticGrowth(HashMap<String, iReaction> reactions, HashMap<String, Double> yields)

iReaction

Represents a chemical reaction in the system. It consists of kinetic factors which describe the dynamics of the
reaction. Could be used to represent metabolic processes of a cell, converting nutrients to biomass.

addKineticFactor(iKineticFactor kinetic_factor)

KineticReaction

KineticReaction()

KineticReaction(String reaction_id)

KineticReaction(String reaction_id, iKineticFactor... kinetic_factors)

iKineticFactor

Represents a kinetic factor of a reaction.

setChemicalId(String chemical_id)

Kinetic

MonodKinetic

InhibitingKinetic

MembraneTransport

Represents the membrane of a cell geometry. Can be used to model active or passive transport mechanisms which
can take chemicals into or out of the cell.

MembraneTransport()
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ActiveTransport

ActiveTransport()

PassiveTransport

PassiveTransport()

SBMLModule

Represents an SBML model in the world domain. Can be used to represent a cells internal dynamics, and can be
connected with links to existing Simbiotics definitions such as states, behaviours and chemicals.

SBMLModule(String sbml_model, double time_step, double sbml_time_step)

34



8.3 Model configuration

Constants

Represents the constants used in the model. Can set the integration time step and other default parameters.

SimbioticsConfig

Describes the input parameters to the Simbiotics simulation core.
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9 Building new modules

The Simbiotics library can be extended by designing new modules in Java. This is achieved by meeting the require-
ments of one of the Simbiotics interfaces. For example, when developing a new module for bacterial behaviour, the
Behaviour class could be extended. If greater control is required than extending the existing base class, one may
implement the interface iBehaviour directly.

Below is a schematic showing all of the Simbiotics interfaces which may be customised.

9.1 States

9.2 Behaviours

9.3 Links

9.4 Geometries

9.5 Agents

9.6 Devices

9.7 Exporters

9.8 Auxiliary

10 Software architecture
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