
Easybiotics User Guide

Jonathan Naylor
ICOS, School of Computing Science, Newcastle University

j.r.d.naylor@ncl.ac.uk

Contents

1 Introduction 2

2 Getting Easybiotics 3

3 Developing models in Easybiotics 4

1

1 Introduction

Overview

Easybiotics is a graphical user interface (GUI) for the Simbiotics platform. Easybiotics allows for the design, simu-
lation and analysis of Simbiotics models via an easy to use graphical interface which does not require programming
experience to operate. It is a light-weight program developed in Python which has minimal dependencies.
This document describes how to get and install Easybiotics, as well as some tutorials on how to use it. You can
also try Easybiotics in a Virtual Machine for easy out-of-the-box use, it can be found on the website
along with video tutorials on how to use the software.

https://bitbucket.org/simbiotics/simbiotics/wiki/Home

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details: http://www.gnu.org/licenses/gpl.html

Technical overview

Easybiotics is written in Python 2.7, and depends on the Kivy, Matplotlib and Pandas library.

Terminology

To clarify some of the terminology used in this document, we list some keywords and their meaning.

Term Meaning
Library module Java classes within the Simbiotics library which describe

model-specific behaviour.
$SIMBIOTICS The main Simbiotics folder, which contains the src folder

Table 1: User manual terminology

2

https://bitbucket.org/simbiotics/simbiotics/wiki/Home

2 Getting Easybiotics

Downloading and installing

Simbiotics and Easybiotics are distributed together and can be downloaded at https://bitbucket.org/simbiotics/
simbiotics/wiki/Home.

Simbiotics is developed in Java 1.7, and Easybiotics in Python 2.7.

You must have the following packages installed:

• Open JDK >= 6 (GNU General Public Licence + classpath exception) or Oracle Java SE >= 6 (Oracle
Binary Code Licence)

• Python >= 2.7 - (https://www.python.org/)

• Kivy >= 1.8 - (https://kivy.org/)

• Matplotlib >= 1.4.2 - (https://matplotlib.org/index.html)

• Pandas >= 0.17 - (https://pandas.pydata.org/)

And optionally, if you wish to use SBML integration, you must have:

• libSBML - http://sbml.org/Software/libSBML (GNU LGPL)

• libSBMLSim - http://fun.bio.keio.ac.jp/software/libsbmlsim/ (GNU LGPL)

If you already have these dependencies installed, skip to 2.3. Running easybiotics. Note that you must have
Simbiotics installed to use Easybiotics. If you do not have Simbiotics installed please refer to the simbiotics guide.pdf
document.

Getting Dependencies

Easybiotics depends on modules from the Kivy, Pandas and Matplotlib libraries, which can be found here:

[Kivy]
[Pandas]
[Matplotlib]

If you are using a linux system, these can be installed on command line via aptitude with the following com-
mands:

Listing 1: Getting Easybiotics dependencies via aptitude

sudo apt-get install python-kivy

sudo apt-get install python-pandas

sudo apt-get install python-matplotlib

Running Easybiotics

Simbiotics can be run in multiple ways allowing the user to choose which is most appropriate for them. Simbiotics
can either by run via Easybiotics, by command-line, or opened in an IDE.

To run Easybiotics in Linux/MAC open a terminal/command prompt, navigate to the $SIMBOTICS directory
and run the ”start easybiotics” script. For example:

3

https://bitbucket.org/simbiotics/simbiotics/wiki/Home
https://bitbucket.org/simbiotics/simbiotics/wiki/Home
https://kivy.org/#home
https://pandas.pydata.org/
https://matplotlib.org/

Listing 2: Running Easybiotics

cd $SIMBIOTICS

./start_easybiotics

If you are using Windows you must use start the python application with gui/qSimbiotics.py

3 Developing models in Easybiotics

Here we elaborate on the features of Easybiotics and how to use them. First describing what each part of the
GUI is for. Examples of how to use Easybiotics can be found the in tutorials section of this document, and in the
Easybiotics video tutorials which can be found at

https://bitbucket.org/simbiotics/simbiotics/wiki/Tutorials

Easybiotics provides features to accomplish the following:

1. Develop models

2. Run models

3. Analyse models

4. Render visualisations

Develop models
The model development environment allows for Simbiotics models to be composed easily. The model specification
is represented as an interactive tree structure to which library modules can be attached.

Run models
Models can be run from inside the model development environment. Models can be run with optional real time
rendering of the simulation domain.

Analyse models
Simulation data can be exported to file by attaching exporters to the model specification. This data can optionally
be visualised in live plots during the simulation run. The Simbiotics library also contains some analysis modules
for characterisation of the model during run time.

Render visualisations
In addtion to real-time simulation rendering, simulations can be visualised after run time as 3D scenes. You can
create static ’image’ 3D scenes, or animated 3D scenes composed of a sequence of static scenes.

4

https://bitbucket.org/simbiotics/simbiotics/wiki/Tutorials

Overview

Creating a model

Models can be developed in Simbiotics by selecting the ”Develop and run models” on the home screen. You may
either create a new model, or load an existing model. There are a collection of example models which can be loaded
directly from the load screen. Additionally if you select browse and navigate to examples/models/ you will find
some more example models.

We will first go over the basics on model development in Easybiotics. A tutorial can be found below this section
which walks through the development of a basic model.

Once you have created a new model or loaded an existing one, you will be presented with the model development
screen. The model development screen has 5 major components: the Filebar, the Config Editor, the Model Editor,
the Display Panel and the Button Panel.

Filebar
The filebar (highlighted in yellow on Figure 3) gives access to functions such as the Easybiotics settings, handling
configuration and model files, running simulations with optional live visualisation, graphs and parameter sweeps,
along with information about Easybiotics.

Config Editor
The configuration editor (highlighted in blue on Figure 3) gives access to the Simbiotics platform settings, such
as whether to run the simulation with real time rendering, and how many CPU threads should be created for the
simulation.

Model Editor
The model editor (highlighted in green on Figure 3) allows for the manipulation of a model specification. This
includes adding/removing modules, setting the modules parameters, and connecting modules together to represent
the target system.

Display Panel
The display panel (highlighted in red on Figure 3) has three tabs. The description tab displays details of the
selected module. The properties tab allows for the modification of any parameters of that module. The edit tab
allows for the direct manipulation of the model specification file values.

Button Panel
The button panel (highlighted in orange on Figure 3) has three buttons - to run the current model, to quicksave
the current model, and to go back to the Easybiotics homepage.

5

Figure 1: Overview of the Easybiotics modelling interfaces. The file bar is highlighted in yellow, the Simbiotics
configuration editor in blue, the model specification editor in green, the display panel in red, and the button panel
in orange.

6

Running the model

Models can be run by either clicking the ’Run’ button in the button panel, or by selecting one of the run options
on the filebar.

You may select the amount of RAM that the JVM (Java Virtual Machine) uses for the simulation by selecting
’Settings - Run Settings’ from the file bar. Here you can set the initial amount of RAM allocated as well as the
maximum amount of RAM the simulation may use.

The simulation can be run with an optional live rendering. This is set in the configuration editor, by setting
the gui variable to true or false. If using the live renderer, the Simbiotics GUI is opened, more information can be
found in the Live Visualisation of Simulations section.

Analysing the model

Models can be analysed by attaching exporters to the model specification. Numerous exporters can be defined,
where each collects specific data about the simulation and writes it to file. Graphs may then be defined, which
are set to plot data from the exporters. Graphs can be saved and loaded to/from file for easy reuse. To run real
time graphs during the simulation run, select the ’Run - Run with live graph plotting’ option from the file bar, and
specifying the graphs which are to be rendered.

Easybiotics also provides a feature to perform parameter sweeps. Similar to graphs, parameter sweep objects
can be defined, which iterate over properties in the model. All simulations are run for the defined parameter sweep
ranges and their results saved to independent directories. Live graph plotters may also be attached to parameter
sweeps, plotting the data from all simulations on one graph for easy comparison.

In addition, the library contains numerous analytical tools such as those able to calculate the mean squared
displacement of agents and their velocity autocorrelation function. There are also some simulated lab tools, such
as microsensors and a spectrophotometer. This allows for probing of the simulated experiment as would typically
be done for the real experiment.

Examples of analysis with the tool are shown in the Easybiotics tutorials below.

Rendering visualisations

Visualisations of simulations can be rendered after they have finished executing, as an alternative to a live visu-
alisation. This can be achieved by attaching a certain type of exporter, called a geometry image, to the model
specification. This exporter writes all geometry properties to a file periodically, writing a new file for each time
point. It produces a series of indexed files which can be found in the results folder you set for the exporter.

Each geometry image file can be rendered independently into an static 3D scene, which is loaded in the Simbiotics
GUI allowing the user to move the camera around the scene and modify what properties are visualised.

Alternatively, a sequence of geometry images can be loaded into an animated 3D scene. The user may set
the delay between the animation frames, and whether the renderer should skip indexes. The animation renderer
also runs a camera to record the animated 3D scene and convert it into an .avi which can be found in the
$SIMBIOTICS/results folder.

7

Tutorial 1 - Creating your first model

To create a new model in Easybiotics selected Develop and run models - New model from the Easybiotics home
page, and enter the file name for your model, then press Create. The modelling interface should then display,
showing the configuration editor on the left, and the model specification editor in the middle.

Firstly, we need to create a simulation domain, which we call a world. To do this, right-click on the world node
on the model specification tree. This will display all world modules in the Simbiotics library. For this example,
select the 3D world module, and set the world dimensions to be 50*25*50, then press the Add button. An example
of this can be seen below.

To see that baby in action, hit run (either from the filebar or from the button bar bottom right). Make sure you
have the gui property in the configuration set to true! The Simbiotics GUI should open, showing the simulation
domain and nothing else. You can rotate the camera by right-clicking and dragging, and scrolling to zoom in and
out. For more information on the Simbiotics GUI, see the Live visualisation of simulations section nearer the start
of this document.

Ok, lets add some cells!

In brief, a cell is considered as an agent (an individual) in the model, and each agent is represented by a physical
geometry in the simulation. In the model specificaiton, a physical geometry can be created by add a morphology. To
do this, right click on the morphologies node on the model specificaiton, and select the coccus (spherical) module.
The default parameters are ok, so just press Add. This process can be seen below.

Next, we need to create a cellular species (a type of agent) which has the morphology as its geometric shape.
To do this, right-click on the species node. Select the cell module, and in the parameters set the morphology id to
be the coccus morphology we have just defined. When linking modules in this way, you either have to type in the
id, or can select one of the valid modules you’ve already defined by the ... drop down menu. Let’s also change the
name of this cellular species, set the species id to be ”my cell”.

Finally, let’s create a population of cells. This can be done by right clicking on the initial conditions node and
adding an initial population module. Set the species id to be ”my cell”, add set the population size to be 50, and

8

press add.

Ok... so the cells aren’t doing much, lets make this more interesting. To set the colour of the cells, navigate to
the colour property of the cell species you defined (by clicking on the dropdown icons on the model specification.)
Select the Properties tab in the display panel on the right, it should show the options to set the RGBA values. Set
the colour to whatever you like, we’ll do a nice green (50, 180, 80, 175).

Also, let’s add some movement to the system. We’ll do this by adding a friction and brownian module to the
forces node with their default parameters.

Now, when you press Run, you should see a population of moving cells which are the colour you set!
Let’s now add some basic behaviour to the cells to finish off tutorial 1. We’ll model that the cells have surface

appendages that cause them to aggregate. To do this, we must create a behaviour module, called cell adhesion.

9

Add this module to the model specification with its default parameters. We must then add a property to this
cell adhesion module representing a surface appendage. To do this, open up the property list for the cell adhesion
module, and right on sites then add a site called ”surface appendage” as seen below. The inherited boolean sets
whether any child cell would directly inherit this surface structure, though for this model it is irrelevant we will
not include cell growth.

Next we need to define an interaction mechanism, which is the sub-model describing how two surface appendages
interact. Add a spring mechanism, which describes the interaction as a Hookian spring. This forms a spring
connecting the two interacting geometries according to the springs parameters. For this model, we can leave the
parameters as default.

We must then create an interaction, which associates the surfaces appendages we defined with the mechanism.
Add a specific interaction module, and set the partners both to be the ”surface appendage”, and the mechanism id
to be the ”spring mechanism” we defined above.

Finally, we must add the interaction force module to our forces. This is a module which includes the physical
force generated by interactions to the total force that a cell experiences. Without this force module, interactions
will have no physical effect.

Ok, almost there! Now we have defined a behaviour module which has a surface appendage, and we have defined
an interaction that states if two of those surface appendages (from two different cells) comes into contact, then the
interaction mechanism we also defined is used to model that interaction. The only thing left is to say that our cell
species, ”my cell”, has this type of behaviour.

To do this do, open up the species definition, and right click on the behaviours property which is inside the
”my cell” definition, press the + button, and select the the ”cell adhesion” module from the drop down box, and

10

select Attach.

Now when you run the model, the cells should begin to aggregate, such as you see below. You may want to
increase the population size so that the aggregation is more apparent. To render the wire-frame of the interactions,
turn off the rendering of ”my cell” in the Visualisation layers menu of the Simbiotics GUI, and turn on the
”interactions” layer.

This concludes tutorial 1. You can play around with the parameters in the model, and more information on
these parameters can be found in the publications surrounding Simbiotics, which can be found in the Related
publications section.

11

Tutorial 2 - Collecting some data from a model

Here we run through an example of collecting data from a model, including how to visualise it live during the
simulation.

We will illustrate this example through a model of a colony of bacillus (rod-shaped) cells growing on a surface.
We will assume a constant nutrient supply and thus uninhibited growth. The bacillus cells secrete a chemical which
diffuse out of the cell membrane into extracellular space.

To start, please create a new model, and define the following specification:

1. To world, add a 3D world which is 50*20*50.

2. To forces, add a collisions complete module, with a range of 10 and a k value of 50.

3. To forces, add a friction module, with a constant value of 1.0.

4. To forces, add a interaction force module.

5. To forces, add a gravity module, with a constant value of 0.2.

6. To morphologies, add a bacillus module with a length of 1.0 and radius of 0.5.

7. To behaviours, add a constant growth module with a growth rate of 0.025.

8. To behaviours, add a mitosis module.

9. To species, add a cell module with a the bacillus morphology.

10. In the species - modules property, attach the constant growth and mitosis modules.

11. To initial conditions, add an initial cell position, setting the species id to the cell species you defined, and
the position to be x=0.0, y=9.5, z=0.0.

Press run, and you should see a single bacillus cell at the bottom of the simulation domain which is growing
and dividing.

Next, we will add the module that describes their cell behaviour, specifically that they synthesize a chemical,
and secrete it out of their membrane.

This is done by defining a chemical species. Add a chemical module to the chemicals definitions with a
diffusion coefficient of 1.0, a degradation coefficient of 0.1 and diffusable set to true (ON).

Next, add a synthesizing grn to the behaviours definitions. Set the chemical id to be equal to the chemical
you just defined, ensure the velocity constant is 1.0 and add the module. Add this new behaviour module to the
species, in the same way that you attached the mitosis and constant growth modules to the species.

12

To check that this works correctly, we can plot the amount of the chemical in simulation. To do this, we
must first collect the data - add a sampler module to the exporters definitions, with the the file path set to be
”results/”. Now we have a sampler defined, open it up in the model specification and right click on samples, and
add a TotalChemicalQuantity sample, with the chemical id set to the chemical you defined, and sample title to be
”total chemical”. Add a WorldTime sample, and title it time, and a CellNumber sample with the species id set to
the bacillus species you defined.

To periodically write the data to file, add an export periodically module to the schedules definitions. We can now
run the simulation with live graph plotting. Click Run on the top file bar, then select Run with live graph plotting.
Set the data file to be the sampler exporter you defined, which is the [file path+exporter id+file extension]. In our
instance, this is results/sampler.csv (the default results folder is in the $SIMBIOTICS main folder). The graph
axes must then be defined, and they must be one of the column headers (sample titles) in the csv data file. We
set the X axis to be the time data, and on the Y axis we plot both the total chemical quantity (scale = molecule
number) and the number of the bacillus cell species (scale = cell number).

We see that as the population of cells is growing at a constant rate, doubling every 60 units of time (Note: The
Simbiotics platform is unit-agnostic, meaning that whatever units you put in are the units you get out. For more
information on this see the related publications section.) We also see that as their are more cells, the total rate of
production of the chemical increases.

Next, we add the behaviour to the cell describing that the chemical can diffuse out of the cell membrane into
the extracellular space. To do this, add a membrane module to the behaviours definition, leave its parameters
as default. Open up the membrane definition in the model specification, and right click on the membrane fluxes
property. Add a flux with the chemical id the chemical you defined, and the rate to be 0.2. Set poisson to be true
(ON), which sets the solver to take a poisson distributed around the average permeation rate. Set osmotic to be
true, which means that the flux direction is always from high to low concentrations. Interpolated can be left on
false.

Now, we must attach that membrane module to our cell species definition, in the same way we added cell adhesion,
mitosis and the sythnesizing grn. To ensure this works, let’s plot the intracellular and extracellular quantity of the
chemical over time. To do this, navigate back to the samples defined our sampler in the exporters definitions. Add
a TotalIntracellularChemicalQuantity and a TotalExtracellularChemicalQuantity, with the titles ”intra chemical”
and ”extra chemical” respectively, which record the defined chemical id. Also, change the velocity constant of the
synthesizing grn to 10.0, and set the chemical to have an degradation constant of 0.0.

We then plot the total chemical, intra chemical and extra chemical over time.

13

14

Tutorial 3 - Intracellular dynamics with Gillespie submodels + multiple bacterial and
chemical species

In this tutorial we will create a 2D model with a static population of bacteria (species 1). We will model a chem-
ical influx (chemical 1) from the left hand side (X axis minimum face) and an influx of a seocnd species bacteria
(species 2) from the right hand side (X axis maximum face.) The bacterial species 2 will have an active motility,
called chemotaxis, such that they ascend the chemical gradient and try find the highest concentration of the chem-
ical. The bacterial species has an active transport mechanism, taking the chemical in the extracellular space inside
the cell. It also has metabolic behaviour transforming the chemical into a second chemical (chemical 2), this second
chemical can diffuse out of the membrane in the extracellular space. Chemical 2 is toxic to bacterial species 1 in
high concentrations, resulting in cell death.

To start, please create a new model, and define the following specification:

1. To world, add a 2D world which is 100*100

2. To forces, add a collisions module,

3. To forces, add a friction module, with a constant value of 1.0.

4. To chemicals, define chemical 1 with a diffusion constant of 2.0 and degradation 0.1.

5. To chemicals, define chemical 2 with a diffusion constant of 1.0 and degradation 0.0.

6. To forces, add a friction module, with a constant value of 1.0.

7. To morphologies, add a coccus module with a radius of 0.75.

8. To morphologies, add a coccus module with a radius of 0.5.

9. To behaviours, add a chemotaxis module with the chemical id set to chemical 1, and interpolated set to true
(ON).

10. To species, create species 1 with the first coccus morphology.

11. To species, create species 2 with the second coccus morphology, and attach the chemotaxis module to its
behaviour list.

12. To initial conditions, add an initial population, setting the species id to the species 1, and the population
size to 50.

13. To devices, add a chemostat with default parameters.

14. Open the chemostat properties in the model specification editor, right click on fluxes and add a flux of
chemical 1 with a rate of 1.0.

15. Right click on the environment interfaces property of the chemostat, add set it to be the axis to be X, and
the axis face to be MIN.

16. To devices, add a bactostat with default parameters.

17. Open the bactostat properties in the model specification editor, right click on fluxes and add a flux of species 2
with a rate of 0.1.

18. Right click on the environment interfaces property of the bactostat, add set it to be the axis to be X, and
the axis face to be MAX.

Press run, and you should see a static population of species 1, and species 2 cells coming into the simulation
domain from the right hand size (X Max interface), which move around and hunt down the high concentration of
chemical 1, causing them to migrate left to the X Min interface.

To add the membrane and metabolic pathway to species 2, do the following:

1. To behaviours, add a membrane module with default parameters.

15

2. Open the membrane module properties in the model editor, and add a membrane flux of chemical 1, with a
flux=0.1, osmotic=false(OFF), poisson=true(ON), interpolated=false(OFF).

3. To behaviours, add a gillespie module with default parameters.

4. Open the gillespie module in the model editor, and add a reaction (right click on reactions and click +). The
id is the reaction name, call it something like ”my reaction”. Set the reactants to be ”chemical 1” and the
products to be ”chemical 2”, with a rate of 0.1.

5. Add the gillespie and membrane modules to the cell species 2 behaviour definitions.

6. To exporters, add a sampler with the file path set to ”results/”

7. Open the sampler in the model editor, and add 3 samples: WorldTime with title ”time”, and 2 TotalIntracel-
lularChemicalQuantity modules, one for chemical 1 called ”intra chemical 1” and one for chemical 2 called
”intra chemical 2”.

If you run the model with live plotting, and run with a custom graph, plot data file=”results/sampler.csv”,
x=”time” and y=”intra chemical 1 AND intra chemical 2”. You should see a similar output to below.

Next, we must add the transportation of chemical 2 across bacterial species 2’s membrane, with a rate of 0.5
and set as osmotic process (osmotic on, poisson on, interpolated off). This causes chemical 2 to diffuse into the
extracellular space. We then define a toxicity module in in our behaviour definitions, setting the chemical id to be
chemical 2, and the threshold to be 0.01. We must then add the toxicity module to bacterial species 1’s behaviour
list.

Additionally, we’ll add two new samples to our sampler (in exporters). Add two CellNumber modules, one for
species 1 and one for species 2, with their titles the same as their species ids. The result should be that after some
time species 1 cells begin to die caused by species 2 cells secreting the toxic chemical 2 product. Below we plot the
cell numbers over time.

16

17

Tutorial 4 - Cellular logic and decision making with Triggers

One way to represent cellular logic is with triggers. Triggers are composed of conditions and actions. If all conditions
are true, then all actions are executed.

As a brief example, we will create a population of cells which may adhere to a surface with two types of
interaction. We will tell the cell to ’differentiate’ by changing colour depending on the dominant interaction it is
having with the surface.

1. To world, add a 3D world with default parameters

2. To boundaries, add a solid boundary with axis = Y, axis face = MIN, property id = adhesive

3. To surface properties, add an adhesive module with surface structures = structure1 AND structure2

4. To forces, add a collisions, interaction force, brownian and friction module with default parameters, then
add a gravity module with gravity constant = 0.25

5. To behaviours, add a cell adhesion module with default parameters - then add a site with site id = adhesin
(via the model editor drop down menu of the cell adhesion behaviour module)

6. To interaction mechanisms, add two spring mechanism modules, and set rate = 50 for both

7. To interactions, add a two specific interaction modules, the first should have partner a = adhesin and
partner b = structure1, with mechanism id = spring mechanism. The second should have partner a =
adhesin and partner b = structure2, with mechanism id = springmechanism0

8. To conditions, add two has interactions modules, the first with interaction id = specific interaction,
relation => and value = 1. The second with interaction id = specific interaction0, relation => and
value = 1

9. To actions, add two change colour modules, set the first one to have action id = change red, and an RGBA
value of 100, 0, 0, 0. The second should have action id = change blue, and an RGBA value of 0, 0, 200, 100.

10. To behaviours, add two trigger moudles, for the first set conditions = has interactions1, actions =
change red. For the second set conditions = has interactions2, actions = change blue

11. To morphologies, add a coccus module with default parameters

12. To species, add a cell. Set morphology id = coccus, and in the model editor attach the three behaviour
modules (cell adhesion, trigger and trigger 0) to the species. Also, set the colour property of the cell to be
80, 100, 60, 100

13. To initial conditions, add an initial population module with species id = cell and population = 100

The resulting model will be a population of cells which are motile, and when they stick to the surface they will
either turn blue or red, signifying which of the two interactions is dominant.

The model works as follows: cells may adhere to the Y MIN surface (bottom domain boundary), this occurs
by their adhesin interacting with either structure1 or structure2 on the boundary. The cells have triggers which
check which interaction is dominant, and the cell changes colour to indicate this. A trigger consists of conditions
and actions, if all the conditions are true, then all the actions are executed.

The parameters to note are rate property of the spring mechanism interaction mechanism module. This is the
rate at which that interaction occurs, we originally set it to 50% for both interactions, therefore we got roughly an
equal distribution of red and blue cells. The cell adhesions property max surface bonds is the maximum number
of interactions the cell may have with the surface (domain boundary). The default value for this is 3, which is why
in the conditions we check if the number of a given interacton is > 1 (as a cell could have two type 1 interactions
and one type 2 interaction, visa versa, or have all 3 interactions ’occupied’ by a single type of interaction.)

You can test out changing these parameters and seeing how the model behaviours - you could even say that
a given type of interaction has a weak spring constant meaning the interaction could be reversed (the spring can
break easier due to the random motion on the cells).

To plot a graph showing the number of red and blue cells can be achieved by adding a sampler to the exporters
definitions, and adding two CellCondition modules. The first should have conditions = has interactions1, and
set the title to something like type1, the second should have conditions = has interactions and title = type2.

18

Again, you may wish to add a export periodically module to the schedules (alternatively press ’a’ on the keyboard
to write all buffered results to file).

Try playing around with the parameters to see what you get, bellow we show results for a some different rates
of the type1 and type2 interactions.

(a) (b) (c)

Figure 20: (a) rate of type 1 = 50, rate of type 2 = 50 (b) rate of type 1 = 25, rate of type 2 = 75 (c) rate of
type 1 = 75, rate of type 2 = 25

Tutorial 5 - Intracellular dynamics using SBML files

Another way to represet cellular logic/dynamics is through an SBML model. An SBML model can be loaded as a
behaviour - as with all modules, each cell has its own ’version’ of this model.

Before we start the SBML tutorial, note the following steps when using SBML files:

1. Each file should only have a single compartment (which represents a cell’s volume)

2. Any species you want to diffuse in/out of the cell need to be defined in the Simbiotics model (with the exact
same ID!)

3. Those diffusable species will be handled by the Simbiotics membrane transport system that you’ll define,
therefore you do not need membrane related reactions in your SBML model.

4. Remember, you can just use 1 SBML file, and create many unique instances of it, or you may use many
SBML files (to define multiple species)

5. PLEASE CHECK THE SBML FILE VALIDITY. You can use this link .

6. The SBML simulator Simbiotics uses, libSBMLsim, does not handle SBML events

19

http://sbml.org/Facilities/Validator/

SBML is integrated into Simbiotics by calling the SBML simulator (libSBMLsim) to solve each cell’s intracellular
dynamics. The SBML simulator is called every time step of simulation time (we’ll discuss the parameters below),
and the solver has its own internal sbml time step, which is solved for the whole time step. Simbiotics then integrates
the SBML simulator result.

20

For this exercise, we will create 2 species of cells using 2 SBML model files. These files can be found in
$SIMBIOTICS/examples/, called ”tut5 species1.xml” and ”tut5 species2.xml”.

The species 1 SBML model has a reaction which turns chemical A into chemical B, and the species 2 SBML
model has a reaction which turns chemical B into chemical C. The A to B reaction is set to be at a rate double
that of the B to C reaction.

1. To world, add a 3D world with default parameters

2. To forces, add a brownian and friction module with default parameters

3. To chemicals, add 3 chemical modules, called S1, S2 and S3. All of them shouldd have diffusable = ON ,
diffusion rate = 10 and degradation rate = 0

4. To behaviours, create a membrane module. Add two membrane fluxes, the first should transports S1 inside
the cell at a rate of 1.0, and set only poisson to be ON. The second should transport S2 outside the cell at a
rate of -1.0, and again set only poisson to be true.

5. To behaviours add another membrane module, add a flux that that transports S2 at a rate of 1.0 and one
that transports S3 at a ratio of -1.0. Again, both should only have poisson set to be ON.

6. To behaviours, add two sbml modules. For the first, set the sbml file to
examples/sbml/tut5 species1.xml, and the time step to be 0.1 and sbml time step to 0.01. The second
should be the same except its sbml file should be set to examples/sbml/tut5 species2.xml. Note: the
time step variable is the step between the SBML model being solved, and the sbml time step is the internal
time step for the SBML solver

7. To morphologies, add a coccus module

8. To species, add two cell species modules. Try and guess what’s next - we’re going to attach the first membrane
and the first sbml module (the ones that deal with S1 and S2, to the first cell, and to the second cell we add
the second membrane and sbml modules, which deal with S2 and S3.

9. To initial conditions, add two initial population modules, creating 100 of each of the cell species.

10. To initial conditions, add an initial chemicalıquantity, and set it to be 1000 molecules of S1. (These molecules
will be placed at the position defined, it’s 0, 0, 0 by default, which is the very center of the simulation domain).

11. To exporters, add a sampler, and add TotalChemicalQuantity samples for all 3 chemicals S1, S2 and S3. If
you want, you could also add a TotalIntracellularChemicalQuantity and a TotalExtracellularChemicalQuantity
for each of them too.

12. To schedules, add an export periodically module.

21

22

Tutorial 6 - Intracellular dynamics using differential equations

Intracellular dynamics can also be specified using differential equations. The grn behaviour module is used to do
this. Note: despite the name ’grn’ it can be used to represent things other than a gene regulatory network, for
example it may be used to modify an agents mass (it can be used for biomass growth).

To exemplify use of a differential equation module, we will create a population of a single bacterial species,
in an domain (world) filled with chemical S1. The cell species can uptake the chemical though its membrane,
and consumes it to both grow in mass and synthesize chemical S2, which it secretes out into the extracellular
space. We’ll set chemical S1 not to degrade in the extracellular space, and chemical S2 to degrade quite fast in the
extracellular space.

You can find the model at ”$SIMBIOTICS/examples/models/tut6 equations.json”. We will not go through all
the steps of the model building as they can be found above, rather we’ll focus on the differential equation module.

Create a world set up with a single cellular species in it, and defined the two chemical species, set S1’s degradation
rate to 0.0, and S2’s degradation rate to 0.1. Add a membrane flux so that S1 is transported into the cell at a rate
of 1.0, and S2 out of the cell at a rate of -1.0, both with the poisson sampler set to be on.

Now, create the grn behaviour module. You must first set the species list - as we’ll be working with S1, S2
and modifying the cell’s mass (which is an accessible property via its ID), we must define those three, separated
by a comma:

species list = mass, S1, S2
Now that we have defined the species, we must add some equations. Right click on the equations property in the

grn module (in the model editor view). The equation id should be the species you are modifying (either mass, S1 or
S2). The equation field sets the calculation to work out dSi

dT . It may be an expression with variables/constants too,
for example you may refer to any of the species in the species list you just defined. You may also refer to a custom
named variable, for example k, and you must define it in the parameters field, in the form of variable = value.

An example can be seen in the figure below of us setting the equations for this system.

Here are all the values for the grn behaviour module:

1. species list = mass, S1, S2

2. parameters = max rate = 0.1, half sat = 0.01, consumption rate = 0.1, synthesis rate = 0.1

3. Equation 1, id: = mass

4. Equation 1, equation: = max rate * (S1 / (half sat + S1))

5. Equation 1, variables: = S1, max rate, half sat

6. Equation 2, id: = S1

7. Equation 2, equation: = -consumption rate * (S1 / (half sat + S1))

8. Equation 2, variables: = consumption rate, half sat, S1

9. Equation 3, id: = S2

23

10. Equation 3, equation: = synthesis rate * (S1 / (half sat + S1))

11. Equation 3, variables: = synthesis rate, S1, half sat

Now create an initial population of the cell species, and add an initial amount of S1 into the extracellular space.
Also, don’t forget to attach the behaviours you defined to the cell species! (Plus attach some data exporters if you
want to generate some graphs)

You can run the model get a result similar to what we see below. The cells should stop growing and producing
S2 once all of S1 is consumed - the remaining S2 then degrades in the extracellular space. Try playing around with
the parameters, or add another species which consumes S2.

24

Tutorial 7 - Live graph plotting

Live graph plotting can be achieved by defining graph objects and attaching them to a simulation run. The defined
graphs can be saved to file and loaded again for easy reuse.

In this tutorial we’ll reuse the model from Tutorial 4, and build the graph objects to render our graphs, rather
than using the custom graph mode as we did in Tutorial 4. So, load up that model (a copy of it can be found at
examples/models/tut4 triggers.json.

To create a graph, click on Graphs on the file bar, and selectCreate/edit graph objects. Click on Add, and select
the sampler exporter. You can name the graph, in our case we call it interactions (see figures below), then press
Select.

Now you have added a graph for that exporter, you can set what X and Y values you want to plot. Click on the
graph in the list view, and it will bring up the properties on the right hand side. You may set the bold variables.
y ids are the columns in the data file to be plotted on the Y axis, and x id is, as you can guess, is the column to
be plotted for the X value. The values for y ids and x id are the sample titles that you wish to plot (the titles
become the column headers in the .csv file which is exporter by the sampler). To see your sample titles, go back
to the model editor view, open the nodes for exporters - sampler - samples, then you can click on each individual
sample, and see/set its title in the property view.

Note: the x id should only be one value (one sample title), but the y ids may be set to be many values. This
is achieved by chaining together sample titles separated by AND. See the figures below for clarification on this.

For our graph we’ll plot time on the X axis, and for the Y axis we’ll plot type1 AND type2. Once you’ve set the
X and Y columns to plot, go back to the model editor. We can now run a simulation with this graph attached to
the run. To do this, select Run - Run with live graph plotting from the file bar. Now you can click the + button,
and select your graph, then press Attach. You can now run the model, and you should have a lovely live graph
alongside your simulation!

25

Tutorial 8 - Parameter sweeps

Parameter sweeps can be conducted. The value of a selected parameter is iterated across a defined range, and a
simulation is run for each value in that range. The data for each individual simulation is stored in its own subfolder
for further processing. You can also run live graphs/post rendererd graphs with the parameter sweep, where each
individual simulation data is plotted on the same graph for easy comparison.

Many parameter sweeps can be defined, and you can set the to run in a combinatorial manner to explore the
entirity of the parameter space (all combinations of the attached parameter sweeps are simulated), or alternatively
you can run them indepedently to observe the effect of each indiviudal parameter on the system.

In this tutorial we’ll use the model as we left it after the previous tutorial (Tutorial 7), so load that up. To create
a parameter sweep, click on Parameter sweeps - Creat/edit parameter sweep objects on the file bar of the model
editor. Same as for the graphs, press Add and select the associated model object. For parameter sweeps you can
only select properties with a numerical value. In this tutorial we’ll select the rate variable for the spring mechanism.

Once you have your parameter object defined, click on it in the list view, and edit the properties which appear
on the right hand side. The range property can take values which match the following forms:

range = [A,B,C,...,Z]
range = [A-Z]

Where A-Z are placeholders for numerical values. And the interval is a numeric value describing the interval
between each value when iterating through the range. If you use the first form then the interval setting is ignored,
as each value (separated by a comma) is iterated through, so you can leave the parameter value empty. For this
tutorial, we want to set the interaction rate (of type1 interactions occuring) to be 0, then 50, then 100. There are
two ways we can do this, choose either:

range = [0, 50, 100]
range = [0-100], interval = 50

Now that you have your parameter object and its properties set, you can go back to the model editor view,
and press Run - Run parameter sweep from the file bar. To attach the defined parameter sweep object to this
simulation run, press the + button and attach your sweep object. You’re now good to go! But first, lets look at
the options we have:

Run each sweep separately? If there are multiple parameter sweep objects attached to a run, you can ei-
ther sweep each parameter individually, or you can run all combinations of all sweeps. (ON runs them separately,
OFF runs all combinations).

Run all models in parallel? Sets whether to run all simulations at the same time, or whether to run them
sequentially one after another. Be careful if you run all simulations at the same time (in parallel), as this could
consume a lot of RAM and potentially freeze your machine, so please determine how much RAM a single simulation
consumes before thinking about running many at the same time. (OFF runs them one after another, ON runs
them at the same time)

Run the graphs attached in ’Run with live graph plotting’ If you have graphs attached then these can
also be run with the parameter sweeps. (ON renders the graphs, OFF doe... forget it, you get the picture)

26

27

	Introduction
	Getting Easybiotics
	Developing models in Easybiotics

